horticulturae Article Growth and Tissue Elemental Composition Response of Spinach (Spinacia oleracea) to Hydroponic and Aquaponic Water Quality Conditions DanielA.Vandam1,TylerS.Anderson1,DaviddeVilliers2andMichaelB.Timmons1,* 1 DepartmentofBiologicalandEnvironmentalEngineering,CornellUniversity,Ithaca,NY14853,USA; [email protected](D.A.V.);[email protected](T.S.A.) 2 DepartmentofHorticulture,CornellUniversity,Ithaca,NY14853,USA;[email protected] * Correspondence:[email protected] AcademicEditor:DouglasD.Archbold Received:30December2016;Accepted:5May2017;Published:9May2017 Abstract: Spinach(Spinaciaoleraceacv. Carmel)wasgrowninaconventionalglassgreenhouseunder threedifferentnutrientsolutiontreatments. Lightingandtemperatureconditionswereidentical. Six growingsystemswereusedtoprovideaduplicatetroughsystemforeachofthesethreetreatments. Sixtrialswereharvestedfromeachsystemoveratwomonthtimeperiod. Twotreatmentsreceived hydroponicnutrientinputs,withonetreatmentatpH7.0(referredtoasH7)andtheotheratpH5.8 (H5), andthethirdtreatmentwasaquaponic(A7), receivingallofitsnutrientsfromasinglefish tankwithkoi(Cyprinuscarpio)exceptforchelatediron. SystempHwasregulatedbyaddingK CO 2 3 toaquaponicsystemsandKOHtohydroponicsystems. Comparisonsmadebetweentreatments were total yield, leaf surface area, tissue elemental content, and dry weight to fresh weight ratio. Dryweightbiomassyieldvalueswerenotdifferentinpairwisecomparisonsbetweentreatments (A7 vs. H5: p = 0.59 fresh weight, p = 0.42 dry weight). Similarly, surface area results were not differentbetweentreatments. TheimportantcomparisonwasthatA7achievedthesamegrowthas H5,theconventionalpHwithacompleteinorganicnutrientsolution,despiteunbalancedandless than“ideal”nutrientconcentrationsintheA7condition. Keywords: hydroponics; aquaponics; spinach; pH; biomass; nutrient analysis; tissue analysis;temperature 1. Introduction Hydroponicsisamethodofgrowingplantsusingmineralnutrientliquidsolutionwithoutsoil. The method of application of the nutrient solution to the roots varies widely [1]. Aquaponics is a method of growing plants hydroponically using nutrients provided from an aquaculture system. Aquaponics makes multiple uses of resources such as water and nutrients [2,3]. Hydroponics is an increasingly important field as the demand increases for more food and sustainably produced products[4]. Withurbanagricultureontherise[5],greenhousesaregrowingfoodonrooftopsandin decayingbuildingsandabandonedwarehouses[4]. Hydroponicsusesinorganicnutrientfertilizers, whileaquaponictreatmentsrelyonfishwaste,whichhasthepotentialtobeatlessormorethanideal concentrationsforplants. Aquaponicsusesfishrecirculatingwatersormineralizedwastedischargeto generatethenutrientsneededbyplants,meaningthenutrientcompositionisnotformulatedtoexact concentrationsandcanbelessstable[6]. Growingplantsaquaponicallyusesnutrientsthatwould otherwise be lost from a fish system, which has an added value in marketing to a certain class of consumers. Theplantsalsohelpfilterthefishwaterandhelptoreducenitratewhichcanbetoxicto somefishsalmonidspeciesatelevatedlevels,e.g.,greaterthan40mg/L[3]. Horticulturae2017,3,32;doi:10.3390/horticulturae3020032 www.mdpi.com/journal/horticulturae Horticulturae2017,3,32 2of16 Theobjectiveofthisstudywastocompareaquaponicandhydroponicspinachyield,andlook fordifferencesinleafsurfaceareaandelementalcompositionbetweentreatments. Twohydroponic treatmentswerechosen,pH5.8andpH7.0,andoneaquaponictreatmentwasusedatpH7.0,alower practicallimitforfishproduction. Theaquaponictreatmentreceivednutrientsfromfishrecirculating water,withtheexceptionofchelatediron. Fishwastehasnoavailableironinitforplants,sincethe iron would be in the ferric form. As a result, chelated iron is commonly added to the water of an aquaponicsystem;theamountofironbeingabsorbedbythefishdirectlyfromthewaterisconsidered smallandnon-harmful[2]. Thesolutionformulaemployedforthehydroponicspinachwasaformuladerivedforlettuce by Sonneveld and Straver [7]. In earlier research, the lettuce formula was as effective at half the concentration recommended by Sonneveld and Straver as at full concentration [8]. Half strength SonneveldandStraversolutionhasanelectroconductivityof1300microsiemens/cm. Moderatelylow pH,around5.8,keepsmostionsavailableinsolutionwhilehigherpH,around6.5andhigher,can causenutrientdeprivationbecauseofnutrientprecipitation[9]. TheSonneveldandStraversolution usedinthisresearchwasoriginallydesignedforusewithapHaround5.8,andbothBothetal.[8]and Bugbee[9]usedthispHforlettucetomaximizenutrientavailability. An added constraint in this research was that our aquaponic treatment needed to be kept at the same low root zone temperature as the two hydroponic treatments to combat Pythium (Pythium aphanadermatum) root disease, which is a major hazard in spinach production. DeVilliersetal.[10]havediscussedgrowingmethodsandstrategiestoaddressthisdisease,which weemployedinourexperiment,e.g.,lowrootzonetemperature,harvestingafter13daysinchannel water, and spraying 70% ethanol on all potentially contaminated surfaces during planting and solutionsampling. Amajordifferenceofaquaponicscomparedtohydroponicsisitspotentialfornon-uniformity inwaternutrientconditions; thesystemdoesnothaveafixednutrientcomposition,andisreliant upon the fish water to provide all nutrients at all times with the exception of chelated iron. This non-uniformityispossiblyoneofthereasonsthataquaponicssometimeshashadloweryieldsthan hydroponics [11]. Nutrient levels are highly dependent on the fish activity, fish number, and fish species[12,13]. Evenifthefishwasteprovidesadequatenutrientstosuccessfullygrowhighyielding plants,thehydrodynamicsoftheaquaponicssystemflowcanbedetrimentaltotheplantsideofthe system. Forexample,theflowrateandrateofrecirculationinthesystemcanreduceyieldiftheyare tooslowortoofastwhichcausesrootstress[14]. Theoverallobjectiveofthisstudywastocompare yieldsinanaquaponicssystem(A7)toyieldsobtainedfromaconventionalhydroponicssystemat pH5.8(H5). AhydroponicconditionofpH7(H7)wasalsoincludedforcomparisontootherresearch andpossiblyhelpexplainanydifferencesdetectedbetweenH5andA7. 2. MaterialsandMethods Seedsweregerminatedathighhumidityinatemperaturecontrolledgrowthchamberforthree days (additional details of growth chamber provided below). After germination, flats of spinach were grown for 13 additional days using deep-flow troughs/channels housed in a conventional glassgreenhouseunderthreedifferenttreatmentswhichconsistedofthreedifferentnutrientsolution conditions. Two treatments received hydroponic nutrient inputs, with one treatment at pH 5.8 (referredtoasH5)andtheotheratpH7.0(referredtoasH7). Reverseosmosis(RO)waterwasusedto makeupthenutrientsolutions. Growingconditionsmimickedconventionaldeep-flowgrowponds andplantsweregrownusingamodifiedSonneveldnutrientsolutiondesignedforlettuce(see2.8. Nutrients). Thethirdtreatmentwasaquaponic(referredtoasA7), receivingitsnutrientsfromthe aquaculturerecirculatingwaterthatcontainednutrientsexcreteddirectlybythefish(nitrogenous wasteasammonia,nitriteornitrate)orasnutrientsbeingreleasedfromthemineralizationofwaste solidscapturedbythesystembeadfilter. Theonlyextraneousnutrientaddedwaschelatediron,which wasusedtoraisetheinitialFeconcentrationto3mg/L).Theaquaponicsourcewaterwastapwater Horticulturae2017,3,32 3of16 thatwasinitiallyhighinalkalinity. Thiscarbonfilteredwaterhadaveragemacro-elementalcontents of50mg/LCa,13mg/LMg,5.5mg/LS,andanECof450µS/cm. Theconcentrationsofthemakeup waterforCa,MgandSvariedslightlyseasonally. AdjustmentsinpHwereinitiallymadetoachieve targHeotrtvicualltuurease 2a0n17d, 3t,h 3e2 nmadedailybyadding1MK2CO3totheaquaponicsystemor1MKOH3 otf o16t he hydroponicsystems. Priortotheexperiment,initialpHadjustmentsweremadeusingHNO orthe 3 treaatcmhieenvte’s tarergspete cvtaivlueebs aasneda sthjeuns tmmaednet idoanielyd .bIyn aitdiadlinang d1 fiMn aKl2wCaOt3e rtoe ltehme eanqtuaalpvoanliuce ssyfsotremth eorn 1u tMrie nt KOH to the hydroponic systems. Prior to the experiment, initial pH adjustments were made growingconditionsaregiveninTable7forallthreetreatments. usTinhge HspNinOa3c ohr ctrhoep tsreiantmalelntrteʹsa rtemspenecttsivwee breasger aosw jnusitn mtheentsioanmeed.g Irneietniahl oaunsde fainnadl aweartiearl sepleamceenutnald er values for the nutrient growing conditions are given in Table 7 for all three treatments. thesamelightingandtemperatureconditions,withperiodicharvestofoldandinsertionofnewtrials The spinach crops in all treatments were grown in the same greenhouse and aerial space under intohydroponicgrowingchannels(describedfurtherbelow,seeFigure1forageneraloverview). Six the same lighting and temperature conditions, with periodic harvest of old and insertion of new trials trialswereconductedfromJanuary17toFebruary19, 2016, withapreliminarytrialconductedto into hydroponic growing channels (described further below, see Figure 1 for a general overview). Six validateprocedures. Rootzonetemperaturewasmatchedacrossalltreatmentsat18◦C.Alltreatments trials were conducted from January 17 to February 19, 2016, with a preliminary trial conducted to weregrownfor13daysonceaflatwasfloatedinitsrespectivechannel. Eachofthethreetreatments validate procedures. Root zone temperature was matched across all treatments at 18 °C. All wastraeaptpmlieendtsi nweared ugrpolwicnat feorg r1o3w dainygs osnycsete am fl,arte wsualst ifnlogatiends iinx igtsr orewspinegctisvyes ctehmansn.eTl.h Eeatcwh oofh tyhed rthorpeoen ic treatrtemaetmntesnthsa wdafso uaprpcloiemd pinle ate dlyupinlidcaetpee gnrdoewnitngre scyirscteumla,t irnesgusltyinstge min ssiixn cglruodwiningg tshyesitremsosu. rTchee wtwaote rs, whhilyedtrhoepwonaitce trrefraotmmetnhtes hfiasdh ftoaunrk cofomrpthleetetlwy oinadqeupaenpdoennict rseycsitrecmulastwinags sycostnetminsu ionuclsuldyibnegi tnhgeimr sioxuedrc.eA n indwivaidteursa,l wtrhiaillee tnhdee wdawteirth frtohme htharev feissht otafnakll fsoixr tflhaet stwofos apqinuaapchonfrico msysetaecmhsg wroaws icnogntsiynsutoeums.lyE baecihngtr ial wasmoixffesde.t Abny itnhdrieveidduaayls t;riaadl denitdioedn awlihtha rtvhee shtadrveetasti losfa arlel spixr oflvaitds eodf sbpeinloawch. fSrtoymro efaocahm grfloowaitnsgc soyvsetreemd. all watEearcshu trrfiaacl ewsatos oreffdsuetc ebya ltghareeeg droawyst;h a,dmdiintiiomniazl eheavrvaepsot rdaetitoanil,s aanred pbrloovckidseodl abrelroawdi.a Sttioynro,fwoahmic hflowaotsu ld havceovdeersetdro aylle dwathteer isruornfaccheesl taot orre.duce algae growth, minimize evaporation, and block solar radiation, which would have destroyed the iron chelator. FigFuirgeu1re. F1l. oFoloroprl panlano fogf rgereenenhhoouusese..F Fiisshh ttaannkk iiss sseeppaarraatteedd ffrroomm ssppininaachch chcahnannenles lbsyb ay tahitnh ignregerneheonuhsoeu se parptiatriotintiowna wll.alCl.h Cahnannenleslas raeren nuummbbeereredd1 1t thhrroouugghh 66.. AA.. RReesseerrvvooirisr swwitiht hcoclodl dfinfignegrse r(she(hate eaxtcehxacnhgaenrgs)e rs) useudsetod ctoo oclooanl adnfidl ftielrteirn idnidviivdiudualalh hyyddrrooppoonniicc cchhaannnneellss;; BB.. DDuuppllicicaatete chchanannenlesl osfo HfH5 t5retaretmatemnte n(5t a(5nda nd 6);6C);. CD.u Dpulipcalitceatceh cahnannenleslso fofH H77t rtereaatmtmeenntt ((33 aanndd 44));; DD.. SShhaarreedd aaqquuaapponoinci crerseesrevroviro iwrawteart,e wr,itwhi tahn an independent sump pump to return water to the fish system; E. Channels of A7 treatment (1 and 2), independentsumppumptoreturnwatertothefishsystem;E.ChannelsofA7treatment(1and2), not duplicate because of shared water; F. Bead filter for nitrification and capture of fish solid waste notduplicatebecauseofsharedwater;F.Beadfilterfornitrificationandcaptureoffishsolidwaste(in (in series with sump (H) and fish tank (G); G. Fish tank; H. Sump pump and settling tank for serieswithsump(H)andfishtank(G);G.Fishtank;H.Sumppumpandsettlingtankforrecirculating recirculating fish system; flow continuously recycles with fish tank (G); 25% of sump pump flow is fishsystem;flowcontinuouslyrecycleswithfishtank(G);25%ofsumppumpflowisshort-circuitedto short‐circuited to fill reservoir water tank for aquaponic channels (E). fillreservoirwatertankforaquaponicchannels(E). Horticulturae2017,3,32 4of16 2.1. TheGreenhouse The spinach was grown in the middle section of a multi-sectioned glass greenhouse built in 1953,withdimensions9m×11m×7mhightotheridge,orientedeastwest(Figure1). AnArgus monitoringandcontrolsystem(Surrey,BC,CanadaV3S7A4)loggedCO ,humidity,aerialtemperature, 2 andlightlevel,andalsocontrolledaerialtemperatureanddailylightintegral(DLI).Therewasno carbondioxidesupplementation. Twoidenticalwater-to-airheatexchangersonoppositesidesofthe greenhouseratedat115,000kJ/husedfanstomoveairthroughradiatorsthenacrossthegreenhouse, providingairmixingandrapidadjustmentofairtemperaturestotargetvalues. A target DLI of 17 mol/m2/day was used for all trials. The DLI is the quantity of photosyntheticallyactiveradiation(PAR,inunitsofmoles/m2/day)achievedbycontrolleduseofa lightingarraytosupplementnaturallight.Theenvironmentalparametersweresampledapproximately everytwosecondsanddataqueuesaveragedandloggedevery2min. DLIwascontrolledtoitstarget valuebysupplementingnaturallightusinganarrayof20highpressuresodium(HPS)lights(GE,400 wattclearS51/O,MogulBaseratedED18HSP,LU400/H/ECO;GeneralElectric, Cleveland, OH, USA). The DLI was reset daily at 6:00 am. The greenhouse had a heating set point of 24◦C, and a coolingsetpointof25◦C.Thequantityofbothnaturalandsupplementallightingreceivedatplantlevel wasrecordedusingaLiCorquantumsensor(Li-Cor,Lincoln,NE,USA).TheaverageDLIfortrials wasconsistentlybetween17.0and17.1mol/m2/dayforalltrials. Theaveragenaturallightintegrals were4.0,4.1,4.7,4.6,5.4,and5.4mol/m2/dayfortrials1–6respectively. Theaveragesupplementary lightintegralswere13.0,12.9,12.3,12.4,11.6,and11.6mol/m2/dayfortrials1–6respectively. 2.2. TheChannels Flats of spinach were floated in six channels raised 1.27 m above the floor. The channels were made of 2 × 12 lumber, which provided insulation on the sides and ends. They were also insulated at the bottom with 25 mm polystyrene and 12 mm of plywood, and carefully lined with 0.006 mil plastic to make a functioning pond. The outside dimensions of the channels were 29cmhigh×42.5cmwide×244cmlong. Internaldimensionswere26cmdeep×35cmwide× 236 cm long. Each channel was accompanied by a reservoir at floor level (volume 50 L). Nutrient solutionwascooledinthereservoir,pumpeduptothefarendofthechannel,thendrainedbackto thereservoirbygravitywithdepthcontrolledbyastandpipeatthedownstreamendofthechannel. Thechannelswerefilledtoroughly24cmwith2cmoffreeboard,whichprovidedatotalvolumeof 200Lperchannelplusreservoirvolume. Thetopsofthefloatingflatswere1.27mabovethefloor and1.30mbelowthelightfixturestomaximizelightuniformity(naturalandsupplemental)among allchannels. Atthewaterlevelheightsmaintained, thetopofthefloatsclearedthechannelsides. Thechannelswerelabeled1through6andweregroupedintothreeblocks: channels1and2were block1(A7treatment),channels3and4wereblock2(H7treatment),andchannels5and6wereblock 3(H5treatment)(seeFigures1and2,Table1). Horticulturae2017,3,32 5of16 Horticulturae 2017, 3, 32 5 of 16 Figure 2. Photograph of channels and general experimental setup. The two channels on the left are Figure2.Photographofchannelsandgeneralexperimentalsetup.Thetwochannelsontheleftarethe the hydroponic pH 5.8 treatment. The two channels in the middle are the hydroponic pH 7.0 hydroponicpH5.8treatment.ThetwochannelsinthemiddlearethehydroponicpH7.0treatment. treatment. The two channels on the right are the aquaponic treatment. The insulated PVC pipe coming Thetwochannelsontherightaretheaquaponictreatment.TheinsulatedPVCpipecominginfrom in from the top right is the inflow and the outflow from the fish tank in an adjacent greenhouse section thetoprightistheinflowandtheoutflowfromthefishtankinanadjacentgreenhousesectiontothe to the right, outside of picture. right,outsideofpicture. Table 1. Fresh weight biomass results (grams/plant) from a separate experiment conducted to Table1.Freshweightbiomassresults(grams/plant)fromaseparateexperimentconductedtomeasure measure and test any potential differences between channels, in order to justify the decision not to andtestanypotentialdifferencesbetweenchannels, inordertojustifythedecisionnottoreverse reverse treatment positions; the major factor of concern was light distribution throughout the treagtrmeeennhtopuoses it(iuonnps;utbhlieshmeda jodraftaac, toDreoVfilclioenrsc,e rDn.,w Aasnldigerhstond,i stTr.i;b uCtoiornnetllh rUoungivheorsuittyt,h eCgorneteronlhleodu se (unEpnuvbilriosnhmedendta Gtar,oDupe)V. illiers,D.,Anderson,T.;CornellUniversity,ControlledEnvironmentGroup). Channel Channel TrialTrial AverAavgeer age 1 2 3 4 5 6 1 2 3 4 5 6 1 3.64 3.48 3.98 3.88 3.97 3.61 3.76 1 3.64 3.48 3.98 3.88 3.97 3.61 3.76 2 2 2.822.82 2.820.80 3.336.36 2.828.88 33.1.122 3.32.02 0 3.03 3.03 3 3 3.883.88 3.639.69 4.040.00 3.737.77 33.6.644 3.34.74 7 3.74 3.74 4 3.24 3.08 3.63 3.49 2.87 3.53 3.31 4 3.24 3.08 3.63 3.49 2.87 3.53 3.31 5 2.19 2.20 2.14 2.19 1.94 2.15 2.14 5 2.19 2.20 2.14 2.19 1.94 2.15 2.14 6 2.53 2.75 2.74 2.79 2.53 2.54 2.65 Average6 3.052.53 3.020.75 3.321.74 3.127.79 32.0.513 2.35.40 8 2.65 3.10 Average 3.05 3.00 3.31 3.17 3.01 3.08 3.10 2.3. SeedingandFloating 2.3. Seeding and Floating Theseedingprotocolinvolvedhand-seedingspinach(Spinaciaoleracea,cv. Carmel)seedsinto The seeding protocol involved hand‐seeding spinach (Spinacia oleracea, cv. Carmel) seeds into eachcellofeachflat. Duringtrials1and2,seedsweredoubleseededineachcell,butduetosomewhat each cell of each flat. During trials 1 and 2, seeds were double seeded in each cell, but due to lowgerminationintheflats,trials3to6weretripleseeded. Aftergermination,standswerethinned somewhat low germination in the flats, trials 3 to 6 were triple seeded. After germination, stands toonlyoneplantpercellpriortofloatingtheplantsinthechannels(seeStandcorrectionbelowfor were thinned to only one plant per cell prior to floating the plants in the channels (see Stand correction moredetails). below for more details). Wehavefoundthenotoriousandhistoricaldifficultyingerminatingspinachlargelydisappearsif We have found the notorious and historical difficulty in germinating spinach largely disappears seedingisintopre-moistenedmediumandthemoisturecontentofthemediumiscontrolled. Potting if seeding is into pre‐moistened medium and the moisture content of the medium is controlled. mePdoiattiunsge dmewdaias uLsMed-1 wgaesr LmMin‐1a tgieornmminiaxti(obnle mnidx o(bflfiennde -ofifb fienree‐dfibCearneda dCiaannasdpiahna gspnhuamgnpuema tpmeaot smsoaslos ng witahlofinnge wveitrhm fiincue lviteermanicduplieter laitned), pbeyrlLitaem), bbyer Lta(Qmubeerbte (cQ,Cueabneacd, aC)a.nPardea-m). oPirset‐emnoeidstmeneeddi ummedwiuams cwreaast ed bycardedatiendg b1yL aodfdrinevg e1r sLe oofs rmevoesrissew oasmterosfiosr wevateerry fo1rk egveorfyL 1M k-g1 opfo LttMin‐g1 mpoetdtiinag, tmoeadciha,i etvo eaachmieovies tau re conmteonisttoufrer ocuongthelnyt 3ofp raorutsghwlya t3e rpatortso nweatpear rttod ornye mpaarttt edrry(t hmeapttoert t(itnhge mpoetdtiinagi smreoduiag hisl yrohuaglhflwy ahtaelrf as recewivateedr) a.sP roetcteinivgedm).e Pdoiattwinags mscerdeiean weads tshcrroeuengehda th6rmoumghs aie 6v emimnt osiemvue litni-tcoe mlluSlttyi‐rcoeflol aSmtyrfloafotsa.mD felapttsh. of seeDdienpgthw oafs secoednitnrogl wledasb cyonatrwoolloedd ebny da iwbboloedretnh adtibcoblmerp tahcatte cdotmhpeamcteeddi uthme mtoeadisuemtd teop at hse.tW deepimth.p Wroev ed Horticulturae2017,3,32 6of16 ourgerminationsuccessbydiscardinganyseedsthatlookedunhealthy,e.g.,misshapen,discolored,or oddlysized. Thegoalofseedselectionwastocreatethemostuniformplantstandpossible. After seeding, the trays were sealed in 15 L white plastic bags, to control humidity to near saturation,andgerminatedinagrowthchambershieldedfromlight,foreightyhours.Thegermination chambersweremaintainedat24◦C.Wedeterminedthateightyhourswasthebesttimetofloatthe flats,asthatwasthetimewhenmostplantshadrecentlyemergedbutminimalgrowthorstretching hadoccurred. Theflatswere6.3cmthickby34.5cmwide×31cmlengthandcomprised132cellsin an11by12matrix. Onlyplantsfromthecentral56doubly-guardedcellswereharvested(theouter tworowswerenotused,whichleavesa7×8rowmatrix),wherethecelldensitywas1300cellsper m2,adensityusedbycommercialgrowers. Afterfloating,theplantsweregrowninthechannelsforanadditional14daysunderfulllighting. Theseeding,floating,andgrowingprocedureswerethesameforalltrialsandtreatmentsexceptthe increasedseedingaspreviouslydescribed. Trialsoverlappedwitheachotherintheirchannels,since flatswereaddedevery3daysasanewtrial,soittookfivesuccessivetrialplacements(trials)before thefirsttrialwasharvested;thustrial1and6werecompletelyindependentinallways,including theirwaterenvironments. 2.4. StandCorrection Anattemptwasmadetocontrolforthevariationingerminationamongflats. Theprocedure entailedadjustingplantstandstoasetnumberofhealthy,equivalent,plantsintheinteriorofeachof theflatsforeachparticulartrial. Thenumberwasdeterminedbytheworstgerminationofthesixflats inagiventrialafterhavingremovedanydeformedorverylateemergingplants. Fromtheremaining plants,additionalhealthyplantswereremovedsothateachtrialhadthesamenumberofplantsper flat. Oncethenumberofplantstoremovefromeachflatwasdetermined,theseplantswererandomly selectedandremovedblindlytoavoidbias. Eventhoughtrialswerestandcorrectedtobethesamewithintrial,thereweresmalldifferences between trials since each trial had a different number of healthy plants at the time of floating. The number of plants varied from 44 to 51 out of the 56 potential guarded cells that were to be harvestedfordataanalysis. 2.5. TheHydroponicSystems The hydroponic channels were closed-loop recirculating water systems, with each channel independentandunconnectedtoothers. Identicalcirculatingpumps(24L/min)wereusedinallsix channelsandmixedthewaterinthechannelsatarateequaltoahydraulicretentiontime(HRT)of 8min. Thisflowratemaintainedgoodmixinginthechannelsandrootsappearedtobekeptunder gentle movement, which we did to avoid possible problems of root stress previously mentioned by Shete et al. [14]. A crucial part of the hydroponic channels was the nutrient solution reservoir (madewithmodificationstoacoolerchest). Eachchannel’sflowwentthroughitsreservoir,inwhich temperaturewascomputer-controlledbyactivationofcoolingcoilsinwhichwatercooledto7 ◦C waspassedwhennecessary. Twohundredlitersofnutrientsolutionwereaddedtoeachchannelto begintheexperiment. Nutrientsolutionwasaddedonanas-neededbasistoreplacewaterlossby evaporationortranspiration. Foreachgiventrial,oneflatwasfloatedineachchannelatthesametime tocommencethatparticulartrial. 2.6. TheAquaponicSystem Theaquaponicsystemcontainedkoi(Cyprinuscarpio)separatelyhousedinanadjacentsectionof theclimate-controlledgreenhouserange,asshowninFigure1. Koiwerechosenasthefishbecausethe commoncarpisahardyfishandcantolerateawiderangeofwatertemperature,andkoiretainthat resilience. Thefishtankwas1000Landhadbeenincontinuousoperationfortwoyears. Thesystem continuallyrecirculatedwaterwithminimalwaterdischargeandusedabeadfiltertocaptureand Horticulturae2017,3,32 7of16 mineralize solids. The return flow from the fish sump was split to go to the bead filter or the A7 reservoir(designatedasHinFigure1)fortheaquaponicchannels. Aseparatesumppumpinthe A7reservoirreturnedwaterdirectlytothefishtank. Thebeadfilterflowwasreturnedtothefish tankviaanexternalspraybartoprovideaeration. Thebeadfilterwasback-flushedonceperweek withanetlossofwaterof100Ltoremoveretainedsolids,whichallowedsignificanttimeforsolids mineralization. The flow to the aquaponics channels was the same 24 L/min per channel as the hydroponicchannels. The pH of the system was regulated daily to a pH of 7.0 by adding 1M K CO . Due to fish 2 3 nitrificationandfishrespiration,thepHwasstable,sotherewasnoneedforpHloweringchemicals suchasacid. FishwerefedasyntheticmanufacturedKoifeed(BlackwaterCreek’sMaxGrowthKoi Food“PremiumKoiandGoldfishFood”). Thefishwerehandfedtwicedailytoapparentsatiation onweekdays(totalof90g),and60gonweekends(oncedaily),whichwasapproximately1.5%body weightperdayonweekdays. Thekoiwereapproximately200–400ginsize(tankdensityof~7kg/m3) andtheirbodyconditionfactorwasconsideredtypicalandindicativeofappropriatefeedinglevels. Thelowerfeedinglevelonweekendswastoreduceworkrequirementsandreducepotentialsystem problemsduringlow-staffperiodsontheweekend. SeeTable2fortheelementalanalysisofthefish feedusedasdeterminedbytheCornellNutrientAnalysisLab(CNAL).Thefeedusedwasastandard commercialdietprovidedbyareputablefeeddealerforornamentalkoi. Table2.Elementalanalysisobtainedfromaciddigestionmethodofcommercialfeedthatwasusedfor aquaponicsystem(MaxGrowthformulafromBlackwaterCreekFarm). Element Content Units TotalC 40 % TotalN 6.3 % TotalH 6.3 % Ca 4.1 % P 2.2 % K 1.2 % S 5623 mg/kg Na 4137 mg/kg Mg 3545 mg/kg Fe 789 mg/kg Al 283 mg/kg Sr 269 mg/kg Zn 226 mg/kg Mn 88 mg/kg B 28 mg/kg Cu 16 mg/kg Ba 15 mg/kg As 4.2 mg/kg Cr 1.7 mg/kg V 1.2 mg/kg Pb 1.1 mg/kg Ni 1.0 mg/kg Cd 0.7 mg/kg Mo 0.5 mg/kg Co 0.5 mg/kg Ti 0.0 mg/kg Theaquaponictreatmentchannelswerenotindependentwatersystemsfromoneanother. Water frombothsystemscamefromandwasreturnedtothefishtank,andthesystemssharedareservoir whichwascooledinthesamewayasthehydroponicchannels. Thefishtankwasseparatedfromthe spinachchannelsbyaglassgreenhousepartitionwall,whichhadtheadvantageofallowingthefish tanktobekeptatacolderairtemperature. Sincespinachrootzonetemperaturesneededtobekeptat Horticulturae2017,3,32 8of16 18◦C,wemaintainedthefishwaternear20◦Candtherestofthechillingwasaccomplishedbythe chillerpreviouslydescribed. 2.7. Measurements AlkalinitywasmeasuredbytitratingtoanendpointofpH4.5using0.01M(0.02N)sulfuricacid. Theresultingequilibriumalkalinitieswereapproximately20mg/LCaCO fortheH5treatmentsand 3 40mg/LCaCO forboththeH7treatmentandtheaquaponictreatment. Thealkalinitymeasurement 3 hadanaccuracyof±4mg/LasCaCO . 3 Electroconductivity(EC)wasmeasuredbetween1200to1500µS/cm. ECwasnotcontrolledin the treatments, but due to the differences among treatments, slightly different EC ranges resulted. Intheaquaponictreatment,theaverageECwas1400–1500µS/cm. IntheH5andH7treatments,the averageECwas1200–1300µS/cmand1300–1400µS/cm,respectively. Typically,therewasverylow variabilityinthenutrientsolutionECintheH5treatment. TheadditionalionsintheA7treatment from the tapwater resulted in the EC stabilizing at the highest values. The adjustment of the pH upwardintheH7treatmentfromitsnaturalstartingpointofpH5.8resultedintheH7treatment havinghigherECvaluesthantheH5treatment. 2.8. Nutrients Thehydroponictreatmentsreceivedacustom-madeinorganichydroponicfertilizer. Tosetupthe hydroponicexperiment,eachofthefourhydroponicchannelswasfilledwith200Lofthemodified SonneveldandStraverlettucesolution[7]. Tocreate200L,onelitereachoftwoconcentrates,known asStockAandStockBbycommonpractioners,weremixedinsuccessively. Thenutrientscontained ineachStocksolutionareshowninTable3(seeTable7forresultinginitialconcentrations). Table3.NutrientcontentsofStocksolutions;seeTable7forresultinginitialconcentrations. Stock A B Nutrients Calciumnitrate(Ca(NO ) 3H O Potassiumnitrate(KNO )(67%ofK) 3 2 2 3 Chelatediron(Sprint330,Fe-DTPA) Epsomsalts(MgSO ·7H O) 4 2 Ammoniumnitrate(NH NO ) Manganesesulfate(MnSO ·1H O) 4 3 4 2 Potassiumnitrate(KNO )(33%ofK) Boricacid(H BO ) 3 3 3 Ammoniummolybdate (NH ) Mo O ·4H O) 4 6 7 24 2 Zincsulfate(ZnSO ·7H O) 4 2 Coppersulfate(CuSO ·5H O) 4 2 Potassiumsulfate(K SO ) 2 4 Thetubswerefirstfilledwithwater,thenStockAandBconcentrateswereaddedona1:1ratio sequentiallywhilevigorouslystirringbetweenadditions. AdditionalmodifiedSonneveldandStraver solutionswerecreatedin200LquantitiesinbarrelsatthetwodifferentpH’s,usingROwaterandthen usedforreplenishmentoflosttubwateroverthecourseofeachtrial. Tosetuptheaquaponicexperiment,eachofthetwoaquaponicchannelswasfilledwith200L offishwater,duringatimewhenthefishtankwasroutinelyreplenishedwithtapwater(toreplace waterlostduringsolidsfiltercleaning). Theaquaponicchannelsrequiredtheadditionofiron,since ironisarequiredelementforplantssoweaddedchelatedirontotheaquaponicsystemintheformof Fe-DTPA(Sprint-330). Thechelatedironwasinaformwhichisnottakenupbyfishbutisavailableto thespinach. Uponcompletionoftheexperiment,tissuedataanalyseswereperformedbytheCornellNutrient AnalysisLaboratoryusinghotplateaciddigestionplusICP-AESmetalanalysisandcombustionash analysisforcarbonandnitrogen. Nutrientsolutionanalysiswasdoneimmediatelybeforeandafter theentireexperiment. Onesamplewastakenimmediatelypriortotheadditionofthefirstplants,and Horticulturae2017,3,32 9of16 theothersamplewastakenaftertrial6washarvested. Thenutrientsolutionanalysiswasalsorunby theCornellNutrientAnalysisLaboratory. ElementalanalysisresultsareshowninTables5and6. 2.9. Harvest Plantswereharvestedafter14daysofgrow-outinthechannels,atatypicalmarketablesizefor baby-leafspinach. Duringharvest,flatsofplantswereremovedfromthechannelsoneatatimeand takenoutofthegreenhouse. Plantswereharvestedatnightbecausetheyaregrowingveryfastinthe day,sonightharvestingminimizedanyadvantageaparticularflatcouldhavereceivedbyitsorderof harvest. Ifharvestedduringtheday,flatsharvestedlaterwouldhavearelativeyieldadvantage. Eachflathad132cellsforpossibleplants,butthetwoouterperimeterrowsofplantswereableto spreadoutbeyondtheirflatandthereforenotconsideredtypical(wouldreceivemorelight)andwere thusdiscarded.Afterremovingthetwoperimeterrows,eachflathadtheplantsfrominterior/guarded cellsforanalysis. Duringharvest,plantsweresnippedwherethestememergedfromthemedium,i.e., throughthehypocotyl,andthenumberofplantsperrowwerecounted. Allplantswithinthesame rowweregrouped,andstemsandleaveswereseparatedineachrow. Finally,totalstemsandleaves perrowwereweighedwithanaccuracyof0.01grams. Thesedatawasusedtocalculatebothtotalflat massandaveragemassperplant. Afterseparation,stemsandleaveswereplacedinlabeledbrownpaperbagsanddriedinovens maintainedat70◦Cforthreedays. Weconsiderdryweighttobeapurerepresentationofbiomass yield,sincewaterconcentrationcanmakeinterpretationdifficult. Wealsopresentfreshweightdataas beingequallyimportantbecausefreshweightismarketableweight. 2.10. LeafSurfaceArea Inordertodetermineandcalculatesurfacearea,leaveswerecutafterweighingandpressedflat formeasurementwithaclearscratch-resistantacrylicpolycarbonateplexiglass. Eachrowwouldallfit underneatha25cm×50cmpieceoftheplexiglass. Imagesofthepressedleaveswerethenusedto determinetotalleafsurfacearea. SurfaceareawasmeasuredusingthecomputersoftwarecalledImageJ.ImageJisanopen-source imageprocessingprogram,withtheintentofbeingusedforscientificmultidimensionalimages. Touse thesoftware,apicturewasloaded,andthebrightnessandhuethresholdoftheimagewaschanged tothepointwhereonlygreencolorwasrecognized. Surfaceareaswereextractedusingareference lengthwithinthepicture. 2.11. StatisticalAnalysis Threetreatmentconditions(H5,H7,andA7)wereevaluatedbasedprimarilyuponfreshanddry matterresponses.WecollecteddataforsixtrialsfromJanuary13toFebruary19,2016,correspondingto atotaldaylengthincreaseof84min(9h19minto10h43min,ora15%increaseinnaturaldaylength). Wefirstevaluatediftherewasatrialeffectonbiomassresponseacrossalltrialsbygroupingthethree treatmentsforeachtrial,sinceresponsemayhavebeenimpactedbychangingdaylength. Wealso evaluatedtrialeffectonindividualplantresponsesinceourstandcorrectionproceduregaveusthe samenumberofplantsforeachflatbutresultedinadifferentnumberofplantsperflatbytrialandthe naturaldaylenthincreasedforeachtrial. Afterevaluatingforbothpossiblesourcesofatrialeffect, datawascombinedamongtrialstoprovideincreaseddegreesoffreedomforstatisticalanalysisof treatmenteffects(n=84,from6trials,2channelspertreatment,and7rowsperflatpertreatment). Aftercombiningdatabytreatmentacrosstrialsandpairedacrossreplicatedchannels,treatmentswere comparedusingpairedt-tests. Forflatresponses(Table4c),thereare6flatsorresponsespertreatment andtworeplicatedchannels,son=12. Horticulturae2017,3,32 10of16 Table4.Averageplantfreshweight(a)anddryweight(b)dataforallchannelsandtrials,ingrams perplant.Standarddeviations(SD)givenforaveragevaluesinparentheses.Totalflatbiomass(c)is shownforfreshweightdata,ingrams. Channel1and2areaquaponics(A7),Channel3and4are hydroponicsatpH7(H7),Channel5and6arehydroponicsatpH5.8(H5).Superscriptlettersidentify thatsignificantdifferencesoccurbetweenvalueswithdifferentsuperscriptlettersforagivenbiomass. (a) Channel Average(SD) Trial 1 2 3 4 5 6 1 3.01 3.09 3.21 3.18 3.16 3.11 3.13(0.07) 2 2.85 2.99 3.08 2.90 3.00 2.94 2.96(0.08) 3 2.76 3.23 2.92 2.99 2.62 2.87 2.90(0.21) 4 2.59 2.62 2.93 3.03 2.87 2.82 2.81(0.17) 5 2.96 2.86 3.10 3.07 2.96 3.02 2.99(0.09) 6 2.72 2.73 2.71 2.82 2.68 2.84 2.75(0.06) Average 2.82b 2.92b 2.99a 3.00a 2.88b 2.93b SD (0.16) (0.23) (0.18) (0.13) (0.20) (0.11) (b) Channel Average(SD) Trial 1 2 3 4 5 6 1 0.152 0.157 0.161 0.163 0.163 0.161 0.159(0.004) 2 0.144 0.160 0.156 0.154 0.160 0.152 0.154(0.006) 3 0.162 0.170 0.156 0.160 0.147 0.154 0.158(0.008) 4 0.145 0.154 0.158 0.161 0.170 0.149 0.156(0.009) 5 0.159 0.156 0.163 0.154 0.165 0.157 0.159(0.004) 6 0.155 0.150 0.147 0.154 0.157 0.157 0.153(0.004) Average 0.153a 0.158a 0.157a 0.158a 0.160a 0.155a SD (0.007) (0.007) (0.006) (0.004) (0.008) (0.004) (c) Channel Average(SD) Trial 1 2 3 4 5 6 1 108 111 110 118 109 115 111(3.8) 2 124 120 120 130 128 120 123(4.4) 3 121 117 116 120 115 100 114(7.5) 4 105 103 125 114 120 106 112(7.6) 5 126 141 140 143 130 144 137(6.2) 6 130 142 134 142 136 140 137(3.0) Average 119b 122b 124a 127a 123b 120b SD (11.9) (13.0) (11.2) (11.9) (10.3) (17.0) 3. Results 3.1. TrialEffect We found no statistical difference in biomass responses for wet or dry weights within each treatmentbetweentrials(p=0.29,n=84). Inspectionofthedataforplantsize(Table4a)showeda trendofslightlydecreasingindividualplantsizeastrialsprogressed. Thismayhavebeenduetothe increasingnaturallightaspartofafixedDLItarget,butitmayhavebeenalsorelatedtothenumberof plantsperflatincreasingslightlyoverthetrialsconducted. WhiletheDLIwascontrolledtoaconstant valueof17mol/m2/day,successivespinachtrialsreceivedanincreasingpercentageofnaturallight foreachsuccessivetrial(seeTheGreenhouseSection2.1). Additionally,amuchlargernumberofplants inanindividualflatwouldresultinsmallerindividualplants. Probablythemostimportantresponse variableforcommercialinterestisthetotalfreshweight(biomass)producedfromanindividualflat (Table4c). Herewealsosawnosignificanteffectwithineachtreatmentbetweentrials(p=0.25,n=12). 3.2. BiomassResults Wefoundnostatisticaldifferencesinourbiomassresults,whichwerenormallydistributedas shown in Tables 4 and 5, between the A7 and H5 treatments, (A7 vs. H5: p = 0.59 fresh weight, p=0.42dryweight,n=84)evenwhentotalflatmasswasmeasured(Table4c). Similarly,leafsurface arearesultswerenotdifferentbetweentreatments.
Description: