Lecture Notes of 2 the Unione Matematica Italiana Editorial Board Franco Brezzi (Editor in Chief) Persi Diaconis Dipartimento di Matematica Department of Statistics Università di Pavia Stanford University Via Ferrata 1 Stanford, CA 94305-4065, USA 27100 Pavia, Italy e-mail: [email protected], e-mail: [email protected] [email protected] John M. Ball Nicola Fusco Mathematical Institute Dipartimento di Matematica e Applicazioni 24-29 St Giles' Università di Napoli "Federico II", via Cintia Oxford OX1 3LB Complesso Universitario di Monte S.Angelo United Kingdom 80126 Napoli, Italy e-mail: [email protected] e-mail [email protected] Alberto Bressan Carlos E. Kenig Department of Mathematics Department of Mathematics Penn State University University of Chicago University Park 1118 E 58th Street, University Avenue State College Chicago PA. 16802, USA IL 60637, USA e-mail: [email protected] e-mail: [email protected] Fabrizio Catanese Fulvio Ricci Mathematisches Institut Scuola Normale Superiore di Pisa Universitätstraße 30 Piazza dei Cavalieri 7 95447 Bayreuth, Germany 56126 Pisa, Italy e-mail: [email protected] e-mail: [email protected] Carlo Cercignani Gerard Van der Geer Dipartimento di Matematica Korteweg-de Vries Instituut Politecnico di Milano Universiteit van Amsterdam Piazza Leonardo da Vinci 32 Plantage Muidergracht 24 20133 Milano, Italy 1018 TV Amsterdam, The Netherlands e-mail: [email protected] e-mail: [email protected] Corrado De Concini Cédric Villani Dipartimento di Matematica Ecole Normale Supérieure de Lyon Università di Roma "La Sapienza" 46, allée d'Italie Piazzale Aldo Moro 2 69364 Lyon Cedex 07 00133 Roma, Italy France e-mail: [email protected] e-mail: [email protected] The Editorial Policy can be found at the back of the volume. . Andrea Braides Valeria Chiadò Piat (Eds.) Topics on Concentration Phenomena and Problems with Multiple Scales ABC Editors Andrea Braides Valeria Chiadò Piat Dipartimento di Matematica Dipartimento di Matematica Università di Roma "Tor Vergata" Politecnico di Torino via della Ricerca Scientifica 1 Corso Duca degli Abruzzi 24 00133 Roma 10129 Torino Italy Italy e-mail: [email protected] e-mail: [email protected] LibraryofCongressControlNumber: 2006928616 MathematicsSubjectClassification(2000):49-06, 49J40, 49J45, 49K 20, 49J55, 28A 80, 74Q 05, 35B27, 35B25, 35B 40 ISSNprintedition:1862-9113 ISSNelectronicedition:1862-9121 ISBN-10 3-540-36241-x SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-36241-8 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright. Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. TypesettingbytheauthorsandSPi usingaSpringerLATEXmacro package Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN: 11787396 V A 41/3100/ SPi 543210 Preface The research group ‘Homogenization Techniques and Asymptotic Methods for Problems with Multiple Scales’, co-ordinated by Valeria Chiado` Piat and funded by INdAM-GNAMPA (Istituto Nazionale di Alta Matematica-Gruppo Nazionale per l’Analisi Matematica, la Probabilita` e le loro Applicazioni), op- eratedfrom2001to2005,involvinginitsactivitiesanumberofyoungItalian mathematicians, mainly interested in problems in the Calculus of Variations and Partial Differential Equations. One of the initiatives of that group has been the organization of a number of schools. Those in the years 2001-2003, whose lecture notes are gathered in this book, had been devoted to problems with oscillations and concentrations, while the schools in the years 2004-2005 covered a range of topics of Applied Mathematics. The first school in Turin, 17–21 September 2001, bearing the name of the research group and devoted to problems with multiple scales, was partially disrupted by the events of September 11 of that year, one speaker, Gilles Francfort, finding himself grounded in Los Angeles, and two other speakers, Andrey Piatnitski and Gregory Chechkin, slowed down in their car trip to Italy by the tightening of the borders around the European Community. The two remaining speakers managed however to enlarge their courses to cover some extra material, encouraged by the receptive audience. The course of AndreaBraideswasdevotedtothedescriptionofthebehaviourofvariational problemsonlatticesasthelatticespacingtendstozero,andthevariousmulti- scale behaviours that may be obtained from this process; that of Anneliese Defranceschi to energies with competing bulk and surface interactions. The extra lectures are not included in these notes, but some of them constitute part of the material in the book ‘Γ-convergence for Beginners’ (Oxford U.P., 2002)byBraides.ThecourseofFrancfort,onH-measures,waslaterrecovered ina‘PartII’oftheSchoolheldatIACinRome,December3–5,2001,together with a contribution of Roberto Peirone on homogenization on fractals. Here we also include the text of the two courses of Piatnitski and Chechkin, while thelecturenotesofthecoursebyFrancforthaveappearedasachapterofthe book ‘Variational Problems in Materials Science’, Birkha¨user, 2006. VI Preface The second part of the present notes covers the content of the subsequent school on ‘Concentration Phenomena for Variational Problems’ held at the Department of Mathematics of the University of Rome ‘La Sapienza’, Sep- tember1–5,2003(co-organizedbyA.Braides,whichexplainswhyheappears both as an editor and as a contributor). Scope of the School was to present different problems in the Calculus of Variations depending on a small para- meterε,thatexhibitadramatic‘changeoftype’asthisparametertendsto0, that is best described by the ‘concentration’ of some quantity at some lower- dimensionalset.ThecoursesofSylviaSerfatyandDidierSmetstreatthecase of Ginzburg-Landau energies. In a two-dimensional setting it is known that the concentration of Jacobians of minimizers at points can be interpreted as the arising of ‘vortices’. A novel method envisaged by Sandier and Serfaty shows how the limit motion of these vortices can be described by making use of Γ-convergence. On the other hand, Smets’s course focuses on the informa- tion that can be obtained by looking at the fine behaviour of solutions of the Allen-Cahn equations, and concerns the motion in any dimension. The use of Γ-convergence as a way to describe the concentration of maximizers of prob- lemswithsub-criticalgrowthisalsothesubjectofthethirdcoursebyAdriana Garroni. Here the concentrating quantity is not a Jacobian (the problem is scalar), but a suitable scaling of the square of the gradient of the maximizer, that converges as a measure to a sum of Dirac masses. This phenomenon has been previously described by means of the Concentration-Compactness alter- native, and this ‘version’ by Γ-convergence gives a new interpretation of the results. ThecourseofSylviaSerfaty,originallyprogrammedforthisschool,hadto be postponed to a subsequent spin-off ‘School on Geometric Evolution Prob- lems’ held at the Department of Mathematics of the University of Rome ‘Tor Vergata’, January 26–28, 2004 (with the same organizing team, and an ad- ditional course by Giovanni Bellettini) but is considered essentially part of the September 2003 School, and that is why it is included here. Other two courses, whose notes are not presented here, were held at the School by Gio- vanniAlbertiandHalilMeteSoner.ThecourseofSonerfollowedthenotesof a previous school and can be found in his Lecture Notes ‘Variational and dy- namic problems for the Ginzburg-Landau functional. Mathematical aspects of evolving interfaces’ (Lecture Notes in Math. 1812, Springer, 2003, 177– 233). Alberti’s presentation is partly covered by his review paper ‘A varia- tional convergence result for Ginzburg-Landau functionals in any dimension’ (Boll. Un. Mat Ital. 4 (2001), 289–310). As a final acknowledgement, it must be mentioned that these schools had been additionally jointly sponsored by the Rome and Milan Units of the National Project ‘Calculus of Variations’. Rome and Turin, Andrea Braides February 2006 Valeria Chiado` Piat Contents Part I Problems with multiple scales From discrete systems to continuous variational problems: an introduction Andrea Braides and Maria Stella Gelli.............................. 3 1 Discrete problems with limit energies defined on Sobolev spaces .... 6 1.1 Discrete functionals ...................................... 6 1.2 Equivalent energies on Sobolev functions.................... 7 1.3 Convex energies ......................................... 8 1.4 Non-convex energies with superlinear growth ................ 11 1.5 A general convergence theorem ............................ 19 1.6 Convergence of minimum problems......................... 21 1.7 More examples .......................................... 28 1.8 Energies depending on second-difference quotients ........... 35 2 Limit energies on discontinuous functions: two examples........... 36 2.1 The Blake-Zisserman model ............................... 36 2.2 Second-difference interactions ............................. 51 2.3 Lennard-Jones potentials ................................. 52 2.4 Renormalization-group approach........................... 58 3 General convergence results.................................... 58 3.1 Functions of bounded variation ............................ 58 3.2 Nearest-neighbour interactions ............................ 60 3.3 Long-range interactions................................... 73 References ...................................................... 75 Relaxation for bulk and interfacial energies Anneliese Defranceschi ........................................... 79 1 Introduction ................................................. 79 2 Lower semicontinuity - The direct method of the Calculus of Variations ................................................... 81 3 Relaxation .................................................. 83 VIII Contents 4 Preliminaries.Functionsofboundedvariationandspecialfunctions of bounded variation.......................................... 85 4.1 Notation................................................ 85 4.2 Measure spaces.......................................... 86 4.3 Functions of bounded variation ............................ 88 4.4 Sets of finite perimeter ................................... 90 4.5 Structure of BV functions. Approximate discontinuity points and approximate jump points ............................. 91 4.6 Special functions of bounded variation...................... 92 4.7 BV (SBV) functions in one dimension ..................... 92 5 Lower semicontinuity and relaxation in one dimension............. 93 5.1 A characterization of l.s.c. for functionals defined on SBV(I). Relaxation on BV(I)..................................... 93 5.2 A sufficient condition for l.s.c. for functionals defined on SBV(I). Relaxation in BV(I).............................100 6 Lower semicontinuity and relaxation in higher dimension ..........106 7 Lower semicontinuity and relaxation in higher dimension and for vector-valued functions........................................113 7.1 Upper bound for the relaxed functional.....................119 7.2 De Giorgi-Letta criterion to prove measure properties of the relaxed functional........................................121 7.3 Integral representation ...................................125 7.4 Proof of the main theorem ................................126 8 Relaxation in higher dimension (isotropy assumptions) ............129 9 Appendix ...................................................132 9.1 Appendix A: Lower semicontinuous envelope ................132 9.2 Appendix B: Proof of (73) ................................135 9.3 Appendix C: Proof of Step 3 in Proposition 67 ..............135 References ......................................................136 Convergence of Dirichlet forms on fractals Roberto Peirone .................................................139 1 Introduction .................................................139 2 Construction of an energy on the Gasket ........................141 3 Dirichlet forms on finitely ramified fractals ......................152 4 Main properties of renormalization and harmonic extension........164 5 Homogenization on the Gasket .................................173 6 Homogenization on general fractals .............................179 References ......................................................188 Homogenization in perforated domains Gregory A. Chechkin .............................................189 1 Appearence of a “term etrange”. Dirichlet problems in domains with low concentration of holes.................................190 1.1 Basic notation and setting of the problem...................190 Contents IX 1.2 The homogenization theorem..............................191 2 Homogenization problems in perforated domain with oscillating Fourier boundary conditions ...................................193 2.1 Basic notation...........................................193 2.2 Formal asymptotic analysis of the problem..................194 2.3 Main estimates and results. ...............................197 2.4 Auxiliary results.........................................199 2.5 Justification of asymptotics ...............................203 References ......................................................207 Homogenization of random non stationary parabolic operators Andrey Piatnitski ................................................209 1 The setup ...................................................210 2 Factorization of the equation...................................213 3 A priori estimates for the factorized equation ....................214 4 Auxiliary problems ...........................................215 5 Homogenization of the factorized equation.......................218 6 Homogenization of the original equation.........................223 7 Equations with diffusion driving process.........................225 References ......................................................230 Part II Problems with concentration Γ-convergence for concentration problems Adriana Garroni.................................................233 1 Introduction .................................................233 2 Two classical examples........................................234 2.1 Sobolev inequality .......................................235 2.2 Capacity and isoperimetric inequality for the capacity ........238 3 The general problem..........................................242 3.1 Variational formulation...................................242 3.2 Generalized Sobolev inequality ............................244 3.3 Concentration ...........................................244 3.4 Γ+-convergence .........................................245 3.5 The concentration result in terms of Γ+-convergence .........246 4 Identification of the concentration point .........................252 4.1 The Green’s function and the Robin function................253 4.2 Asymptotic expansion in Γ+-convergence ...................256 4.3 The result ..............................................257 4.4 Harmonic transplantation.................................260 5 Irregular domains ............................................263 References ......................................................265 X Contents Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics Sylvia Serfaty ...................................................267 1 Introduction .................................................267 1.1 Presentation of the Ginzburg-Landau model.................267 1.2 Gamma-convergence .....................................269 1.3 Γ-convergence of Ginzburg-Landau ........................271 2 The abstract result for Γ-convergence of gradient-flows............275 2.1 The abstract situation....................................275 2.2 The result ..............................................276 2.3 Interpretation ...........................................279 2.4 Idea of the proof.........................................279 2.5 Application to Ginzburg-Landau...........................281 2.6 Remarks................................................282 3 Proof of the additional conditions for Ginzburg-Landau ...........284 3.1 A product-estimate for Ginzburg-Landau ...................284 3.2 Idea of the proof.........................................285 3.3 Application to the dynamics ..............................286 3.4 Proof of the construction 2(cid:1)) ..............................287 4 Extensions of the method .....................................289 4.1 Collisions ...............................................289 4.2 Second order questions - stability issues ....................290 References ......................................................291 PDE analysis of concentrating energies for the Ginzburg- Landau equation Didier Smets ....................................................293 1 Introduction .................................................293 2 The monotonicity formula .....................................294 2.1 Scaling properties........................................294 2.2 The monotonicity formula ................................295 2.3 Consequences for µ∗ .....................................297 3 Regularity theorems for (GL) .................................299 ε 3.1 Bochner, small energy regularity and clearing-out ............299 3.2 Consequences for µ∗ .....................................306 4 Potential and modulus estimates ...............................308 5 Σ is a minimal surface .......................................311 µ 5.1 Classical and weak notions of mean curvature ...............311 5.2 Deriving the curvature equation ...........................312 References ......................................................314 Index..........................................................315