ebook img

Tolman-Bayin type static charged fluid spheres in general relativity PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tolman-Bayin type static charged fluid spheres in general relativity

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Tolman-Bayin type static charged fluid spheres in general relativity Saibal Ray1,2 & Basanti Das3 1DepartmentofPhysics,BarasatGovernmentCollege,Barasat700124,North24Parganas,WestBengal,India 2Inter-UniversityCentreforAstronomyandAstrophysics,POBox4,Pune411007,India;e-mail:[email protected] 3BeldaPrabhatiBalikaVidyapith,Belda,Midnapur721424,WestBengal,India. 4 0 0 2February2008 2 n a ABSTRACT J InastaticsphericallysymmetricEinstein-Maxwellspacetimetheclassofastrophysicalsolu- tionfoundoutbyRayandDas(2002)andPantandSah(1979)arerevisitedhereinconnection 2 tothephenomenologicalrelationshipbetweenthegravitationalandelectromagneticfields.It 1 is qualitativelyshownthat the chargedrelativistic stars of Tolman (1939)and Bayin (1978) v typeareofpurelyelectromagneticorigin.Theexistenceofthistypeofastrophysicalsolutions 5 is a probable extension of Lorentz’s conjecture that electron-like extended charged particle 0 possessesonly‘electromagneticmass’andno‘materialmass’. 0 1 Keywords: gravitation–relativity–stars:general–stars:interior. 0 4 0 / h 1 INTRODUCTION tutingmatterthree-quartersistobeascribedtotheelectromagnetic p field,andone-quartertothegravitationalfield”whereasLorentz’s o- The study of the interior of stars is always fascinating to the as- (1904)conjectureofextendedelectronwasthat“thereisnoother, r trophysicists, specially inconnection togeneral theory of relativ- no‘true’or‘material’mass,”andthusprovidesonly’electromag- st ity.Thisisobviousbecauseofthefactthattowardsthelatestages netic masses of the electron’. Wheeler (1962) also believed that a of stellar evolution, general relativistic effects become much im- electron has a ‘mass without mass’. Feynman (1964) termed this v: portant.Oneoftheremarkableworksinthisdirectionwasthatof typeofmodelsas‘electromagneticmassmodels’inhisclassicvol- i theTolman(1939) solutions.Tolmanextensivelystudiedthestel- ume. Starting from 60’s in the last century several authors (e.g., X lar interior and provided a class of explicit solution in terms of Florides, 1962; Cooperstock & De La Cruz, 1978; Tiwari et al., r knownanalyticfunctionsforthestatic,sphericallysymmetricequi- 1984;Gautreau,1985;Grøn,1986;PoncedeLeon,1987;andthe a libriumfluiddistribution.SubsequentlyWyman(1949),Leibovitz referencestherein)tookuptheproblemagainandstudiedelectro- (1969) and Whitman (1977) generalized some of Tolman’s solu- magneticmassmodelsforthestaticsphericallysymmetriccharged tions.Bayin(1978)alsoobtainedsomemorenewanalyticsolutions perfect fluid distribution in the framework of general relativity. relatedtostaticfluidspheresusingthemethodofquadratures. VeryrecentytheideaisextendedtotheEinstein-Cartantheoryand Recently we (Ray & Das, 2002) have obtained the charged Kaluza-Klein theory by adding torsion and higher dimension re- generalizationofBayin’swork(1978)motivatedbytheideathatin spectively (Tiwari & Ray, 1997; Ponce de Leon, 2003). Most of stellar astrophysics the coupled Einstein-Maxwell field equations these workers exploit an equation of state ρ+p = 0 where, in may have some physical implications. In connection to singular- general,thematterdensityρ>0andpressurep<0.Thistypeof ityproblemitisobservedthatinthepresenceofcharge,thegrav- equationofstateimpliesthatthematterdistributionunderconsider- itational collapse of a spherically symmetric distribution of mat- ationisintensionandhencethematterisknownintheliteratureas tertoapointsingularitymaybeavoided.Themechanismissuch a‘false vacuum’ or ‘degenerate vacuum’ or ‘ρ-vacuum’ (Davies, thatthegravitationalattractioniscounterbalancedbytherepulsive 1984; Blome & Priester, 1984; Hogan, 1984; Kaiser & Stebbins, Coulombianforceinadditiontothethermalpressuregradientdue 1984). to fluid. Also, it is seen that the presence of the charge function Itisinterestingtonotethatinthepresentstudy,eventhough serves as a safety valve, which absorbs much of the fine-tuning, thesolutionsrelatedtopressureanddensityingeneralfollowthe necessaryintheunchargedcase(Ivanov,2002).Thus,theproblem ordinaryequationofstate,viz.,ρ+p 6= 0butultimatelyincon- ofcoupledcharge-matterdistributionsingeneralrelativityhasre- nectiontoelectromagnetic massmodels itturnsout tobetheex- ceivedconsiderableattention. otic kind of equation of state (Davies, 1984; Blome & Priester, Thepresentpaperisbasedonthesimpleinvestigationofthe 1984; Hogan, 1984; Kaiser & Stebbins, 1984) in both the cases solutions already obtained by us (Ray & Das, 2002) and Pant & ofBayinandTolmansolutions.Wehaveinvestigatedherethatre- Sah(1979)inconnectiontotheelectromagneticoriginofthegrav- lated to this type of vacuum- or imperfect-fluid equation of state itationalmass.Itisworthwhiletomentionherethatthereisafairly thechargedanalogueofBayin(1978)andTolman(1939)typeas- longhistoryofinvestigationsaboutthenatureofthemassofelec- trophysicalclassofsolutionshowtheelectromagneticfielddepen- tron.Einstein(1919)himselfbelievedthat“...oftheenergyconsti- dency of gravitational mass. Therefore, theexistence of this type 2 Ray&Das of solutions, in our opinion, is a probable extension of Lorentz’s Also,intermsofC(r)whenB(r)isgiven,thePfaffiandifferential conjectureinconnectiontoastrophysicalmodels. equation(7)modifiesto dC 1 dB B2−1 1 dB = − + C dr Br2 dr r3 B dr (cid:18) (cid:19) (cid:16) (cid:17) 2 EINSTEIN-MAXWELLFIELDEQUATIONS 2 2B2q2 −C r + , (10) r5 Wewritethelineelement forstaticsphericallysymmetric space- whichisaRiccatiequationforC(r)withknownvalueofchargeq. timesintheform Bysolvingthesedifferentialequations(9)and(10),andalso 2 2 2 2 2 2 2 2 2 ds =A dt −B dr −r (dθ +sin θdφ ). (1) someothersimplecaseswe(Ray&Das,2002)obtainedthesolu- tionsforEinstein-MaxwellfieldequationsrelatedtoBayin(1978) inthestandardcoordinatesxi = (t,r,θ,φ),wherethequantities typeastrophysicalclassofmodels.Thesolutionsthusobtainedfor A(r)andB(r)arethemetricpotentials. theparametersA,B,ρ,pandq respectivelythegravitationalpo- TheEinstein-Maxwellfieldequations,forthemetric(1)intheco- tentials,energy density, isotropicpressure and electriccharge are movingcoordinatesreadas involved with several integration constants. Some of these may, 1 2B′ 1 1 q2(r) inprinciple,bedeterminedbymatchingoftheinteriorsolutionto B2 Br − r2 + r2 =8πρ+ r4 , (2) theexteriorReissner-Nordstro¨mmetricattheboundary r = aof (cid:18) (cid:19) thesphericalmatterdistribution.TheexteriorReissner-Nordstro¨m 1 2A′ 1 1 q2(r) metricisgivenby + − =8πp− , (3) B2 Ar r2 r2 r4 1 A′′ − A′B′(cid:18)+ 1 A′ −(cid:19)B′ =8πp+ q2(r), (4) ds2= 1− 2rm + qr22 dt2 − 1− 2rm + qr22 −1dr2 B2 A AB r A B r4 (cid:18) (cid:19) (cid:18) (cid:19) (cid:20) (cid:18) (cid:19)(cid:21) − r2(dθ2+sin2θdφ2). (11) wheretheprimedenotes differentiationwithrespect toradial co- ordinate r only. In the equation (2) - (4), the quantities ρ, p and Now,consideringthemetriccomponents g00,g11 and ∂∂g0r0 tobe continuousacrosstheboundaryr =aofthesphereandassuming qrepresenttheenergydensity,isotropicpressureandtotalelectric forthetotalchargeonthesphere chargerespectively.Thetotalchargewithinasphereofradiusris definedas q(a)=Kan, (12) r q(r)=4π J0r2ABdr, (5) one can get the following cases of the gravitational mass (vide Z0 equations(53),(56),(61),(65),(69)and(72)ofSection4inRay &Das(2002))intheexplicitformswithelectriccharge. Jibeingthe4-currenttakesheretheform,viatheelectromagnetic fieldF01,as CaseI(i):Forn=1 2 q 2 2 q 3 01 q(r) m=q +a0a1 +a1 , (13) F = . (6) K K ABr2 (cid:16) (cid:17) (cid:16) (cid:17) (ii):Forn=3 Now, eliminating p from equations (3) and (4) and assuming A′/Ar=C(r)onecanget 2 q 2 q 5/3 q 2/3 m=a1 +4K +a0a1 , (14) K K K 1 C 1 B3r2 + B3 dB− B2 dC CaseII(i)(cid:16):For(cid:17)n=1 (cid:16) (cid:17) (cid:16) (cid:17) whichis−aP(cid:18)f(cid:16)aBfBfi2a2−nr3d1if+ferCeBn2t2(cid:17)iral−eq2urqa52ti(cid:16)(cid:19)ondirn(cid:17)t=hre0e.dimensionshavi(n7g) m= W102 (cid:20)W02(1−2K2)+(cid:16)Kq (cid:17)2(cid:18)C1− Kq22(cid:19)q(cid:21)1/32 × , (15) thegeneralformas K h i (ii):Forn=3 f1(B,C,r)dB+f2(B,C,r)dC+f3(B,C,r)dr=0. (8) 1 2 q 2/3 2 2 q 4/3 1/2 m = W02 W0 +C1 K +(W0 K −1) K (cid:20) (cid:16) (cid:17) (cid:16) (cid:17) (cid:21) 3 ELECTROMAGNETICMASSMODELSFORSTATIC × q −2K1/3q5/3, (16) K CHARGEDFLUIDSPHERES h i CaseIII:Forn=1 3.1 Bayin’sclassofsolution 1+K2 2 q q m= =(K −1) C3 −2 , (17) The Pfaffian differential equation (7) can be solved in different C3 K K ways as shown by us (Ray & Das, 2002) in details. It is shown CaseIV:Forn=1 h (cid:16) (cid:17) ih i thatintermsofB(r)whenC(r)isknown,thePfaffiandifferential equation(7)becomes m=3C62 3C5+ q 3 q 4, (18) K K dB = 1− 2rq22 B3+ C2r− r13 + ddCr B. (9) whereK,(cid:20)a0,a1,W(cid:16)0,C(cid:17)1,(cid:21)Ch3,Ci5 andC6 all areconstant quan- dr " C+ r12 r3# (cid:20) C+ r12 (cid:21) tities.Now,mforthecasesI(i),I(ii)andIVareasusual positive (cid:0) (cid:1) Tolman-Bayintypestaticcharged... 3 whereasfortherestofthecasesII(i),II(ii)andIIItheconditions wherethegravitationalmassm(r)=M(r)+µ(r)beingdefined for positivity are (1/2) > K2 > (q2/C1), K > (1/W0) and as 1<K <(C3q/2)respectively. r 2 Itisobservedfromtheexplicitformsoftheabovesetofex- M(r)=4π ρr dr (28) pressions that the effective gravitational mass m, along with the Z0 centralpressuresanddensitiesatr =0(videequations(22),(27), and (31),(40),(45)and(21),(28),(32),(39)respectivelyinRay&Das r 2 2 (2002)), is related tothe charge q of equation (12) of the spheri- µ(r)= (q /2r )dr, (29) calsystem.Therefore,vanishingofthechargemakesallthephys- Z0 icalquantitiesincludingthegravitationalmassalsotovanish.This respectivelytheSchwarzschildmassandthemassequivalence of meansthatthegravitationalmassoriginatesfromtheelectromag- electromagneticfield.Hence,thetotalgravitationalmass,m(r = netic field alone. Thus, the gravitational mass is purely ‘electro- a),canbecalculatedas magneticmass’(Lorentz,1904)andthistypeofmodelisknownas na2(2−n)+2q2 ‘electromagneticmassmodel’intheliterature(Feynman,1964).It m= . (30) 2(1+2n−n2)a isrelevanttonoteherethatthisparticularimportantfeatureofthe solution set, viz., the electromagnetic nature of the gravitational If we now make the specific choice n = 0 for the parameter n mass is obviously not available in the uncharged case of Bayin appearingintheabovesolutionsetthenonegetthefollowingex- (1978) and thus indicates that the presence of charge allows for pressions. awiderrangeofbehaviour. 2 2m q2 A = 1− + , (31) a a2 (cid:20) (cid:21) 3.2 Tolman’ssolutionVI Intheintroductionwehavementionedthatmotivatedbythework B−2= 1− 2m + q2 = 1− 2q2 , (32) a a2 a2 ofTolman(1939),asimilarkindofnewclassofsolutionwasfound (cid:20) (cid:21) (cid:20) (cid:21) byBayin(1978)andhenceinviewoftheresultsofsub-section3.1 relatedtoBayin’sworkitwillbeinterestingtoexaminethesolu- 1 q2 ρ(r)= , (33) tionsofTolmanwhethertheyarealsoamemberofelectromagnetic 8πr2 a2 (cid:20) (cid:21) massmodels.Asaready-madeexamplewewouldliketopresent here the solution obtained by Pant & Sah (1979) to meet our, at 1 q2 leastpartial,requirement.Forastaticsphericallysymmetricdistri- p(r)=−8πr2 a2 , (34) butionofchargedfluidthesolutionset(videequations(10a),(10b), (cid:20) (cid:21) (10c)and(11)inPant&Sah(1979))isasfollows. 1 q 2q2 1/2 A2=eν =br2n, (19) σ(r)=±4πr2 a 1− a2 , (35) h i(cid:20) (cid:21) B−2 =e−λ =c, (20) q E(r)= , (36) ar 1 2 ρ= [1−c(n−1) ], (21) and 16πr2 q2 m= . (37) 1 2 a p= [c(n+1) −1], (22) 16πr2 Thus, for vanishing electric charge all the physical quantities in- cludinggravitationalmassvanishandthespacetimebecomesflat. σ=± 1 [c{1−c(1+2n−n2)}]1/2, (23) Itisinterestingtonotethat,inthepresentsituation,theequations 4πr2 2 (33) and (34) related to the isotropic pressure and matter density provide an equation of state ρ+p = 0, which is known as the 2 1 2 E = 2r2[1−c(1+2n−n )], (24) vacuum- or imperfect-fluid equation of state. As isevident, from the equations (21) and (22), this is not true for the general case where whenn6=0andcanbereadas b=a−2n 1− 2m + q2 , (25) 1 n(a2−2q2) a a2 ρ+p= . (38) (cid:20) (cid:21) 4πr2 a2(1+2n−n2) (cid:20) (cid:21) 2m q2 2q2 2 −1 Hencestartingfromaperfectfluidtypeequationofstatevian=0 c= 1− a + a2 = 1− a2 (1+2n−n ) . (26) we are arriving at the imperfect-fluid type equation of state and (cid:20) (cid:21) (cid:20) (cid:21) thusnhere istakingadefiniteand peculiar rolefor deciding the Theabovesetofsolutions,inviewofc,withΛ = 0andB = 0 form of the equation of state. This particular aspect is also true represents the charged analogue of Tolman’s (1939) solution VI viatheequations(2)and(3)fortheequations(19)and(20)which andthusintheabsenceofthetotalchargeqreducestotheneutral reduce to the equations (31) and (32) respectively, with n = 0 one(thesub-case C of uncharged fluidsphere inthePant &Sah whenwegetν +λ = 0.Thisagain,fortheReissner-Nordstro¨m (1979)).Now,theequation(2)canbeexpressedintheform metric (equation (11)) related to the spherically symmetric static −2 2m(r) chargedfluiddistribution,canbeexpressedintheformg00g11 = B =1− , (27) −1. Thus, in view of equations (2) and (3), we see that for the r 4 Ray&Das boundary conditionν +λ = 0onecan getρ+p = 0andvice givesenough scopetotheoreticalspeculationsandhencethecor- versa,sothatλ=−ν ↔p=−ρ.1Thisresultmeansthatifρ>0 respondingmodelingandinvestigationsbecomeasmuchpertinent then must be p < 0 for the inside of the fluid sphere though, in forthesecasesasfortheestablishedneutralsystems. general, ρ and p arepositive for the condition 0 6 n 6 1. This partially admits the comment by Ivanov that “... electromagnetic massmodelsallseemtohavenegativepressure”.Partiallybecause, ACKNOWLEDGMENTS inour opinion, therearesomeexamples ofelectromagnetic mass One of the authors (SR) is thankful to the authority of Inter- models wherepositive pressures arealsoavailable willbeshown University Centre for Astronomy and Astrophysics, Pune, India, elsewhere. forprovidingAssociateshipprogrammeunderwhichapartofthis workwascarriedout. 4 CONCLUSIONS REFERENCES Wehaverevisitedinthepresentpapertheworkalreadydonebyus (Ray&Das,2002)andthatoneofPant&Sah(1979)motivatedby BayinS.S.,1978,Phys.Rev.,D182745. thefactthatthegravitationalmassmforachargedmatterdistribu- BlomeJ.J.andPriesterW.,1984,Naturwissenshaften,71528. tionsalwayscanbeseentobedividedintotwoparts,viz.,(i)the CooperstockF.I.andDeLaCruzV.,1978,Gen.Rel.Grav.,9835. SchwarzschildmassM(r)and(ii)themassequivalenceofelectro- DaviesC.W.,1984,Phys.Rev.,D30737. magneticfieldµ(r)asisevidentfromtheequation(27).Thus,the EinsteinA.,1919,Sitz.Preuss.Akad.Wiss.,(ReprintedinEinsteinetal., ThePrincipleofRelativity,Dover,INC,1952). total mass is increasing due to electromagnetic energy (Florides, FeynmanR.P.,LeightonR.R.andSandsM.,1964,TheFeynmanLectures 1964;Mehra,1980)whichisobviouslyanextrafeatureincompar- onPhysics,(Addison-Wesley,PaloAlto,Vol.II,Chap.28). isontotheneutralcase.Keepingthisaspectinmindwewantedto FloridesP.S.,1962,Proc.Cam.Phil.Soc.,58110. examinewhetherthegravitationalmassobtainedbyus(Ray&Das, GautreauR.,1985,Phys.Rev.,D311860. 2002) in one of our previous papers is of purely electromagnetic GrønØ.,1986,Am.J.Phys.,5446. originornot.Wehave,inthepresentsimpleinvestigation,shown HoganC.,1984,Nature,310365. thatthechargedgeneralizedsolutionsofBayin(1978)ispurelyof IvanovB.V.,2002,Phys.Rev.,D65104001. electromagneticorigin.Inthisconnection,wehavealsoshown,by KaiserN.andStebbinsA.,1984,Nature,310391. citingthesolutionofPant&Sah(1979),thatthechargedgeneral- LeibovitzC.,1969,Phys.Rev.,1851664. izationofTolman’ssolutionVI(1939)yieldselectromagneticmass LorentzH.A.,1904,Proc.Acad.Sci.,Amsterdam,6(ReprintedinEinstein etal.,ThePrincipleofRelativity,Dover,INC,1952,p.24). modelswhich,ofcourse,needsfurtherinvestigationswithadirect MehraA.L.,1980,Gen.Rel.Grav.,12187. studyoftheTolman’swholesetofsolutionsbyinclusionofcharge. PantD.N.andSahA.,1979,J.Maths.Phys.202537. We would also like to mention here that the works done by PoncedeLeonJ.,1987,J.Math.Phys.,28410. different investigatorson electromagnetic mass models so far are PoncedeLeonJ.,2003,Gen.Rel.Grav.,351365. mainlyconcernedwiththestructureoftheclassicalelectron(spe- RayS.andDasB.,2002,Astrophys.SpaceSci.,282635. cial references are Gautreau, 1985 and Tiwari et al, 1986). Even RayS.,EspindolaA.L.,MalheiroM.,LemosJ.P.S.andZanchinV.T., though Tiwari et al. (1986) find astrophysically interesting Lane- 2003,Phys.Rev.D68,084004;astro-ph/0307262. Emden equations in connection to electromagnetic mass models TiwariR.N.,RaoJ.R.andKanakamedala R.R.,1984,Phys.Rev.,D30 butatthesametime,insteadofstudyingthestellarstructures,they 489. applytheradiiofsomeofthemodelsforthecomparisonwiththe TiwariR.N.,RaoJ.R.andKanakamedala R.R.,1986,Phys.Rev.,D34 1205. classicalelectronradius.Thisparticularaspectofelectromagnetic TiwariR.N.andRayS.,1997,Gen.Rel.Grav.,29683. massmodelsrelatedtoLane-Emdenequationsintheastrophysical TolmanR.C.,1939,Phys.Rev.,55367. contextneedsfurtherinvestigations. TrevesA.andTurellaR.,1999,Astrophys.J.,517396. Asismentioned inRay&Das(2002), tojustifythepresent WheelerJ.A.,1962,Geometrodynamics,(Academic,NewYork,p.25). work with a charged fluid distribution, that even though the as- WhitmanP.G.,1977,J.Math.Phys.,18869. trophysical systems are by and large electrically neutral, recent WymanM.,1949,Phys.Rev.,751930. studiesdonot ruleout thepossibilityof theexistence of massive astrophysical systems that are not electrically neutral (Treves & Turella,1999).Themechanism,thoughnotcompletelyunderstood, is mainly related to the acquiring a net charge by accretion from thesurroundingmedium.Ontheotherhand,therearesomeother views of acquiring charge by a compact star during its collapse fromthesupernovastage.Inthisregarditwillbeworthmentioning thattostudytheeffectofelectricchargeincompactstarsRayetal. (2003)assumeanansatzsuchthatσ=αρwhereαisrelatedtothe chargefractionf asα=869.24f andshowbynumericalcalcula- tionthatinordertoseeanyappreciableeffectonthephenomenol- ogyofthecompactstars,thetotalelectricchargeistobe∼ 1020 Coulomb.Therefore,inouropinion,evensucharemotepossibility 1 Acoordinate-independent statementoftherelationg00g11 = −1and henceν+λ=0isgivenbyTiwarietal.(1984).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.