CIM Series in Mathematical Sciences Michael Hintermüller José Francisco Rodrigues Editors Topics in Applied Analysis and Optimisation Partial Differential Equations, Stochastic and Numerical Analysis CIM Series in Mathematical Sciences SeriesEditors: IreneFonseca DepartmentofMathematicalSciences CenterforNonlinearAnalysis CarnegieMellonUniversity Pittsburgh,PA, USA José Francisco Rodrigues CMAF&IO, Faculdade de Ciências Universidade de Lisboa Lisboa, Portugal The CIM Series in Mathematical Sciences is published on behalf of and in collaboration with the Centro Internacional de Matemática (CIM) in Portugal. Proceedings,lecturecoursematerial fromsummerschools andresearch monographs willbeincludedinthenewseries. More information about this series at http://www.springer.com/series/11745 Joint CIM-WIAS Workshop, TAAO 2017, Lisbon, Portugal, December 6-8, 2017 123 Editors Michael Hintermüller José Francisco Rodrigues Weierstrass Institute for Applied Analysis CMAF&IO, Faculdade de Ciências and Stochastics Universidade de Lisboa Berlin, Germany Lisboa, Portugal ISSN 2364-950X ISSN 2364-9518 (electronic) CIM Series in Mathematical Sciences ISBN 978-3-030-33115-3 ISBN 978-3-030-33116-0 (eBook) https://doi.org/10.1007/978-3-030-33116-0 Mathematics Subject Classification (2010): 35-06, 35Qxx, 35Rxx, 49-06, 49Nxx, 60-06, 65-06, 65Kxx, 6 5Mxx, 65Zxx © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface ThisvolumeoftheSpringer-CIMSeriesisrelatedtoaworkshopon”TopicsinAp- pliedAnalysisandOptimisation(Stochastic,PartialDifferentialEquationsandNu- mericalAnalysis)”whichwasheldinLisbonfromDecember6–8,2017.Itbrought together twenty four speakers in applied mathematics invited from both, the Por- tuguese International Center for Mathematics (CIM) and the Weierstrass-Institute for Applied Analysis and Stochastics (WIAS) Berlin, Germany. Both institutions are members of ERCOM (European Research Centres on Mathematics). CIM is a not-for-profit, privately-run association that aims at developing and promoting research in Mathematics. At present CIM has 20 associates, including three Por- tuguese Universities, thirteen Research Centres in the Mathematical Sciences, the InstituteofTelecommunications,andthreenationalscientificsocieties,respectively ofMathematics,ofStatisticsandofMechanics.WIASisamemberoftheLeibniz Associationandconductsprojectorientedresearchinappliedmathematicswiththe aimofsolvingcomplexproblemsintechnology,scienceandtheeconomyaswellas biomedicine. We also feel that a brief word on the birth of the idea of having the aforemen- tioned workshop in Lisbon and on editing the present special volume within the Springer-CIM Seriesis in order:In fact,during a Workshopon “Emerging Devel- opmentsinInterfacesandFreeBoundaries”attheMathematicalResearchInstitute in Oberwolfach, yet another member of the Leibniz Association in Germany and ERCOM,thetwoeditorsofthisvolumecametogetherinordertodevelopaformat to foster joint research between ERCOM members. As a result, a scientific event was created with the aim to present and discuss current scientific interests among the research groups of the Weierstrass Institute in Berlin and mathematics centres in Portugal, in particular the Centro de Matemática, Aplicações Fundamentais e InvestigaçãoOperacional(CMAFcIO),oftheUniversityofLisbon,andtheCentro deMatemáticaoftheUniversityofCoimbra(CMUC). This CIM -WIAS workshop finally brought together a selection of experts in Europe, and launched and strengthened further scientific collaborations in applied mathematics.Topicsofparticularinterestincludedpartialdifferentialequationswith applications to material sciences, thermodynamics and laser dynamics, scientific v vi Preface computing, nonlinear optimisation and stochastic analysis. In the outcome of the workshop, this collective book gathers fourteen contributions from four specific topicalareasthatwereaddressedinthemeeting. ThethreesurveysonnonsmoothoptimisationstartwithachapterbyA.Alphonse, M. Hintermüller and C. N. Rautenberg on elliptic stationary quasi-variational in- equalities(QVIs),whichisaclassofquasi-equilibriumnon-convexandnon-smooth problemsthathasrecentlyreceivedincreasinginterest.Latestprogressinthatfield includes the development of numerical solutions algorithms. In particular for the so-called gradient-constrained case, a Moreau-Yosida technique combined with a variablesplittingapproachcanbeaddressedefficientlybyalternatingminimization schemes. The latter are the subject of the contribution by M. A. T. Figueiredo on the Alternating Direction Method of Multipliers (ADMM). The scope of that sec- tion,however,ismuchwiderthanjustaddressing(discretized)QVIs.Rathergeneral classes of minimization problems are considered. The third survey, which is by J. F. Rodrigues and L. Santos, presents a general framework for a class of problems with gradient type constraints that can be formulated as stationary and evolution variationalandquasi-variationalinequalitiesandisillustratedwithseveralphysical applications. The four contributions that related to stochastic methods involve a statistical approachtoconstructingnon-asymptoticconfidencesetsin2-Wassersteinspaceby J.Ebert,V.Spokoiny,andA.Suvorikova;recentmodelinganddevelopmentsfrom stochasticgeometrytoanalysespatialmultiopcommunicationsystemsbyB.Jahnel and W. König; a model to deal with uncertain friction for the transport of natural gas through passive networks of pipelines, involving a simplification of the Euler equationsandtheuseofaMarkovchainMonteCarlomethod,isconsideredbyH. Heitsch and N. Strogies; and the use of Malliavin calculus to study invariant and quasi-invariantmeasuresforthetwodimensionalEulerequationissurveyedbyA. B.CruzeiroandA.Symeonides. Partial Differential Equations for dissipative and conservative models are ubiq- uitous in mathematical-physics problems, like in the contribution by M. Kantner, A. Mielke, M. Mittnenzweig and N. Rotundo on the modeling of semiconductors, from quantum mechanics to devices, respecting fundamental principles of non- equilibrium thermodynamics. These models are also of importance in describing gradientstructuresfortwo-phaseflowsofconcentrationsuspensions,asinthechap- terbyD.Peschka,M.Thomas,T.Ahnert,A.MünchandB.Wagner.Thenumerical solutionsforelectrolyteflowsmodeledbycouplingtheNernst-Planck-Poissondrift diffusionandNavier-StokesequationsisconsideredbyJ.Fuhrmann,C.Guhlke,A. Linke,C.MerdonandR.Müller,whilemodelsofdynamicdamageandphase-field fracture,andtheirvarioustimediscretisationsarepresentedbyT.Roubíček. Analytic and geometrical insights into modeling phase change problems are presented in the remaining three papers. In this respect, S. Amstutz and N. van Goethem present a survey and motivation of the incompatibility operator, a recent geometrical object introduced for a novel approach to elasto-plasticity problems, includingamodelforcontinuawithdislocations;P.Colli,G.GilardiandJ.Sprekels showthewell-posednessandstabilityforaclassicalnonlocalphase-fieldsystemof Preface vii viscousCahn-Hilliardtype;andS.DipierroandE.Valdinocipresentrecentprogress onthefractionalAllen-Cahnequationforlong-rangephasecoexistencemodels. Finally, we would like to acknowledge financial support from CMAFcIO and CMUCfortheeventheldattheFaculdadedeCiênciasdaUniversidadedeLisboa andtheWeierstrassInstituteBerlin.FortechnicalhelpinputtingtogethertheLaTeX collectionofarticles,oursincerethanksgotoAnjaSchröter(WIAS)andtoAssis Azevedo(UMinho). February7,2019. MichaelHintermüller(Berlin) JoséFranciscoRodrigues(Lisboa) Contents Preface............................................................ v RecentTrendsandViewsonEllipticQuasi-VariationalInequalities ::::: 1 AmalAlphonse,MichaelHintermüller,andCarlosN.Rautenberg 1 Introduction.............................................. 1 1.1 Thebasicsetting andproblemformulation ............ 3 2 Someexistencetheory ..................................... 4 2.1 CompactnessandMoscoconvergence ................ 4 2.2 Orderapproaches.................................. 7 3 Solutionmethodsandalgorithms ............................ 9 3.1 ContractionresultsforT............................ 9 3.2 ThemapK7!PKandextensionstoLions–Stampacchia. 11 3.3 Orderapproaches:solutionmethodsform„f”andM„f”.. 14 3.4 Regularizationmethods ............................ 16 3.5 Gerhardt-typeregularizationforthegradientcase....... 19 3.6 Drawbacksoftheiteration yn+1 =T„yn” .............. 20 4 Optimalcontrolproblems .................................. 21 5 Differentiability........................................... 22 5.1 DirectionaldifferentiabilityforQVIs ................. 24 6 Conclusion............................................... 28 References ..................................................... 28 The Incompatibility Operator: from Riemann’s Intrinsic View of GeometrytoaNewModelofElasto-Plasticity ::::::::::::::::::::::: 33 SamuelAmstutz,NicolasVanGoethem 1 Ontheoriginofcurvatureinscienceandthebirthofintrinsicviews 34 2 Curvatureinnonlinearelasticity ............................. 35 3 Incompatibilityinlinearizedelasticityandpathintegralformulae . 37 4 ThelegacyofEkkehartKröner:thegeometryofacrystalwith dislocations .............................................. 39 4.1 Thegeometricapproachatthemacroscale............. 39 ix x Contents 4.2 Paralleldisplacementandcurvature .................. 41 4.3 Thenon-Riemanniancrystalmanifold ................ 43 4.4 Internalandexternalobservers ...................... 44 4.5 Inelasticeffectsandnotionofeigenstrain.............. 45 5 A geometric conception of linearized elasticity: the intrinsic approach ................................................ 45 5.1 Gaussvs.Riemanninlinearizedelasticity ............. 45 5.2 Ciarlet’sintrinsicapproachtolinearizedelasticity ...... 46 6 Theclassicalroutetoplasticity .............................. 48 6.1 Themathematicalapproaches:twoperspectives ........ 48 6.2 Conventional(0th-order)elasto-plasticitymodels....... 50 7 Gradientelasto-plasticityforcontinuawithdislocations: towardsanincompatibility-drivenmodel...................... 51 7.1 Thesizeeffect .................................... 51 7.2 Gradientmodels .................................. 52 7.3 Ourapproach:agradientmodelbasedonthestrain incompatibility.................................... 52 7.4 Linkwithclassicalelasto-plasticitymodels ............ 54 8 Theincompatibilityoperator:functionalframework ............ 55 8.1 Divergence-freelifting,Greenformulaandapplications . 55 8.2 Saint-Venant compatibility conditions andBeltrami decomposition .................................... 58 8.3 Orthogonaldecompositions ......................... 58 8.4 Boundaryvalueproblemsfortheincompatibility ....... 59 9 Towardsanintrinsicapproachtolinearizedelasto-plasticity...... 60 9.1 Objectivityandprincipleofvirtualpowers ............ 60 9.2 Constitutivelaw................................... 62 9.3 Equilibriumequations.............................. 62 9.4 Interpretationoftheexternalpowerandkinematical framework ....................................... 63 9.5 Existenceresultsandelasticlimit .................... 63 9.6 Example:barintraction ............................ 64 9.7 Incrementalformulationofhardeningproblems ........ 66 Acknowledgements.............................................. 67 References ..................................................... 67 NonlocalPhaseFieldModelsofViscousCahn–HilliardType::::::::::: 71 PierluigiColli,GianniGilardi,JürgenSprekels 1 Introduction.............................................. 71 1.1 Aboutthemodelandrelatedproblems ................ 72 1.2 Nonlocaloperators ................................ 74 1.3 Overviewofsomerelatedcontribution................ 76 1.4 Aboutwell-posednessandregularityresults ........... 77 1.5 Theoptimalcontrolproblemforalogarithmicpotential . 77 1.6 Commentingontheoptimalcontrolproblem........... 78