Conference Proceedings of the Society for Experimental Mechanics Series Michael Mains Editor Topics in Modal Analysis & Testing, Volume 10 Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor Kristin B.Zimmerman,Ph.D. SocietyforExperimental Mechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Michael Mains Editor Topics in Modal Analysis & Testing, Volume 10 Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016 123 Editor MichaelMains Suite310,Brüel&KjærNorthAmerica Cincinnati,OH,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-30248-5 ISBN978-3-319-30249-2 (eBook) DOI10.1007/978-3-319-30249-2 LibraryofCongressControlNumber:2016937012 ©TheSocietyforExperimentalMechanics,Inc.2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Topics in Modal Analysis & Testing represents one of ten volumes of technical papers presented at the 34th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics and held in Orlando,Florida,January25–28,2016.Thefullproceedingsalsoincludevolumesonnonlineardynamics;dynamicsofcivil structures; model validation and uncertainty quantification; dynamics of coupled structures; sensors and instrumentation; special topics in structural dynamics; structural health monitoring, damage detection, and mechatronics; and rotating machinery, hybrid test methods, vibro-acoustics and laser vibrometry, shock and vibration, aircraft/aerospace, energy harvesting,acousticsandoptics. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin structuraldynamics.Topicsinmodalanalysisrepresentpapersonenablingtechnologiesformodalanalysismeasurements andapplicationsofmodalanalysisinspecificapplicationareas. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Cincinnati,OH,USA M.Mains v Contents 1 ComparisonofVariousModalVectorEstimationMethodsUsedinModalParameterEstimation ........... 1 R.J.AllemangandA.W.Phillips 2 UsingSingularValueDecompositiontoEstimateFrequencyResponseFunctions .............................. 27 KevinL.Napolitano 3 CurveFittingAnalyticalModeShapestoExperimentalData ..................................................... 45 BrianSchwarz,ShawnRichardson,andMarkRichardson 4 AccelerationMeasurementOptimization:MountingConsiderationsandSensorMassEffect ................ 61 MarineDumont,AndyCook,andNortonKinsley 5 Experimental Study on the Impact of the Number of Laminas on the Dynamics Behavior ofanElectricMachineStator.......................................................................................... 73 F.Chauvicourt,S.Orlando,W.Desmet,J.J.C.Gyselinck,andC.T.Faria 6 NormalizationofComplexModeShapesbyTruncationofAlpha-Polynomial .................................. 81 A.C.Niranjan,R.J.Allemang,andA.W.Phillips 7 WhatIsNormalAboutNormalModes?.............................................................................. 97 ThomasJ.S.AbrahamssonandRandallJ.Allemang 8 GeneralizedCraig-BamptonMethodUsingRobinBoundaryConditions........................................ 111 FabianM.Gruber,JohannesB.Rutzmoser,andDanielJ.Rixen 9 ForceReconstructionUsingForceGaugesandAccelerometers ................................................... 117 WesleyAxtellandTylerDare 10 ExperimentalandNumericalElastodynamicAnalysisofCompressedOpenThin-WalledBeams............ 125 G.Piana,A.Carpinteri,E.Lofrano,R.Malvano,A.Manuello,andG.Ruta 11 ExperimentalValidationofNonlinearModelTrackingwithVaryingConditions............................... 139 TimothyA.Doughty,AndrewW.Belle-Isle,andNicholasPendowski 12 SpatialDistributionofAcousticRadiationForceforNon-ContactModalExcitation........................... 155 ThomasM.Huber,MikaelaAlgren,andColeRaisbeck 13 ModalParameterIdentificationAlgorithmBasedonPureNormalModeTestTechnology.................... 163 J.M.Liu,F.Liu,andW.D.Zhu 14 TheInfluenceofParameterChoiceinOperationalModalAnalysis:ACaseStudy............................. 179 VolkmarZabel,FilipeMagalhães,andChristianBucher 15 DynamicModulusPropertiesofObjetConnex3DPrinterDigitalMaterials.................................... 191 KatherineK.ReichlandDanielJ.Inman 16 Optimized3DPrintedChiralLatticeforBroadbandVibrationSuppression.................................... 199 BrittanyC.EssinkandDanielJ.Inman vii viii Contents 17 EmbeddingSensorsinFDMPlasticPartsDuringAdditiveManufacturing ..................................... 205 LexeyR.Sbriglia,AndrewM.Baker,JamesM.Thompson,RobertV.Morgan,AdamJ.Wachtor, andJohnD.Bernardin 18 ANeuralNetworkApproachto3DPrintedSurrogateSystems ................................................... 215 RodrigoSarloandPabloA.Tarazaga 19 ModalTestandParameterUpdatingofMetalLaserSinteredComponents ..................................... 223 JosephD.SchonemanandMatthewS.Allen 20 In-ProcessUltrasonicInspectionofAdditiveManufacturedParts................................................ 235 IanCummings,ElizabethHillstrom,RiellyNewton,EricFlynn,andAdamWachtor 21 ExperimentalModalAnalysisofRolledMultiLayerCylindricalShell........................................... 249 CanNerseandSemyungWang 22 High-ResolutionModeShapeIdentificationUsingMobileSensors ............................................... 255 ThomasJ.Matarazzo,MatthewHorner,andShamimN.Pakzad 23 ABlindSourceSeparationBasedApproachforModalParameterEstimationinTraditional Input-OutputExperimentalModalAnalysisFramework .......................................................... 261 VikasAroraandShashankChauhan 24 MultivariateARMABasedModalIdentificationofaTime-VaryingBeam ...................................... 273 M.BerthaandJ.C.Golinval 25 OptimalParameterIdentificationforModelCorrelationUsingModelReductionMethods................... 281 AustinPhoenix,DustinBales,RodrigoSarlo,ThanhPham,andPabloA.Tarazaga 26 AModifiedInverseEigensensitivityMethodforLargeFiniteElementModels.................................. 293 Dog˘us¸Unlu,EnderCig˘erog˘lu,andGökhanO.Özgen 27 MonteCarloDynamicallyWeightedImportanceSamplingforFiniteElementModelUpdating.............. 303 DanielJ.JoubertandTshilidziMarwala 28 AFiniteElementModelUpdatingMethodConsideringEnvironmentalImpacts............................... 313 ShanglianZhouandWeiSong 29 RedundantInformationRejectioninSensorLocalisationUsingSystemGramians............................. 325 MladenGibanica,ThomasJ.S.Abrahamsson,andDanielC.Kammer 30 Strain-BasedExperimentalModalAnalysisonPlanarStructures:ConceptsandPracticalAspects ......... 335 FábioLuisMarquesdosSantos,BartPeeters,WimDesmet,andLuizCarlosSandovalGóes 31 MagneticExcitationandtheEffectsonModalFrequencyandDamping......................................... 347 B.C.Baver,A.W.Phillips,R.J.Allemang,andJ.Kim 32 AutomatedExtractionofModeShapesUsingMotionMagnifiedVideoandBlindSourceSeparation ....... 355 CharlesJ.Dorn,TylerD.Mancini,ZacharyR.Talken,YongchaoYang,GarrettKenyon,Charles Farrar,andDavidMascareñas 33 AnAlternativeMIMOFRFEstimationMethodUsingPneumaticExciters...................................... 361 AkhilSharma,DavidL.Brown,RandallJ.Allemang,andAllynW.Phillips 34 EstimatingSystemModalParametersUsingFreeDecayTimeData.............................................. 381 AlexanderYoung,DavidBrown,andRandallJ.Allemang 35 Structural-AcousticModeCouplinginaBoltedAluminumCylinder ............................................ 393 BenjaminPaciniandGregoryTipton 36 AccurateFrequencyMeasurementonSmallStructureswithShakerExcitation................................ 403 ChristopherJ.Pye 37 TheoreticalandExperimentalModalAnalysisCorrelationStudiesforCoupledCatalyticConverter........ 409 NandakishorVenkatesh,RoyA.Pace,andS.B.Kandagal Chapter 1 Comparison of Various Modal Vector Estimation Methods Used in Modal Parameter Estimation R.J.AllemangandA.W.Phillips Abstract Modal vectors can be estimated in a number of different ways in modern modal parameter estimation (MPE) algorithms. At the very least, when using single frequency response function (FRF), single degree of freedom (SDOF) methods, the modal vectors are estimated from a least squares estimate of the residues of a partial fraction model in the frequency domain, with or without various residuals, or an equivalent model in the time domain. Once the MPE methods involve multiple input, multiple output (MIMO) FRFs, many options exist. These MIMO MPE methods often involve a matrix polynomial equation that is solved using eigenvalue-eigenvector methods. Depending on the spatial dimensionality of the MIMO FRF matrix, these methods estimate an eigenvector that can be used as an estimate of the modal vector directly or an estimate of a portion (subset) of the modal vector. Alternately, these eigenvectors can be used as weighting inaMIMOversionofestimatingtheresiduesofthepartialfractionmodelusingaweightedleastsquaresmethod,withor without residuals.These weighting vectors can benormalized toremove arbitraryrotations intheeigenvectors and/or real normalizedtoinfluencethepotentialnatureofcomplex-valuedmodalvectors.Thispaperreviewsalloftheapproachesusing MIMO FRF data on a simple structure where the modal vectors can be expected to be nearly normal modes. Both modal vectorsandtheassociatedmodalscalingandmeanphasecorrelation(MPC)areevaluatedtodocumentthesimilaritiesand differences. Keywords Modal vector estimation (cid:129) Residue estimation (cid:129) Modal vector contamination (cid:129) Modal participation vectors (cid:129) Modalvectors Nomenclature N No.ofinputDOFs i N No.ofoutputDOFs o N Longdimension L N Shortdimension S N No.offrequencies f N No.ofeffectivemodalfrequencies. e N;2N No.ofmodalfrequencies ! Frequency(rad/s) i (cid:2) Complexmodalfrequency r Œ (cid:3) Modalvectormatrix ŒL(cid:3) Modalparticipationmatrix A Residue,outputDOFp,inputDOFq,moder pqr R Residualinertia,outputDOFp,inputDOFq Ipq R Residualflexibility,outputDOFp,inputDOFq Fpq ŒC(cid:3) Companionmatrix ŒH.!/(cid:3) Frequencyresponsefunctionmatrix i ŒU(cid:3) Leftsingularvectormatrix Œ†(cid:3) Singularvaluematrix(diagonal) ŒV(cid:3) Rightsingularvector,oreigenvector,matrix R.J.Allemang((cid:2))(cid:129)A.W.Phillips StructuralDynamicsResearchLaboratory,MechanicalandMaterialsEngineering,UniversityofCincinnati,Cincinnati,OH45221-0072USA e-mail:[email protected] ©TheSocietyforExperimentalMechanics,Inc.2016 1 M.Mains(ed.),TopicsinModalAnalysis&Testing,Volume10,ConferenceProceedingsoftheSociety forExperimentalMechanicsSeries,DOI10.1007/978-3-319-30249-2_1
Description: