ebook img

Topics in Nonconvex Optimization: Theory and Applications PDF

275 Pages·2011·1.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in Nonconvex Optimization: Theory and Applications

Springer Optimization and Its Applications 50 Series Editor: Panos M. Pardalos Subseries: Nonconvex Optimization and Its Applications For further volumes: http://www.springer.com/series/7393 Shashi Kant Mishra Editor Topics in Nonconvex Optimization Theory and Applications 1 C Editor Shashi Kant Mishra Banaras Hindu University Faculty of Science Dept. of Mathematics Varanasi India [email protected] ISSN 1931-6828 ISBN 978-1-4419-9639-8 e-ISBN 978-1-4419-9640-4 DOI 10.1007/978-1-4419-9640-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011929034 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec- tion with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Iwouldliketo dedicatethisvolumetomy teacherProf.R. N. Mukherjee, who introducedthiswonderfulfieldof mathematicsto me.Iwould alsoliketo dedicatethisvolumetoProf.B. D. Craven who showed methepathin thisresearch area. Foreword It is a great pleasure to learn that the Centre for Interdisciplinary Mathematical SciencesandtheDepartmentofMathematics,BanarasHinduUniversityorganized an Advanced Training Programme on Nonconvex Optimization and Its Applica- tions.Thisprogrammewasorganizedtointroducethesubjecttoyoungresearchers andcollegeteachersworkingintheareaofnonconvexoptimization. Duringthefive-dayperiodseveraleminentprofessorsfromalloverthecountry working in the area of optimization gave expository to advanced level lectures coveringthefollowingtopics. (i) Quasi-convexoptimization (ii) Vectoroptimization (iii) Penaltyfunctionmethodsinnonlinearprogramming (iv) Supportvectormachinesandtheirapplications (v) Portfoliooptimization (vi) Nonsmoothanalysis (vii) Generalizedconvexoptimization Participantsweregivencopiesofthelectures.IunderstandfromDr.S.K.Mishra, themainorganizeroftheprogramme,thattheparticipantsthoroughlyenjoyedthe lectures related to nonconvex programming. I am sure the students will benefit greatlyfromthiskindoftrainingprogrammeandIamconfidentthatDr.Mishrawill conductamoreadvancedprogrammeofthiskindsoon.Ialsoappreciatetheefforts takenbyhimtogettheselecturespublishedbySpringer.Iamsurethisvolumewill serveasexcellentlecturenotesinoptimizationforstudentsandresearchersworking inthisarea. Chennai,April2010 ThiruvenkatachariParthasarathy INSASeniorScientist IndianStatisticalInstitute,Chennai,India vii Preface Optimization is a multidisciplinaryresearch field that deals with the characteriza- tion and computation of minima and/or maxima (local/global) of nonlinear, nonconvex, nonsmooth, discrete, and continuous functions. Optimization prob- lems are frequently encountered in modelling of complex real-world systems for a very broad range of applications including industrial and systems engineer- ing, management science, operational research, mathematical economics, seismic optimization,productionplanningandscheduling,transportationandlogistics,and manyotherappliedareasofscienceandengineering.Inrecentyearstherehasbeen growinginterestinoptimizationtheory. The present volume contains 16 full-length papers that reflect current theo- reticalstudiesofgeneralizedconvexityanditsapplicationsinoptimizationtheory, set-valued optimization, variational inequalities, complementarity problems, cooperative games, and the like. All these papers were refereed and carefully selectedfromthosedeliveredattheAdvancedTrainingProgrammeonNonconvex Optimization and Its Applications held at the DST-Centre for Interdisciplinary Mathematical Sciences, Department of Mathematics, Banaras Hindu University, Varanasi,India,March22–26,2010. I would like to take this opportunity, to thank all the authors whose contribu- tions make up this volume, all the refereeswhose cooperationhelped in ensuring the scientific quality of the papers, and all the people from the DST-CIMS and Department of Mathematics, Banaras Hindu University, whose assistance was indispensablein runningthe trainingprogramme.I would also like to thankto all theparticipantsoftheadvancedtrainingprogramme,especiallythosewhotravelled alongdistancewithinIndiainordertoparticipate.Finally,weexpressourappreci- ationtoSpringerforincludingthisvolumeintheirseries.Wehopethatthevolume willbeusefulforstudents,researchers,andthosewhoareinterestedinthisemerging fieldofappliedmathematics. Varanasi,April,2010 ShashiKantMishra ix Contents 1 SomeEquivalencesAmongNonlinearComplementarityProblems, Least-ElementProblems,andVariationalInequalityProblemsin OrderedSpaces............................................. 1 QamrulHasanAnsariandJen-ChihYao 1.1 Introduction.............................................. 1 1.2 Preliminaries............................................. 2 1.3 Equivalenceof NonlinearComplementarityProblemsand Least-ElementProblems ................................... 4 1.4 EquivalenceBetweenVariational-LikeInequalityProblemand Least-ElementProblem .................................... 9 1.5 EquivalenceBetweenExtendedGeneralizedComplementarity ProblemsandGeneralizedLeast-ElementProblem ............. 14 1.6 EquivalenceBetweenGeneralizedMixedComplementarity ProblemsandGeneralizedMixedLeast-ElementProblem ....... 19 References..................................................... 23 2 GeneralizedMonotoneMapsandComplementarityProblems...... 27 S.K.NeogyandA.K.Das 2.1 Introduction.............................................. 27 2.2 Preliminaries............................................. 29 2.3 DifferentTypesofGeneralizedMonotoneMaps ............... 30 2.4 GeneralizedMonotonicityofAffineMaps..................... 34 2.5 Generalized MonotoneAffine Maps onRRRn+n+n+ and Positive- SubdefiniteMatrices....................................... 35 2.6 GeneralizedPositive-SubdefiniteMatrices .................... 42 References..................................................... 44 3 Optimality Conditions Without Continuity in Multivalued OptimizationUsingApproximationsasGeneralizedDerivatives .... 47 PhanQuocKhanhandNguyenDinhTuan 3.1 IntroductionandPreliminaries .............................. 47 xi xii Contents 3.2 First-andSecond-OrderApproximationsofMultifunctions...... 50 3.3 First-OrderOptimalityConditions ........................... 53 3.4 Second-OrderOptimalityConditions......................... 55 References..................................................... 60 4 VariationalInequalityandComplementarityProblem ............ 63 SudarsanNanda 4.1 Introduction.............................................. 63 4.2 NonlinearOperators....................................... 63 4.3 VariationalInequalities..................................... 65 4.4 ComplementarityProblem.................................. 68 4.5 Semi-Inner-ProductSpaceandVariationalInequality ........... 71 References..................................................... 76 5 ADerivativeforSemipreinvexFunctionsandItsApplicationsin SemipreinvexProgramming .................................. 79 Y.X.Zhao,S.Y.Wang,L.ColadasUria,andS.K.Mishra 5.1 Introduction.............................................. 79 5.2 Preliminaries............................................. 80 5.3 Fritz–JohnandKuhn–TuckerResults......................... 82 5.4 TheSemiprevariationalInequalityProblemforPointSequence Derivative ............................................... 84 References..................................................... 85 6 ProximalProperSaddlePointsinSet-ValuedOptimization ........ 87 C.S.LalithaandR.Arora 6.1 Introduction.............................................. 87 6.2 Preliminaries............................................. 88 6.3 ProximalProperEfficiencyandItsRelationwithOtherNotions ofProperEfficiency ....................................... 89 6.4 ProximalProperSaddlePoints .............................. 91 6.5 OptimalityCriteriainTermsofProximalProperEfficientSaddle Point.................................................... 96 6.6 Conclusions.............................................. 99 References.....................................................100 7 Metric Regularity and Optimality Conditions in Nonsmooth Optimization ............................................... 101 AnulekhaDharaandAparnaMehra 7.1 Introduction..............................................101 7.2 NotationsandPreliminaries.................................102 7.3 ConstraintQualificationsandMetricRegularity................106 7.4 OptimalityConditions .....................................110 7.5 Conclusions..............................................113 References.....................................................113 Contents xiii 8 AnApplicationoftheModifiedSubgradientMethodforSolving FuzzyLinearFractionalProgrammingProblem ................. 115 PankajGuptaandMukeshKumarMehlawat 8.1 Introduction..............................................115 8.2 LFPP with Fuzzy TechnologicalCoefficients and Fuzzy Right-HandSideNumbers..................................117 8.3 ModifiedSubgradientMethodtoSolvetheFLFPP .............120 8.4 NumericalIllustrations.....................................124 8.5 ConcludingRemarks ......................................130 References.....................................................131 9 OnSufficientOptimalityConditionsforSemi-Infinite Discrete MinmaxFractionalProgrammingProblemsUnderGeneralized V-Invexity.................................................. 133 S.K.Mishra,KinKeungLai,Sy-MingGuu,andKalpanaShukla 9.1 Introduction..............................................133 9.2 Preliminaries.............................................135 9.3 SufficientOptimalityConditions.............................139 References.....................................................144 10 Ekeland-TypeVariationalPrinciplesandEquilibriumProblems .... 147 QamrulHasanAnsariandLai-JiuLin 10.1 Introduction..............................................147 10.2 τττ-Function,Ekeland-TypeVariationalPrinciple,and Some RelatedResults ...........................................151 10.3 FittingFunction,Ekeland-TypeVariationalPrinciple,andSome EquivalentResults ........................................157 10.4 QQQ-Functions,Ekeland-TypeVariationalPrinciple,andRelated Results ..................................................163 References.....................................................171 11 DecompositionMethodsBasedonAugmentedLagrangians:A Survey..................................................... 175 AbdelouahedHamdiandShashiK.Mishra 11.1 AugmentedLagrangianMethod .............................175 11.2 ExtensionsofAugmentedLagrangianMethods ................177 11.3 NonquadraticAugmentedLagrangians .......................181 11.4 AugmentedLagrangianandDecompositionMethods ...........183 11.5 Conclusion...............................................199 References.....................................................200 12 Second-OrderSymmetricDualitywithGeneralizedInvexity ....... 205 S.K.PadhanandC.Nahak 12.1 Introduction..............................................205 12.2 NotationandPreliminaries .................................206 12.3 Wolfe-TypeSymmetricDuality..............................208 xiv Contents 12.4 Mond–Wier-TypeSymmetricDuality ........................211 12.5 Conclusion...............................................213 References.....................................................214 13 ADynamicSolutionConcepttoCooperativeGameswithFuzzy Coalitions.................................................. 215 SurajitBorkotokey 13.1 Introduction..............................................215 13.2 Preliminaries.............................................219 13.3 OurModel...............................................221 13.3.1 TheAllocationProcess.............................222 13.3.2 Protocol .........................................224 13.3.3 MainTheorem....................................225 13.4 AnExample..............................................226 13.5 Conclusion...............................................228 References.....................................................229 14 CharacterizationsoftheSolutionSetsandSufficientOptimality CriteriaviaHigher-OrderStrongConvexity..................... 231 PoojaArora,GuneetBhatia,andAnjanaGupta 14.1 Introduction..............................................231 14.2 StronglyConvexFunction..................................232 14.3 CharacterizationofSolutionSets ............................234 14.4 OptimalityConditions .....................................236 14.5 MixedDuality............................................239 References.....................................................242 15 VariationalInequalities andOptimistic Bilevel Programming ProblemViaConvexifactors .................................. 243 BhawnaKohli 15.1 Introduction..............................................243 15.2 Preliminaries.............................................244 15.3 BilevelProgrammingProblem ..............................246 15.4 VariationalInequalityProblem ..............................248 References.....................................................254 16 OnEfficiencyinNondifferentiableMultiobjectiveOptimization InvolvingPseudoddd-UnivexFunctions;Duality ................... 257 J.S.RautelaandVinaySingh 16.1 Introduction..............................................257 16.2 OptimalityConditions.KT/FJ-Pseudoddd-Univexity .............258 16.3 CharacterizationofEfficientSolutions........................261 16.4 Duality..................................................262 References.....................................................265 Index .............................................................267

Description:
Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world sy
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.