Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Tolman-Bayin type static charged fluid spheres in general relativity Saibal Ray1,2 & Basanti Das3 1DepartmentofPhysics,BarasatGovernmentCollege,Barasat700124,North24Parganas,WestBengal,India 2Inter-UniversityCentreforAstronomyandAstrophysics,POBox4,Pune411007,India;e-mail:[email protected] 3BeldaPrabhatiBalikaVidyapith,Belda,Midnapur721424,WestBengal,India. 4 0 0 2February2008 2 n a ABSTRACT J InastaticsphericallysymmetricEinstein-Maxwellspacetimetheclassofastrophysicalsolu- tionfoundoutbyRayandDas(2002)andPantandSah(1979)arerevisitedhereinconnection 2 tothephenomenologicalrelationshipbetweenthegravitationalandelectromagneticfields.It 1 is qualitativelyshownthat the chargedrelativistic stars of Tolman (1939)and Bayin (1978) v typeareofpurelyelectromagneticorigin.Theexistenceofthistypeofastrophysicalsolutions 5 is a probable extension of Lorentz’s conjecture that electron-like extended charged particle 0 possessesonly‘electromagneticmass’andno‘materialmass’. 0 1 Keywords: gravitation–relativity–stars:general–stars:interior. 0 4 0 / h 1 INTRODUCTION tutingmatterthree-quartersistobeascribedtotheelectromagnetic p field,andone-quartertothegravitationalfield”whereasLorentz’s o- The study of the interior of stars is always fascinating to the as- (1904)conjectureofextendedelectronwasthat“thereisnoother, r trophysicists, specially inconnection togeneral theory of relativ- no‘true’or‘material’mass,”andthusprovidesonly’electromag- st ity.Thisisobviousbecauseofthefactthattowardsthelatestages netic masses of the electron’. Wheeler (1962) also believed that a of stellar evolution, general relativistic effects become much im- electron has a ‘mass without mass’. Feynman (1964) termed this v: portant.Oneoftheremarkableworksinthisdirectionwasthatof typeofmodelsas‘electromagneticmassmodels’inhisclassicvol- i theTolman(1939) solutions.Tolmanextensivelystudiedthestel- ume. Starting from 60’s in the last century several authors (e.g., X lar interior and provided a class of explicit solution in terms of Florides, 1962; Cooperstock & De La Cruz, 1978; Tiwari et al., r knownanalyticfunctionsforthestatic,sphericallysymmetricequi- 1984;Gautreau,1985;Grøn,1986;PoncedeLeon,1987;andthe a libriumfluiddistribution.SubsequentlyWyman(1949),Leibovitz referencestherein)tookuptheproblemagainandstudiedelectro- (1969) and Whitman (1977) generalized some of Tolman’s solu- magneticmassmodelsforthestaticsphericallysymmetriccharged tions.Bayin(1978)alsoobtainedsomemorenewanalyticsolutions perfect fluid distribution in the framework of general relativity. relatedtostaticfluidspheresusingthemethodofquadratures. VeryrecentytheideaisextendedtotheEinstein-Cartantheoryand Recently we (Ray & Das, 2002) have obtained the charged Kaluza-Klein theory by adding torsion and higher dimension re- generalizationofBayin’swork(1978)motivatedbytheideathatin spectively (Tiwari & Ray, 1997; Ponce de Leon, 2003). Most of stellar astrophysics the coupled Einstein-Maxwell field equations these workers exploit an equation of state ρ+p = 0 where, in may have some physical implications. In connection to singular- general,thematterdensityρ>0andpressurep<0.Thistypeof ityproblemitisobservedthatinthepresenceofcharge,thegrav- equationofstateimpliesthatthematterdistributionunderconsider- itational collapse of a spherically symmetric distribution of mat- ationisintensionandhencethematterisknownintheliteratureas tertoapointsingularitymaybeavoided.Themechanismissuch a‘false vacuum’ or ‘degenerate vacuum’ or ‘ρ-vacuum’ (Davies, thatthegravitationalattractioniscounterbalancedbytherepulsive 1984; Blome & Priester, 1984; Hogan, 1984; Kaiser & Stebbins, Coulombianforceinadditiontothethermalpressuregradientdue 1984). to fluid. Also, it is seen that the presence of the charge function Itisinterestingtonotethatinthepresentstudy,eventhough serves as a safety valve, which absorbs much of the fine-tuning, thesolutionsrelatedtopressureanddensityingeneralfollowthe necessaryintheunchargedcase(Ivanov,2002).Thus,theproblem ordinaryequationofstate,viz.,ρ+p 6= 0butultimatelyincon- ofcoupledcharge-matterdistributionsingeneralrelativityhasre- nectiontoelectromagnetic massmodels itturnsout tobetheex- ceivedconsiderableattention. otic kind of equation of state (Davies, 1984; Blome & Priester, Thepresentpaperisbasedonthesimpleinvestigationofthe 1984; Hogan, 1984; Kaiser & Stebbins, 1984) in both the cases solutions already obtained by us (Ray & Das, 2002) and Pant & ofBayinandTolmansolutions.Wehaveinvestigatedherethatre- Sah(1979)inconnectiontotheelectromagneticoriginofthegrav- lated to this type of vacuum- or imperfect-fluid equation of state itationalmass.Itisworthwhiletomentionherethatthereisafairly thechargedanalogueofBayin(1978)andTolman(1939)typeas- longhistoryofinvestigationsaboutthenatureofthemassofelec- trophysicalclassofsolutionshowtheelectromagneticfielddepen- tron.Einstein(1919)himselfbelievedthat“...oftheenergyconsti- dency of gravitational mass. Therefore, theexistence of this type 2 Ray&Das of solutions, in our opinion, is a probable extension of Lorentz’s Also,intermsofC(r)whenB(r)isgiven,thePfaffiandifferential conjectureinconnectiontoastrophysicalmodels. equation(7)modifiesto dC 1 dB B2−1 1 dB = − + C dr Br2 dr r3 B dr (cid:18) (cid:19) (cid:16) (cid:17) 2 EINSTEIN-MAXWELLFIELDEQUATIONS 2 2B2q2 −C r + , (10) r5 Wewritethelineelement forstaticsphericallysymmetric space- whichisaRiccatiequationforC(r)withknownvalueofchargeq. timesintheform Bysolvingthesedifferentialequations(9)and(10),andalso 2 2 2 2 2 2 2 2 2 ds =A dt −B dr −r (dθ +sin θdφ ). (1) someothersimplecaseswe(Ray&Das,2002)obtainedthesolu- tionsforEinstein-MaxwellfieldequationsrelatedtoBayin(1978) inthestandardcoordinatesxi = (t,r,θ,φ),wherethequantities typeastrophysicalclassofmodels.Thesolutionsthusobtainedfor A(r)andB(r)arethemetricpotentials. theparametersA,B,ρ,pandq respectivelythegravitationalpo- TheEinstein-Maxwellfieldequations,forthemetric(1)intheco- tentials,energy density, isotropicpressure and electriccharge are movingcoordinatesreadas involved with several integration constants. Some of these may, 1 2B′ 1 1 q2(r) inprinciple,bedeterminedbymatchingoftheinteriorsolutionto B2 Br − r2 + r2 =8πρ+ r4 , (2) theexteriorReissner-Nordstro¨mmetricattheboundary r = aof (cid:18) (cid:19) thesphericalmatterdistribution.TheexteriorReissner-Nordstro¨m 1 2A′ 1 1 q2(r) metricisgivenby + − =8πp− , (3) B2 Ar r2 r2 r4 1 A′′ − A′B′(cid:18)+ 1 A′ −(cid:19)B′ =8πp+ q2(r), (4) ds2= 1− 2rm + qr22 dt2 − 1− 2rm + qr22 −1dr2 B2 A AB r A B r4 (cid:18) (cid:19) (cid:18) (cid:19) (cid:20) (cid:18) (cid:19)(cid:21) − r2(dθ2+sin2θdφ2). (11) wheretheprimedenotes differentiationwithrespect toradial co- ordinate r only. In the equation (2) - (4), the quantities ρ, p and Now,consideringthemetriccomponents g00,g11 and ∂∂g0r0 tobe continuousacrosstheboundaryr =aofthesphereandassuming qrepresenttheenergydensity,isotropicpressureandtotalelectric forthetotalchargeonthesphere chargerespectively.Thetotalchargewithinasphereofradiusris definedas q(a)=Kan, (12) r q(r)=4π J0r2ABdr, (5) one can get the following cases of the gravitational mass (vide Z0 equations(53),(56),(61),(65),(69)and(72)ofSection4inRay &Das(2002))intheexplicitformswithelectriccharge. Jibeingthe4-currenttakesheretheform,viatheelectromagnetic fieldF01,as CaseI(i):Forn=1 2 q 2 2 q 3 01 q(r) m=q +a0a1 +a1 , (13) F = . (6) K K ABr2 (cid:16) (cid:17) (cid:16) (cid:17) (ii):Forn=3 Now, eliminating p from equations (3) and (4) and assuming A′/Ar=C(r)onecanget 2 q 2 q 5/3 q 2/3 m=a1 +4K +a0a1 , (14) K K K 1 C 1 B3r2 + B3 dB− B2 dC CaseII(i)(cid:16):For(cid:17)n=1 (cid:16) (cid:17) (cid:16) (cid:17) whichis−aP(cid:18)f(cid:16)aBfBfi2a2−nr3d1if+ferCeBn2t2(cid:17)iral−eq2urqa52ti(cid:16)(cid:19)ondirn(cid:17)t=hre0e.dimensionshavi(n7g) m= W102 (cid:20)W02(1−2K2)+(cid:16)Kq (cid:17)2(cid:18)C1− Kq22(cid:19)q(cid:21)1/32 × , (15) thegeneralformas K h i (ii):Forn=3 f1(B,C,r)dB+f2(B,C,r)dC+f3(B,C,r)dr=0. (8) 1 2 q 2/3 2 2 q 4/3 1/2 m = W02 W0 +C1 K +(W0 K −1) K (cid:20) (cid:16) (cid:17) (cid:16) (cid:17) (cid:21) 3 ELECTROMAGNETICMASSMODELSFORSTATIC × q −2K1/3q5/3, (16) K CHARGEDFLUIDSPHERES h i CaseIII:Forn=1 3.1 Bayin’sclassofsolution 1+K2 2 q q m= =(K −1) C3 −2 , (17) The Pfaffian differential equation (7) can be solved in different C3 K K ways as shown by us (Ray & Das, 2002) in details. It is shown CaseIV:Forn=1 h (cid:16) (cid:17) ih i thatintermsofB(r)whenC(r)isknown,thePfaffiandifferential equation(7)becomes m=3C62 3C5+ q 3 q 4, (18) K K dB = 1− 2rq22 B3+ C2r− r13 + ddCr B. (9) whereK,(cid:20)a0,a1,W(cid:16)0,C(cid:17)1,(cid:21)Ch3,Ci5 andC6 all areconstant quan- dr " C+ r12 r3# (cid:20) C+ r12 (cid:21) tities.Now,mforthecasesI(i),I(ii)andIVareasusual positive (cid:0) (cid:1) Tolman-Bayintypestaticcharged... 3 whereasfortherestofthecasesII(i),II(ii)andIIItheconditions wherethegravitationalmassm(r)=M(r)+µ(r)beingdefined for positivity are (1/2) > K2 > (q2/C1), K > (1/W0) and as 1<K <(C3q/2)respectively. r 2 Itisobservedfromtheexplicitformsoftheabovesetofex- M(r)=4π ρr dr (28) pressions that the effective gravitational mass m, along with the Z0 centralpressuresanddensitiesatr =0(videequations(22),(27), and (31),(40),(45)and(21),(28),(32),(39)respectivelyinRay&Das r 2 2 (2002)), is related tothe charge q of equation (12) of the spheri- µ(r)= (q /2r )dr, (29) calsystem.Therefore,vanishingofthechargemakesallthephys- Z0 icalquantitiesincludingthegravitationalmassalsotovanish.This respectivelytheSchwarzschildmassandthemassequivalence of meansthatthegravitationalmassoriginatesfromtheelectromag- electromagneticfield.Hence,thetotalgravitationalmass,m(r = netic field alone. Thus, the gravitational mass is purely ‘electro- a),canbecalculatedas magneticmass’(Lorentz,1904)andthistypeofmodelisknownas na2(2−n)+2q2 ‘electromagneticmassmodel’intheliterature(Feynman,1964).It m= . (30) 2(1+2n−n2)a isrelevanttonoteherethatthisparticularimportantfeatureofthe solution set, viz., the electromagnetic nature of the gravitational If we now make the specific choice n = 0 for the parameter n mass is obviously not available in the uncharged case of Bayin appearingintheabovesolutionsetthenonegetthefollowingex- (1978) and thus indicates that the presence of charge allows for pressions. awiderrangeofbehaviour. 2 2m q2 A = 1− + , (31) a a2 (cid:20) (cid:21) 3.2 Tolman’ssolutionVI Intheintroductionwehavementionedthatmotivatedbythework B−2= 1− 2m + q2 = 1− 2q2 , (32) a a2 a2 ofTolman(1939),asimilarkindofnewclassofsolutionwasfound (cid:20) (cid:21) (cid:20) (cid:21) byBayin(1978)andhenceinviewoftheresultsofsub-section3.1 relatedtoBayin’sworkitwillbeinterestingtoexaminethesolu- 1 q2 ρ(r)= , (33) tionsofTolmanwhethertheyarealsoamemberofelectromagnetic 8πr2 a2 (cid:20) (cid:21) massmodels.Asaready-madeexamplewewouldliketopresent here the solution obtained by Pant & Sah (1979) to meet our, at 1 q2 leastpartial,requirement.Forastaticsphericallysymmetricdistri- p(r)=−8πr2 a2 , (34) butionofchargedfluidthesolutionset(videequations(10a),(10b), (cid:20) (cid:21) (10c)and(11)inPant&Sah(1979))isasfollows. 1 q 2q2 1/2 A2=eν =br2n, (19) σ(r)=±4πr2 a 1− a2 , (35) h i(cid:20) (cid:21) B−2 =e−λ =c, (20) q E(r)= , (36) ar 1 2 ρ= [1−c(n−1) ], (21) and 16πr2 q2 m= . (37) 1 2 a p= [c(n+1) −1], (22) 16πr2 Thus, for vanishing electric charge all the physical quantities in- cludinggravitationalmassvanishandthespacetimebecomesflat. σ=± 1 [c{1−c(1+2n−n2)}]1/2, (23) Itisinterestingtonotethat,inthepresentsituation,theequations 4πr2 2 (33) and (34) related to the isotropic pressure and matter density provide an equation of state ρ+p = 0, which is known as the 2 1 2 E = 2r2[1−c(1+2n−n )], (24) vacuum- or imperfect-fluid equation of state. As isevident, from the equations (21) and (22), this is not true for the general case where whenn6=0andcanbereadas b=a−2n 1− 2m + q2 , (25) 1 n(a2−2q2) a a2 ρ+p= . (38) (cid:20) (cid:21) 4πr2 a2(1+2n−n2) (cid:20) (cid:21) 2m q2 2q2 2 −1 Hencestartingfromaperfectfluidtypeequationofstatevian=0 c= 1− a + a2 = 1− a2 (1+2n−n ) . (26) we are arriving at the imperfect-fluid type equation of state and (cid:20) (cid:21) (cid:20) (cid:21) thusnhere istakingadefiniteand peculiar rolefor deciding the Theabovesetofsolutions,inviewofc,withΛ = 0andB = 0 form of the equation of state. This particular aspect is also true represents the charged analogue of Tolman’s (1939) solution VI viatheequations(2)and(3)fortheequations(19)and(20)which andthusintheabsenceofthetotalchargeqreducestotheneutral reduce to the equations (31) and (32) respectively, with n = 0 one(thesub-case C of uncharged fluidsphere inthePant &Sah whenwegetν +λ = 0.Thisagain,fortheReissner-Nordstro¨m (1979)).Now,theequation(2)canbeexpressedintheform metric (equation (11)) related to the spherically symmetric static −2 2m(r) chargedfluiddistribution,canbeexpressedintheformg00g11 = B =1− , (27) −1. Thus, in view of equations (2) and (3), we see that for the r 4 Ray&Das boundary conditionν +λ = 0onecan getρ+p = 0andvice givesenough scopetotheoreticalspeculationsandhencethecor- versa,sothatλ=−ν ↔p=−ρ.1Thisresultmeansthatifρ>0 respondingmodelingandinvestigationsbecomeasmuchpertinent then must be p < 0 for the inside of the fluid sphere though, in forthesecasesasfortheestablishedneutralsystems. general, ρ and p arepositive for the condition 0 6 n 6 1. This partially admits the comment by Ivanov that “... electromagnetic massmodelsallseemtohavenegativepressure”.Partiallybecause, ACKNOWLEDGMENTS inour opinion, therearesomeexamples ofelectromagnetic mass One of the authors (SR) is thankful to the authority of Inter- models wherepositive pressures arealsoavailable willbeshown University Centre for Astronomy and Astrophysics, Pune, India, elsewhere. forprovidingAssociateshipprogrammeunderwhichapartofthis workwascarriedout. 4 CONCLUSIONS REFERENCES Wehaverevisitedinthepresentpapertheworkalreadydonebyus (Ray&Das,2002)andthatoneofPant&Sah(1979)motivatedby BayinS.S.,1978,Phys.Rev.,D182745. thefactthatthegravitationalmassmforachargedmatterdistribu- BlomeJ.J.andPriesterW.,1984,Naturwissenshaften,71528. tionsalwayscanbeseentobedividedintotwoparts,viz.,(i)the CooperstockF.I.andDeLaCruzV.,1978,Gen.Rel.Grav.,9835. SchwarzschildmassM(r)and(ii)themassequivalenceofelectro- DaviesC.W.,1984,Phys.Rev.,D30737. magneticfieldµ(r)asisevidentfromtheequation(27).Thus,the EinsteinA.,1919,Sitz.Preuss.Akad.Wiss.,(ReprintedinEinsteinetal., ThePrincipleofRelativity,Dover,INC,1952). total mass is increasing due to electromagnetic energy (Florides, FeynmanR.P.,LeightonR.R.andSandsM.,1964,TheFeynmanLectures 1964;Mehra,1980)whichisobviouslyanextrafeatureincompar- onPhysics,(Addison-Wesley,PaloAlto,Vol.II,Chap.28). isontotheneutralcase.Keepingthisaspectinmindwewantedto FloridesP.S.,1962,Proc.Cam.Phil.Soc.,58110. examinewhetherthegravitationalmassobtainedbyus(Ray&Das, GautreauR.,1985,Phys.Rev.,D311860. 2002) in one of our previous papers is of purely electromagnetic GrønØ.,1986,Am.J.Phys.,5446. originornot.Wehave,inthepresentsimpleinvestigation,shown HoganC.,1984,Nature,310365. thatthechargedgeneralizedsolutionsofBayin(1978)ispurelyof IvanovB.V.,2002,Phys.Rev.,D65104001. electromagneticorigin.Inthisconnection,wehavealsoshown,by KaiserN.andStebbinsA.,1984,Nature,310391. citingthesolutionofPant&Sah(1979),thatthechargedgeneral- LeibovitzC.,1969,Phys.Rev.,1851664. izationofTolman’ssolutionVI(1939)yieldselectromagneticmass LorentzH.A.,1904,Proc.Acad.Sci.,Amsterdam,6(ReprintedinEinstein etal.,ThePrincipleofRelativity,Dover,INC,1952,p.24). modelswhich,ofcourse,needsfurtherinvestigationswithadirect MehraA.L.,1980,Gen.Rel.Grav.,12187. studyoftheTolman’swholesetofsolutionsbyinclusionofcharge. PantD.N.andSahA.,1979,J.Maths.Phys.202537. We would also like to mention here that the works done by PoncedeLeonJ.,1987,J.Math.Phys.,28410. different investigatorson electromagnetic mass models so far are PoncedeLeonJ.,2003,Gen.Rel.Grav.,351365. mainlyconcernedwiththestructureoftheclassicalelectron(spe- RayS.andDasB.,2002,Astrophys.SpaceSci.,282635. cial references are Gautreau, 1985 and Tiwari et al, 1986). Even RayS.,EspindolaA.L.,MalheiroM.,LemosJ.P.S.andZanchinV.T., though Tiwari et al. (1986) find astrophysically interesting Lane- 2003,Phys.Rev.D68,084004;astro-ph/0307262. Emden equations in connection to electromagnetic mass models TiwariR.N.,RaoJ.R.andKanakamedala R.R.,1984,Phys.Rev.,D30 butatthesametime,insteadofstudyingthestellarstructures,they 489. applytheradiiofsomeofthemodelsforthecomparisonwiththe TiwariR.N.,RaoJ.R.andKanakamedala R.R.,1986,Phys.Rev.,D34 1205. classicalelectronradius.Thisparticularaspectofelectromagnetic TiwariR.N.andRayS.,1997,Gen.Rel.Grav.,29683. massmodelsrelatedtoLane-Emdenequationsintheastrophysical TolmanR.C.,1939,Phys.Rev.,55367. contextneedsfurtherinvestigations. TrevesA.andTurellaR.,1999,Astrophys.J.,517396. Asismentioned inRay&Das(2002), tojustifythepresent WheelerJ.A.,1962,Geometrodynamics,(Academic,NewYork,p.25). work with a charged fluid distribution, that even though the as- WhitmanP.G.,1977,J.Math.Phys.,18869. trophysical systems are by and large electrically neutral, recent WymanM.,1949,Phys.Rev.,751930. studiesdonot ruleout thepossibilityof theexistence of massive astrophysical systems that are not electrically neutral (Treves & Turella,1999).Themechanism,thoughnotcompletelyunderstood, is mainly related to the acquiring a net charge by accretion from thesurroundingmedium.Ontheotherhand,therearesomeother views of acquiring charge by a compact star during its collapse fromthesupernovastage.Inthisregarditwillbeworthmentioning thattostudytheeffectofelectricchargeincompactstarsRayetal. (2003)assumeanansatzsuchthatσ=αρwhereαisrelatedtothe chargefractionf asα=869.24f andshowbynumericalcalcula- tionthatinordertoseeanyappreciableeffectonthephenomenol- ogyofthecompactstars,thetotalelectricchargeistobe∼ 1020 Coulomb.Therefore,inouropinion,evensucharemotepossibility 1 Acoordinate-independent statementoftherelationg00g11 = −1and henceν+λ=0isgivenbyTiwarietal.(1984).