Conference Proceedings of the Society for Experimental Mechanics Series Michael Mains · J.R. Blough Editors Topics in Modal Analysis & Testing, Volume 10 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Michael Mains • J.R. Blough Editors Topics in Modal Analysis & Testing, Volume 10 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 123 Editors MichaelMains J.R.Blough ApplicationSolutions-StructuralAnalysis MichiganTechnologicalUniversity Brüel&Kjær Houghton,MI,USA Cincinnati,OH,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-54809-8 ISBN978-3-319-54810-4 (eBook) DOI10.1007/978-3-319-54810-4 LibraryofCongressControlNumber:2017935404 ©TheSocietyforExperimentalMechanics,Inc.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Topics in Modal Analysis & Testing represents one of ten volumes of technical papers presented at the 35th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in GardenGrove,California,January30–February2,2017.ThefullproceedingsalsoincludevolumesonNonlinearDynamics; DynamicsofCivilStructures;ModelValidationandUncertaintyQuantification;DynamicsofCoupledStructures;Sensors andInstrumentation;SpecialTopicsinStructuralDynamics;StructuralHealthMonitoring&DamageDetection;Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry; and Shock & Vibration, Aircraft/Aerospace and EnergyHarvesting. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin Structural Dynamics. Topics in Modal Analysis & Testing represents papers on enabling technologies for Modal Analysis measurementsandapplicationsofModalAnalysisinspecificapplicationareas. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Cincinnati,OH,USA M.Mains Houghton,MI,USA J.R.Blough v Contents 1 Fluid-StructureInteractioninaLabyrinthGasSealCoupledtoaFlexibleStator.............................. 1 A.Dairien,F.Thouverez,L.Blanc,P.Héliès,andJ.Dehouve 2 ModalAnalysisofTowerCranewithCracksbytheDynamicStiffnessMethod ................................ 11 DangXuanTrongandNguyenTienKhiem 3 High-NoiseHigh-SpeedFootageDatainExperimentalModalAnalysis.......................................... 23 JakaJavh,JankoSlavicˇ,andMihaBoltežar 4 Morlet-WaveDampingIdentification:ApplicationtoHigh-SpeedVideo......................................... 27 JankoSlavicˇ,MarkoMihalec,JakaJavh,andMihaBoltežar 5 Fluid-CoupledVibrationControlInspiredbyDragonflyWings................................................... 31 YunjieWang,YajunYin,andGangtieZheng 6 ImprovingModalParameterEstimationbyComplementaryOutput–OutputRelations....................... 37 OscarOlarteandPatrickGuillaume 7 OperationalModalAnalysisinFrequencyDomainUsingGaussianMixtureModels........................... 47 AnkitChiplunkarandJosephMorlier 8 UnderstandingModalVectors ......................................................................................... 55 GeorgeFoxLang 9 BestPracticesforUsingOrder-BasedModalAnalysisforIndustrialApplications.............................. 69 EmilioDiLorenzo,SimoneManzato,BartPeeters,FrancescoMarulo,andWimDesmet 10 CouldtheVeeringPhenomenonbeaMechanicalDesignInstrument? ........................................... 85 CarloRosso,ElvioBonisoli,andFabioBruzzone 11 ImpulseExcitationofPiezoelectricPatchActuatorsforModalAnalysis......................................... 97 V.Ruffini,T.Nauman,andC.W.Schwingshackl 12 ModalParameterEstimationinMulti-PatchOperationalModalAnalysis:PerspectivesandApproaches .. 107 D.MironovsandS.Chauhan 13 ModelingandNonlinearParameterIdentificationofanElectric-PowerSteeringSystem...................... 127 CassioT.Faria,GiorgioPulvirenti,andTheoGeluk 14 AFrameworkforAdditiveManufacturingProcessMonitoring&Control...................................... 137 IanT.Cummings,MeganE.Bax,IvanJ.Fuller,AdamJ.Wachtor,andJohnD.Bernardin 15 ReliabilityofUsingStereoPhotogrammetrytoEstimateModalParameters.................................... 147 DaniloDamascenoSabino,PeymanPoozesh,JoaoAntonioPereira,andChristopherNiezrecki 16 ConstantMassMetastructurewithVibrationAbsorbersofLinearlyVaryingNaturalFrequencies.......... 153 KatherineK.ReichlandDanielJ.Inman vii viii Contents 17 StudyonRandomDecrementSignatureUnderDifferentTriggeringLevelandLengthofTimeHistory.... 159 JinzhiWu,XiujuanZheng,JieHu,YigangZhang,andFuh-GwoYuan 18 Experimental Study on the Rotor Dynamics Influence Upon the Modal Characteristics ofanInductionMachine................................................................................................ 167 F.Chauvicourt,M.Ballweg,W.Desmet,H.VanderAuweraer,andC.T. Faria 19 OptimalModalParameterEstimationforHighlyChallengingIndustrialCases................................ 173 MahmoudEl-Kafafy,BartPeeters,andPatrickGuillaume Chapter 1 Fluid-Structure Interaction in a Labyrinth Gas Seal Coupled to a Flexible Stator A.Dairien,F.Thouverez,L.Blanc,P.Héliès,andJ.Dehouve Abstract Thispaperdealswiththepredictionofaeroelasticinstabilitiesoccuringinlabyrinthgassealofturbomachinery components. The purpose of this work is to carry out a numerical investigation on an advanced labyrinth gas seal model comprising a non-deformable rotor, and a flexible stator. The flexibility of the static part induces pressure and velocity fluctuationswithintheleakageflow.Themodelretainsseveralcavitiesformedbytheteethlocatedontheshaftandastrong couplingbetweenthefluidandthestructureisassumed. Aqualitativeanalysisisperformedtoidentifythevariouscausesofaeroelasticinstabilityoccurence.Then,acomparison withtheliteratureiscarriedoutinordertoproposeabetterapproachtopredictsuchinstabilities. Keywords Fluid-structurecoupling (cid:129) Labyrinthgasseal (cid:129) Turbomachinery (cid:129) Aeroelasticinstability (cid:129) Nonlinearity Nomenclature t Timevariable n NumberofharmonicsoftheFourierseries i Cavitynumber (cid:2) Orderparameter (cid:3) Angularposition R Shaftradius s R Statorradius c y Linearfunction i y1i Periodicfunction xc Timecoefficientassociatedtocosinefunction n;i xs Timecoefficientassociatedtosinefunction n;i M Massmatrixofthelinearsystem C Viscousdampingmatrixoflinearsystem K Linearstiffnessmatrixofthelinearsystem XR Coefficientsvectordifferentiatedtwicewithrespecttotime A.Dairien((cid:2)) ÉcoleCentraledeLyon,LaboratoiredeTribologieetDynamiquedesSystémes,UMR-CNRS5513,36avenueGuydeCollongue, 69134ÉcullyCedex,France AirbusSafranLaunchers,ForêtdeVernon,BP802,27208VernonCedex,France e-mail:[email protected] F.Thouverez(cid:129)L.Blanc ÉcoleCentraledeLyon,LaboratoiredeTribologieetDynamiquedesSystémes,UMR-CNRS5513,36avenueGuydeCollongue, 69134ÉcullyCedex,France P.Héliès AirbusSafranLaunchers,ForêtdeVernon,BP802,27208VernonCedex,France J.Dehouve CentreNationald’ÉtudesSpatiales,DirectiondesLanceurs,52,rueJacquesHillairet,75612ParisCedex,France ©TheSocietyforExperimentalMechanics,Inc.2017 1 M.Mains,J.R.Blough(eds.),TopicsinModalAnalysis&Testing,Volume10,ConferenceProceedings oftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-54810-4_1 2 A.Dairienetal. XP Coefficientsvectordifferentiatedoncewithrespecttotime X Coefficientsvectorinthetimedomain f Acousticfrequency ac c Soundvelocity 1.1 Introduction Aerospaceturbopumpsusuallyuselabyrinthgassealstopreventthegasdrivingtheturbinetoleakinthegapbetweenthe rotorandthestatorparts.Currenttrendsinturbopumpsdesignfocusontheminimizationoftheclearances,soastooptimise theefficiency,andonthereductionofthestatorweight.However,thesetrendsmayleadtoaeroelasticinstabilityissueswhich candamagethestructuressurroundingthelabyrinthgasseal,mainlystaticpartsaccordingtopost-mortemobservations. Sincethe1960s,studieshavebeencarriedouttobetterunderstandandpreventsuchinstabilities.Alford[2]wasthefirst to show that the side support location of the seal has an importance in preventing self-excited vibrations. Alford discloses alsoastabilitycriterionwhichcorrelatespressuredropinthesealtonaturalfrequency,weight,andlength.Asecondcriterion islatersuggestedbyAbbot[1],involvingthelocationofsidesupport.Hisworkrevealsthatifthesupportislocatedonthe highpressureside,thesealisstableaslongasthemechanicalfrequencyislowerthantheacousticone.Thephenomenonis reversedwhensupportislocatedonthelowpressureside. Totacklethesenewchallenges,morepredictivemodelsmustbedevelopedinordertotakethestatorflexibilityandthe leakages reduction issues into account. The purpose of this work is to carry out a numerical investigation on an advanced labyrinth gas seal model involving a non-deformable rotor, and a flexible stator. The flexibility of the static part induces pressureandvelocityfluctuationswithintheleakageflow.Themodelretainsseveralcavitiesdefinedbytheteethlocatedon theshaftandastrongcouplingbetweenthefluidandthestructureisassumed. 1.2 StrongFluid-Structure Coupling The model governing the behaviour of the flow within a cavity is inspired by Childs analytical model and Navier-Stokes equations [3]. The model describing the flow is then coupled to a mechanical system corresponding to a flexible stator (cf. Fig. 1.1b). A cylinder model, which takes into account the diameter modes in the plane orthogonal to the flow and a normalizedlongitudinaldisplacementfollowingthefirstbendingmode,isused(cf.Fig.1.1c).Thenormalizedlongitudinal displacement is assumed to be proportional to the square of the distance from the bearing location. Assuming a strong couplingimpliesthattheactionofthefluidtothestructureistakenintoaccountandconversely.Itisespeciallyinteresting toworkwithastrongcouplingforasuchconfinedenvironment. y y x x 2Rs 2Rs 2Rc mean2Rc (a) (b) (c) Fig.1.1 (a)Childs’smodel:ellipticmovementoftherotor,non-deformablerotor,non-deformablestator.(b)Flexiblecylindermodel:fixedand non-deformablerotor,fixedandflexiblestator.(c)Flexiblecylindermodel:visualisationofnormalizedlongitudinaldisplacementfollowingthe firstbendingmode 1 Fluid-StructureInteractioninaLabyrinthGasSealCoupledtoaFlexibleStator 3 Thestructurecanbesupportedonthelowpressuresideaswellasonthehighpressureside.Takingintoaccount these boundaryconditionsallowsacomparisonwiththeresultsgivenbyAbbott[1]. Thecoupledsystemobtainedismadeofnonlineardifferentialequations.Toovercomethesenonlinearities,aperturbation methodisused.Itconsistindeterminingapproximatesolutionsofthenonlinearequationsbyapowerseriesofascalefactor parameter((cid:2))associatedtothenonlineartermsandtruncatedatthefirstorder.Thismethodallowstoturnanonlinearsystem intoasetoflinearproblems.Thesolutioncanbewrittenasfollow: yi.N;t;(cid:3)/Dy0iC(cid:2)y1i.N;t;(cid:3)/ (1.1) wheretheperiodicfunctiony1i issoughtintheform: XN (cid:2) (cid:3) y1i.N;t;(cid:3)/D xnc;i.t/cos.n(cid:3)/Cxns;i.t/sin.n(cid:3)/ (1.2) nD1 withn,correspondingtothenumberofharmonicsoftheFourierseries,ithecavitynumber,(cid:3) theangularposition.Atzeroth order ((cid:2) D 0), the nonlinear differential equations become state equations describing the mean leakage flow, pressure and circumferentialvelocitywithintheseal(withoutanystatordisplacement).Theflowbecomessonicjustaftergoingthrough thelasttooth.Then,atfirstorder,thesystemissolvedbyreplacingthevariabley1ibyitsexpression(1.2),andsearchingfor the values fxn;i;xn;ig. These coefficients are related to three variables : radial displacement, circumferential velocities, and pressureswithincavities. Tosolvethistwo-dimensionalproblem,aGalerkinapproachwithaFouriertransformwithrespecttothespacevariables, isused.Thesystemcanbedescribedbythesecondorderhomogeneousdifferentialequation: MXR CCXP CKX D0 (1.3) whereXisthecoefficientsvectorfxc ;xs gwithnD1;:::;NcorrespondingtothetrigonometricfunctionsinEq.(1.2). n;i n;i The model comprises a pre-rotating flow which can be combined with the axial leakage flow, in addition to the shaft rotation.Becauseofthecircumferentialvelocitywithineachsealcavity,shearstressincircumferentialdirectionareacting onbothstatorandrotorwalls.Inthiswork,themodelisextendedtoseveralcavities.Theupstreamanddownstreamcavities modalparticipationsareconsideredwithinthenthcavityequations 1.3 ValidationoftheZeroth Order Thetablebelow(cf.Table1.1)givesanaxialmassflowratecomparisonbetweencurrentworkandcalculationsfoundinthe literatureforvalidationpurposes(Fig.1.2). Table1.1 Comparativeaxialmassflowrateandpressuresdistributionswithinthelabyrinth seal Currentwork Dursen[4] Rosen[6] Experimental[4] Massflowrate(kgs(cid:2)1) 0:02036 0:02072 0:02117 0:02 Pressurewithincavity(kPa) 225:447 224:592 222:781 222:5 Seal operating conditions Seal geometry Inlet pressure 241.3 kPa No. of teeth 2 Outlet pressure 206.8 kPa Shaft radius 101.60 mm Inlet temperature 298.2 K Clearance 0.16 mm Inlet swirl velocity 16.8 m/s Tooth pitch 12.91 mm Shaft rotational speed 1800 rpm Tooth height 5.03 mm Tooth tip width 0.20 mm Fig.1.2 Sealgeometryandstudyconditions[4]
Description: