ebook img

Topics in Modal Analysis & Testing, Volume 10: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 PDF

186 Pages·2017·12.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in Modal Analysis & Testing, Volume 10: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017

Conference Proceedings of the Society for Experimental Mechanics Series Michael Mains · J.R. Blough Editors Topics in Modal Analysis & Testing, Volume 10 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Michael Mains • J.R. Blough Editors Topics in Modal Analysis & Testing, Volume 10 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017 123 Editors MichaelMains J.R.Blough ApplicationSolutions-StructuralAnalysis MichiganTechnologicalUniversity Brüel&Kjær Houghton,MI,USA Cincinnati,OH,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-54809-8 ISBN978-3-319-54810-4 (eBook) DOI10.1007/978-3-319-54810-4 LibraryofCongressControlNumber:2017935404 ©TheSocietyforExperimentalMechanics,Inc.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Topics in Modal Analysis & Testing represents one of ten volumes of technical papers presented at the 35th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in GardenGrove,California,January30–February2,2017.ThefullproceedingsalsoincludevolumesonNonlinearDynamics; DynamicsofCivilStructures;ModelValidationandUncertaintyQuantification;DynamicsofCoupledStructures;Sensors andInstrumentation;SpecialTopicsinStructuralDynamics;StructuralHealthMonitoring&DamageDetection;Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry; and Shock & Vibration, Aircraft/Aerospace and EnergyHarvesting. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin Structural Dynamics. Topics in Modal Analysis & Testing represents papers on enabling technologies for Modal Analysis measurementsandapplicationsofModalAnalysisinspecificapplicationareas. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Cincinnati,OH,USA M.Mains Houghton,MI,USA J.R.Blough v Contents 1 Fluid-StructureInteractioninaLabyrinthGasSealCoupledtoaFlexibleStator.............................. 1 A.Dairien,F.Thouverez,L.Blanc,P.Héliès,andJ.Dehouve 2 ModalAnalysisofTowerCranewithCracksbytheDynamicStiffnessMethod ................................ 11 DangXuanTrongandNguyenTienKhiem 3 High-NoiseHigh-SpeedFootageDatainExperimentalModalAnalysis.......................................... 23 JakaJavh,JankoSlavicˇ,andMihaBoltežar 4 Morlet-WaveDampingIdentification:ApplicationtoHigh-SpeedVideo......................................... 27 JankoSlavicˇ,MarkoMihalec,JakaJavh,andMihaBoltežar 5 Fluid-CoupledVibrationControlInspiredbyDragonflyWings................................................... 31 YunjieWang,YajunYin,andGangtieZheng 6 ImprovingModalParameterEstimationbyComplementaryOutput–OutputRelations....................... 37 OscarOlarteandPatrickGuillaume 7 OperationalModalAnalysisinFrequencyDomainUsingGaussianMixtureModels........................... 47 AnkitChiplunkarandJosephMorlier 8 UnderstandingModalVectors ......................................................................................... 55 GeorgeFoxLang 9 BestPracticesforUsingOrder-BasedModalAnalysisforIndustrialApplications.............................. 69 EmilioDiLorenzo,SimoneManzato,BartPeeters,FrancescoMarulo,andWimDesmet 10 CouldtheVeeringPhenomenonbeaMechanicalDesignInstrument? ........................................... 85 CarloRosso,ElvioBonisoli,andFabioBruzzone 11 ImpulseExcitationofPiezoelectricPatchActuatorsforModalAnalysis......................................... 97 V.Ruffini,T.Nauman,andC.W.Schwingshackl 12 ModalParameterEstimationinMulti-PatchOperationalModalAnalysis:PerspectivesandApproaches .. 107 D.MironovsandS.Chauhan 13 ModelingandNonlinearParameterIdentificationofanElectric-PowerSteeringSystem...................... 127 CassioT.Faria,GiorgioPulvirenti,andTheoGeluk 14 AFrameworkforAdditiveManufacturingProcessMonitoring&Control...................................... 137 IanT.Cummings,MeganE.Bax,IvanJ.Fuller,AdamJ.Wachtor,andJohnD.Bernardin 15 ReliabilityofUsingStereoPhotogrammetrytoEstimateModalParameters.................................... 147 DaniloDamascenoSabino,PeymanPoozesh,JoaoAntonioPereira,andChristopherNiezrecki 16 ConstantMassMetastructurewithVibrationAbsorbersofLinearlyVaryingNaturalFrequencies.......... 153 KatherineK.ReichlandDanielJ.Inman vii viii Contents 17 StudyonRandomDecrementSignatureUnderDifferentTriggeringLevelandLengthofTimeHistory.... 159 JinzhiWu,XiujuanZheng,JieHu,YigangZhang,andFuh-GwoYuan 18 Experimental Study on the Rotor Dynamics Influence Upon the Modal Characteristics ofanInductionMachine................................................................................................ 167 F.Chauvicourt,M.Ballweg,W.Desmet,H.VanderAuweraer,andC.T. Faria 19 OptimalModalParameterEstimationforHighlyChallengingIndustrialCases................................ 173 MahmoudEl-Kafafy,BartPeeters,andPatrickGuillaume Chapter 1 Fluid-Structure Interaction in a Labyrinth Gas Seal Coupled to a Flexible Stator A.Dairien,F.Thouverez,L.Blanc,P.Héliès,andJ.Dehouve Abstract Thispaperdealswiththepredictionofaeroelasticinstabilitiesoccuringinlabyrinthgassealofturbomachinery components. The purpose of this work is to carry out a numerical investigation on an advanced labyrinth gas seal model comprising a non-deformable rotor, and a flexible stator. The flexibility of the static part induces pressure and velocity fluctuationswithintheleakageflow.Themodelretainsseveralcavitiesformedbytheteethlocatedontheshaftandastrong couplingbetweenthefluidandthestructureisassumed. Aqualitativeanalysisisperformedtoidentifythevariouscausesofaeroelasticinstabilityoccurence.Then,acomparison withtheliteratureiscarriedoutinordertoproposeabetterapproachtopredictsuchinstabilities. Keywords Fluid-structurecoupling (cid:129) Labyrinthgasseal (cid:129) Turbomachinery (cid:129) Aeroelasticinstability (cid:129) Nonlinearity Nomenclature t Timevariable n NumberofharmonicsoftheFourierseries i Cavitynumber (cid:2) Orderparameter (cid:3) Angularposition R Shaftradius s R Statorradius c y Linearfunction i y1i Periodicfunction xc Timecoefficientassociatedtocosinefunction n;i xs Timecoefficientassociatedtosinefunction n;i M Massmatrixofthelinearsystem C Viscousdampingmatrixoflinearsystem K Linearstiffnessmatrixofthelinearsystem XR Coefficientsvectordifferentiatedtwicewithrespecttotime A.Dairien((cid:2)) ÉcoleCentraledeLyon,LaboratoiredeTribologieetDynamiquedesSystémes,UMR-CNRS5513,36avenueGuydeCollongue, 69134ÉcullyCedex,France AirbusSafranLaunchers,ForêtdeVernon,BP802,27208VernonCedex,France e-mail:[email protected] F.Thouverez(cid:129)L.Blanc ÉcoleCentraledeLyon,LaboratoiredeTribologieetDynamiquedesSystémes,UMR-CNRS5513,36avenueGuydeCollongue, 69134ÉcullyCedex,France P.Héliès AirbusSafranLaunchers,ForêtdeVernon,BP802,27208VernonCedex,France J.Dehouve CentreNationald’ÉtudesSpatiales,DirectiondesLanceurs,52,rueJacquesHillairet,75612ParisCedex,France ©TheSocietyforExperimentalMechanics,Inc.2017 1 M.Mains,J.R.Blough(eds.),TopicsinModalAnalysis&Testing,Volume10,ConferenceProceedings oftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-54810-4_1 2 A.Dairienetal. XP Coefficientsvectordifferentiatedoncewithrespecttotime X Coefficientsvectorinthetimedomain f Acousticfrequency ac c Soundvelocity 1.1 Introduction Aerospaceturbopumpsusuallyuselabyrinthgassealstopreventthegasdrivingtheturbinetoleakinthegapbetweenthe rotorandthestatorparts.Currenttrendsinturbopumpsdesignfocusontheminimizationoftheclearances,soastooptimise theefficiency,andonthereductionofthestatorweight.However,thesetrendsmayleadtoaeroelasticinstabilityissueswhich candamagethestructuressurroundingthelabyrinthgasseal,mainlystaticpartsaccordingtopost-mortemobservations. Sincethe1960s,studieshavebeencarriedouttobetterunderstandandpreventsuchinstabilities.Alford[2]wasthefirst to show that the side support location of the seal has an importance in preventing self-excited vibrations. Alford discloses alsoastabilitycriterionwhichcorrelatespressuredropinthesealtonaturalfrequency,weight,andlength.Asecondcriterion islatersuggestedbyAbbot[1],involvingthelocationofsidesupport.Hisworkrevealsthatifthesupportislocatedonthe highpressureside,thesealisstableaslongasthemechanicalfrequencyislowerthantheacousticone.Thephenomenonis reversedwhensupportislocatedonthelowpressureside. Totacklethesenewchallenges,morepredictivemodelsmustbedevelopedinordertotakethestatorflexibilityandthe leakages reduction issues into account. The purpose of this work is to carry out a numerical investigation on an advanced labyrinth gas seal model involving a non-deformable rotor, and a flexible stator. The flexibility of the static part induces pressureandvelocityfluctuationswithintheleakageflow.Themodelretainsseveralcavitiesdefinedbytheteethlocatedon theshaftandastrongcouplingbetweenthefluidandthestructureisassumed. 1.2 StrongFluid-Structure Coupling The model governing the behaviour of the flow within a cavity is inspired by Childs analytical model and Navier-Stokes equations [3]. The model describing the flow is then coupled to a mechanical system corresponding to a flexible stator (cf. Fig. 1.1b). A cylinder model, which takes into account the diameter modes in the plane orthogonal to the flow and a normalizedlongitudinaldisplacementfollowingthefirstbendingmode,isused(cf.Fig.1.1c).Thenormalizedlongitudinal displacement is assumed to be proportional to the square of the distance from the bearing location. Assuming a strong couplingimpliesthattheactionofthefluidtothestructureistakenintoaccountandconversely.Itisespeciallyinteresting toworkwithastrongcouplingforasuchconfinedenvironment. y y x x 2Rs 2Rs 2Rc mean2Rc (a) (b) (c) Fig.1.1 (a)Childs’smodel:ellipticmovementoftherotor,non-deformablerotor,non-deformablestator.(b)Flexiblecylindermodel:fixedand non-deformablerotor,fixedandflexiblestator.(c)Flexiblecylindermodel:visualisationofnormalizedlongitudinaldisplacementfollowingthe firstbendingmode 1 Fluid-StructureInteractioninaLabyrinthGasSealCoupledtoaFlexibleStator 3 Thestructurecanbesupportedonthelowpressuresideaswellasonthehighpressureside.Takingintoaccount these boundaryconditionsallowsacomparisonwiththeresultsgivenbyAbbott[1]. Thecoupledsystemobtainedismadeofnonlineardifferentialequations.Toovercomethesenonlinearities,aperturbation methodisused.Itconsistindeterminingapproximatesolutionsofthenonlinearequationsbyapowerseriesofascalefactor parameter((cid:2))associatedtothenonlineartermsandtruncatedatthefirstorder.Thismethodallowstoturnanonlinearsystem intoasetoflinearproblems.Thesolutioncanbewrittenasfollow: yi.N;t;(cid:3)/Dy0iC(cid:2)y1i.N;t;(cid:3)/ (1.1) wheretheperiodicfunctiony1i issoughtintheform: XN (cid:2) (cid:3) y1i.N;t;(cid:3)/D xnc;i.t/cos.n(cid:3)/Cxns;i.t/sin.n(cid:3)/ (1.2) nD1 withn,correspondingtothenumberofharmonicsoftheFourierseries,ithecavitynumber,(cid:3) theangularposition.Atzeroth order ((cid:2) D 0), the nonlinear differential equations become state equations describing the mean leakage flow, pressure and circumferentialvelocitywithintheseal(withoutanystatordisplacement).Theflowbecomessonicjustaftergoingthrough thelasttooth.Then,atfirstorder,thesystemissolvedbyreplacingthevariabley1ibyitsexpression(1.2),andsearchingfor the values fxn;i;xn;ig. These coefficients are related to three variables : radial displacement, circumferential velocities, and pressureswithincavities. Tosolvethistwo-dimensionalproblem,aGalerkinapproachwithaFouriertransformwithrespecttothespacevariables, isused.Thesystemcanbedescribedbythesecondorderhomogeneousdifferentialequation: MXR CCXP CKX D0 (1.3) whereXisthecoefficientsvectorfxc ;xs gwithnD1;:::;NcorrespondingtothetrigonometricfunctionsinEq.(1.2). n;i n;i The model comprises a pre-rotating flow which can be combined with the axial leakage flow, in addition to the shaft rotation.Becauseofthecircumferentialvelocitywithineachsealcavity,shearstressincircumferentialdirectionareacting onbothstatorandrotorwalls.Inthiswork,themodelisextendedtoseveralcavities.Theupstreamanddownstreamcavities modalparticipationsareconsideredwithinthenthcavityequations 1.3 ValidationoftheZeroth Order Thetablebelow(cf.Table1.1)givesanaxialmassflowratecomparisonbetweencurrentworkandcalculationsfoundinthe literatureforvalidationpurposes(Fig.1.2). Table1.1 Comparativeaxialmassflowrateandpressuresdistributionswithinthelabyrinth seal Currentwork Dursen[4] Rosen[6] Experimental[4] Massflowrate(kgs(cid:2)1) 0:02036 0:02072 0:02117 0:02 Pressurewithincavity(kPa) 225:447 224:592 222:781 222:5 Seal operating conditions Seal geometry Inlet pressure 241.3 kPa No. of teeth 2 Outlet pressure 206.8 kPa Shaft radius 101.60 mm Inlet temperature 298.2 K Clearance 0.16 mm Inlet swirl velocity 16.8 m/s Tooth pitch 12.91 mm Shaft rotational speed 1800 rpm Tooth height 5.03 mm Tooth tip width 0.20 mm Fig.1.2 Sealgeometryandstudyconditions[4]

Description:
Topics in Modal Analysis & Testing, Volume 10: Proceedings of the 35th IMAC,A Conference and Exposition on Structural Dynamics, 2017, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.