ebook img

Topics in Applied Mathematics and Modeling: Concise Theory with Case Studies PDF

228 Pages·2023·7.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in Applied Mathematics and Modeling: Concise Theory with Case Studies

59 Topics in Applied Mathematics and Modeling Concise Theory with Case Studies Oscar Gonzalez Topics in Applied Mathematics and Modeling Concise Theory with Case Studies UNDERGRADUATE TEXTS • 59 Topics in Applied Mathematics and Modeling Concise Theory with Case Studies Oscar Gonzalez EDITORIAL COMMITTEE Giuliana Davidoff Tara S. Holm Steven J. Miller Maria Cristina Pereyra Gerald B. Folland (Chair) 2020 Mathematics Subject Classification. Primary 00A69, 34A26, 34E10, 37N99, 41A58, 49K15. For additional informationand updates on this book, visit www.ams.org/bookpages/amstext-59 Library of Congress Cataloging-in-Publication Data Names: Gonzalez,Oscar,1968–author. Title: Topics in applied mathematics and modeling : concise theory with case studies / Oscar Gonzalez. Description: Providence,RhodeIsland: AmericanMathematicalSociety,[2023]|Series: Pureand appliedundergraduatetexts,ISSN1943–9334;Volume59|Includesbibliographicalreferences andindex. Identifiers: LCCN2022034482|ISBN9781470469917(paperback)|9781470472177(ebook) Subjects: LCSH: Differential equations. | AMS: General – General and miscellaneous specific topics – General applied mathematics. | Ordinary differential equations – General theory – Geometric methods in differential equations. | Ordinary differential equations – Asymptotic theory– Perturbations,asymptotics. |Dynamicalsystemsandergodictheory–Applications –Noneoftheabove,butinthissection. |Approximationsandexpansions–Approximations and expansions – Series expansions (e.g. Taylor, Lidstone series, but not Fourier series). | Calculus of variations and optimal control; optimization – Optimality conditions – Problems involvingordinarydifferentialequations. Classification: LCCQA372.G6172023|DDC515/.352–dc23/eng20221014 LCrecordavailableathttps://lccn.loc.gov/2022034482 Copying and reprinting. Individual readersofthispublication,andnonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication ispermittedonlyunderlicensefromtheAmericanMathematicalSociety. Requestsforpermission toreuseportionsofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. For moreinformation,pleasevisitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. (cid:2)c 2023bytheauthor. Allrightsreserved. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 282726252423 Contents Preface ix Notetoinstructors xi Casestudiesandmini-projects xiii Chapter1. Dimensionalanalysis 1 1.1. Unitsanddimensions 1 1.2. Axiomsofdimensions 2 1.3. Dimensionlessquantities 3 1.4. Changeofunits 4 1.5. Unit-freeequations 4 1.6. Buckingham𝜋-theorem 7 1.7. Casestudy 11 Referencenotes 14 Exercises 14 Mini-project 17 Chapter2. Scaling 19 2.1. Domainsandscales 19 2.2. Scaletransformations 20 2.3. Derivativerelations 22 2.4. Naturalscales 23 2.5. Scalingtheorem 26 2.6. Casestudy 29 Referencenotes 31 v vi Contents Exercises 31 Mini-project 34 Chapter3. One-dimensionaldynamics 37 3.1. Preliminaries 37 3.2. Solvabilitytheorem 38 3.3. Equilibria 39 3.4. Monotonicitytheorem 40 3.5. Stabilityofequilibria 41 3.6. Derivativetestforstability 43 3.7. Bifurcationofequilibria 44 3.8. Casestudy 46 Referencenotes 50 Exercises 50 Mini-project 53 Chapter4. Two-dimensionaldynamics 55 4.1. Preliminaries 55 4.2. Solvabilitytheorem 56 4.3. Directionfield,nullclines 57 4.4. Pathequation,firstintegrals 58 4.5. Equilibria 60 4.6. Periodicorbits 62 4.7. Linearsystems 64 4.8. Equilibriainnonlinearsystems 70 4.9. Periodicorbitsinnonlinearsystems 73 4.10. Bifurcation 77 4.11. Casestudy 77 4.12. Casestudy 81 Referencenotes 86 Exercises 86 Mini-project1 92 Mini-project2 92 Mini-project3 93 Chapter5. Perturbationmethods 95 5.1. Perturbedequations 95 5.2. Regularversussingularbehavior 96 5.3. Assumptions,analyticfunctions 98 5.4. Notation,ordersymbols 99 Contents vii 5.5. Regularalgebraiccase 100 5.6. Regulardifferentialcase 107 5.7. Casestudy 110 5.8. Poincaré–Lindstedtmethod 114 5.9. Singularalgebraiccase 118 5.10. Singulardifferentialcase 121 5.11. Casestudy 127 Referencenotes 132 Exercises 133 Mini-project1 139 Mini-project2 140 Mini-project3 141 Chapter6. Calculusofvariations 143 6.1. Preliminaries 143 6.2. Absoluteextrema 145 6.3. Localextrema 147 6.4. Necessaryconditions 150 6.5. First-orderproblems 154 6.6. Simplifications,essentialresults 158 6.7. Casestudy 161 6.8. Naturalboundaryconditions 166 6.9. Casestudy 170 6.10. Second-orderproblems 174 6.11. Casestudy 177 6.12. Constraints 181 6.13. Casestudy 186 6.14. Asufficientcondition 189 Referencenotes 193 Exercises 193 Mini-project1 200 Mini-project2 201 Mini-project3 202 Bibliography 205 Index 207

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.