ebook img

TMD Evolution at Moderate Hard Scales PDF

0.85 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview TMD Evolution at Moderate Hard Scales

TMD Evolution at Moderate Hard Scales 6 1 0 2 Ted C. Rogers ∗ n DepartmentofPhysics,OldDominionUniversity,Norfolk,VA23529,USA a andTheoryCenter,JeffersonLab,12000JeffersonAvenue,NewportNews,VA23606,USA J E-mail: [email protected] 1 1 John Collins ] 104DaveyLab.,PennStateUniversity,UniversityParkPA16802,USA h E-mail: [email protected] p - p e We summarize some of our recent work on non-perturbative transverse momentum dependent h [ (TMD)evolution,emphasizingaspectsthatarenecessaryfordealingwithmoderatelylowscale processeslikesemi-inclusivedeepinelasticscattering. 1 v PoS.cls, January 11, 2016, JLAB-THY-16-2196, DOE/OR/23177-3644 1 7 5 2 0 . 1 0 6 1 : v i X r a QCDEvolution2015-QCDEV2015- 26-30May2015 JeffersonLab(JLAB),NewportNewsVirginia,USA Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ TMDEvolutionatModerateHardScales TedC.Rogers 1. TMDfactorizationandnon-perturbativeevolution ThepurposeofthistalkistosummarizeresultsrecentlypresentedinRef.[1]. Wewilldiscuss the Collins-Soper-Sterman (CSS) form of TMD factorization in the updated version presented in Ref. [2]. (See Ref. [3] for a general overview and for references.) For these proceedings, the relevantaspectsoftheTMDfactorizationtheoremsarethefollowing: TheunpolarizedcrosssectionforaprocesslikeDrell-Yanscatteringisexpressibleas • dσ d4qdΩ 2 dσˆ (Q,µ Q;α (Q)) = ∑ j¯ → s d2b eiqTb F˜ (x ,b;Q2,Q)F˜ (x ,b;Q2,Q) s dΩ · j/A A ¯/B B j (cid:90) +largeq “Y-term”correction. (1.1) T wheredσˆ /dΩisahardpartoniccrosssectionandF˜(x,b;Q2,Q)isaTMDpartondistribu- j¯ tionfunction(PDFs)incoordinatespaceevaluatedwithahardscaleQ. Collins-Soper(CS)evolutionappliedtoanindividualTMDPDFleadsto • ∂ lnF˜ (x ,b ;Q2,Q)=K˜(b ;Q)+ b IndependentTerms (1.2) ∂lnQ j/A A T T T The“b IndependentTerms”onlyaffectthenormalizationofF˜ butnotitsshape. T The kernel K˜(b ;Q) is is strongly universal. At small b its b -dependence is perturba- T T T • tively calculable with 1/b acting as a hard scale. At large b its b -dependence is non- T T T perturbative. Forallb ,K˜(b ;Q)obeystherenormalizationgroup(RG)equation: T T • d K˜(b ;µ)= γ (α (µ)). (1.3) T K s dlnµ − Atsmallb ,onehopestoexploitperturbationtheorywith1/b asahardscaletocalculateK˜(b ;Q) T T T whileatlargeb anon-perturbativeparametrizationisneeded. Inthenon-perturbativeregion,one T hopestoexploitthestronguniversalityofK˜(b ;Q)tomakepredictions. Oneneedsaprescription T todemarcatewhatconstituteslargeandsmallb . Tosmoothlyinterpolatebetweenthetworegions, T oneimposesagentlecutoffonlargeb . Acommonchoiceofcutofffunctionis T b T b (b )= . (1.4) T ∗ 1+b2/b2 T max (cid:113) Then an RG scale defined as µ C /b approaches C /b at small b and C /b at large b 1 1 T T 1 max b . We can separate K˜(b ;Q) int∗o≡a large∗b part and a small b part by adding and subtracting T T T T K˜(b ;Q)inEq.(1.2): ∗ ∂ lnF˜ (x ,b ;Q2,Q)=K˜(b ;Q)+ K˜(b ;Q) K˜(b ;Q) + b IndependentTerms. (1.5) ∂lnQ j/A A T ∗ T − ∗ T (cid:2) (cid:3) 2 TMDEvolutionatModerateHardScales TedC.Rogers Theg (b ;b )functionisdefinedasthetermK˜(b ;Q) K˜(b ;Q),sothat K T max T − ∗ ∂ lnF˜ (x ,b ;Q2,Q)=K˜(b ;Q) g (b ;b )+ b IndependentTerms. (1.6) ∂lnQ j/A A T ∗ − K T max T Bydefinition,therightsideofEq.(1.6)isexactlyindependentofb . FromEq.(1.3),g (b ;b ) max K T max is also exactly independent of Q. The Q dependence in each of the terms in the definition of g (b ;b ) cancels. We can apply Eq. (1.3) to exploit RG improvement in the calculation of K T max K˜(b ;Q): ∗ Q dµ K˜(b ;Q)=K˜(b ;µ ) (cid:48)γ (α (µ )). (1.7) b K s (cid:48) ∗ ∗ ∗ −(cid:90)µb µ(cid:48) ∗ So,theevolutionoftheshapeofF˜ (x ,b ;Q2,Q)isisgivenby j/A A T ∂ lnF˜ (x ,b ;Q2,Q) ∂lnQ j/A A T Q dµ =K˜(b ;µ ) (cid:48)γ (α (µ )) g (b ;b )+ b IndependentTerms. (1.8) b K s (cid:48) K T max T ∗ ∗ −(cid:90)µb µ(cid:48) − ∗ The partial derivative symbol means x is to be held fixed. The g (b ;b ) function inherits the A K T max universality properties of K˜(b ;µ). In particular, it is related to the vacuum expectation value of T a relatively simple Wilson loop. It is independent of any details of the process and is even the same if the PDF F˜ (x ,b ;Q2,Q) is replaced with a fragmentation function. Thus we say that j/A A T g (b ;b ) is “strongly” universal; see the graphic in Fig. 1. The g (b ;b ) function is often K T max K T max called the “non-perturbative” part of the evolution since it can contain non-perturbative elements. This is a slight misnomer, however, since g (b ;b ) can contain perturbative contributions as K T max well. Indeed,atverysmallb itisentirelyperturbativelycalculable,thoughsuppressedbypowers T ofb /b ,accordingtoitsdefinitioninEq.(1.5). T max 2. Largeb behavior T Acommonchoicefornon-perturbativeparametrizationsofg (b ;b )isapower-lawform. K T max These tend to yield reasonable success in fits that involve at least moderately high scales Q [4]. However, extrapolations of those fits to lower values of Q (such as those corresponding to many currentSIDISexperiments)appeartoappeartoproduceevolutionthatisfartoorapid[5,6]. Inthis talk, we carefully examine the underlying physics issues surrounding non-perturbative evolution and, on the basis of those considerations, we will propose a form for g (b ;b ) that accommo- K T max datesbothlargeandsmallQbehavior. Wewillfirstwritedownourproposedansatzforg (b ;b )andthenspendtheremainderof K T max thetalkdiscussingitsjustifications. Ourproposalis C α (µ )b2 g (b ;b )=g (b ) 1 exp F s b T , (2.1) K T max 0 max − −πg (b )∗b2 (cid:18) (cid:20) 0 max max(cid:21)(cid:19) where g (b )=g (b )+2CF C1/bmax dµ(cid:48)α (µ ). (2.2) 0 max 0 max,0 s (cid:48) π (cid:90)C1/bmax,0 µ(cid:48) 3 14 kˆ = xP+,0,0 T ˆ l =�0,q�,0T � � � k˜ = xP+,k ,k � T ˜l =�l+,q�,kT � � � dk+ dk d2k (244) � T Z Z Z sˆ (245) sˆ Q2(1 x/⇠) Q2(1 z) k2 = = � = � (246) T,max 4 4(x/⇠) 4z Q2(1 z) sˆ= (q+kˆ)2 = � (247) z kT2,max d�ˆ �ˆ = (248) dk2 Z T 1 dk2 (249) T Z0 d� d4qd⌦ 2 d�ˆ (Q,µ,↵ (µ)) = j|¯ s d2bT eiqT·bT F˜j/A(xA,bT;⇣A,µ) F˜|¯/B(xB,bT;Q4/⇣A,µ) 16 s d⌦ j Z X +polarization terms+high-q term (Y)+power-suppressed. (250) T (276) d�ˆ (Q,µ,↵ (µ)) s W˜ (b ;Q) Q2 j|¯ s F˜ (x ,b ;⇣ ,µ)F˜ (x ,b ;Q2/⇣ ,µ) (251) T j j/A A T A |¯/B B T A ⌘ d⌦ d� qT⌧Q 2 dF2˜bfT/Pei(qbT·TbT,Wx˜;(µbT;⇣;Q1)) = (252) (277) d4qd⌦ ' sQ2 Z @lnW˜ (bT,Q,xA,xB) = K˜(b ;⇣µ1)+=bx2MInpd2eep2e(ynPd�enyts)Terms (253) (278) T T @lnQ2 d x 1.0 (279) ˜ K(b ;µ) = � (↵ (µ)) (254) TMDEvolutionatModeratedHlanrdµScalesT � K s! TedC.Rogers 0 WL Q[a,daµ] 0 (280) ˜ ˜ C 0 K(bT;Q;↵s(Q)) = K(bT;µb ;↵s(hµb|))+ �|Ki(↵s(µ0)) (255) µ ⇤ ⇤ Zµb 0 ⇤ l+l-­‐    t¯o   K˜(b ;µ) ↵ (µF).Tln.(µPbbac) k+-­‐t(o0-­‐b,awc+k�    O,0(t↵)(µ)nln(µb )(m0,)0,0t) P (256) (281) T s h T| s T | i ⇠ ··· hadrons   Z/W  produc:on   Drell-­‐Yan       µ = C /b µ = C /b (257)   b 1 T ¯ b 1 F.T. P (0,w⇤�,wt) ⇤ (0,0,0t) P (282) h | | i ˜ ˜ ˜ ˜ K(b ;µ ;↵ (µ )) = K(b ;µ ;↵ (µ ))+K(b ;µ ;↵ (µ )) K(b ;µ ;↵ (µ )) (258) T 0 s 0 0 s 0 T 0 s 0 0 s 0 SIDIS   ⇤ � ⇤ Collins     Q gK(bT;bmax)ln   (259) (283) � Q 0 ................... ✓ ◆ ................... Boer-­‐   PDFs        Mulders       Fragmenta:on   Acknowledgments Sivers   Func:ons   Unpolarized     Cross  Sec:ons   This work was supported by...   Figure 1: Strong universality of the non-perturbative evolution parametrized by g (b ;b ). The K T max g (b ;b )ln(Q/Q )combinationappearsexponentiatedintheevolvedcrosssectionexpression. K T max 0 − Theonlyparameterofthemodelisg (b )anditvarieswithb accordingtoEq.(2.2). b 0 max max max,0 isaboundaryvalueforg relativetowhichothervaluesaredetermined. 0 First,notethattheasmallb /b expansionofEq.(2.1)gives T max C b2 b4C2α (µ )2 g (b ;b )= F T α (µ )+O T F s b , (2.3) K T max π b2 s b b4 π2g (b∗ ) max ∗ (cid:18) max 0 max (cid:19) whileanexpansionoftheexactdefinitionof g (b ;b )inEq.(1.5)is K T max − g (b ;b )= K˜(b ;µ ;α (µ ))+K˜(b ;µ ;α (µ )) K T max T b s b b s b − ∗ ∗ ∗ ∗ ∗ C b2 b4 = F T α (µ )+O T α (µ )2 (2.4) π b2 s b π2b4 s b max ∗ (cid:18) max ∗ (cid:19) So,theexactdefinitionandEq.(2.1)matchinthesmallb limit. T 3. Conditionsong (b ;b ) K T max Ourdescriptionofthelargeb limitofcorrelationfunctionslikeF˜(x ,b ;Q2,Q)ismotivated T A T bythegeneralobservationthattheanalyticpropertiesofcorrelationfunctionsimplyanexponential 4 TMDEvolutionatModerateHardScales TedC.Rogers coordinatedependence,withapossiblepower-lawfall-off,forthelargeb limit. Thatis,neglecting T perturbativecontributions, 1 F˜(xA,bT;Q2,Q)bT∼→∞ b αe−mbT, (3.1) T with m and α independent of Q. See, for example, Ref. [7]. Therefore, from Eq. (1.2), K˜(b ;Q) T mustapproachab -independentconstantatlargeb . T T Thesetofrequirementsong (b ;b )is K T max 1. K˜(bT;µb )bT=→0K˜(bT;C1/bT)iscalculableentirelyinperturbationtheorywithC1/bTplaying ∗ theroleofahardscale. 2. K˜(b ;Q)approachesaconstantatb /b ∞. TheconstantcanbeQ-dependent, butthe T T max → Q-dependencecanbecalculatedperturbativelyforallb fromEq.(1.3). T 3. Because of item 2, g (b ;b ) must approach a constant at large b , but the constant de- K T max T pendsonb . max 4. At small b , g (b ;b ) is a power series in (b /b )2 with perturbatively calculable T K T max T max coefficients,asinEqs.(2.3,2.4). 5. Bydefinition,therightsideofEq.(1.8)isindependentofb andthisshouldbepreserved max asmuchaspossibleinthefunctionalformthatparametrizesg (b ;b ). Forsmallb ,this K T max T means d d asy g (b ;b ) = asy g (b ;b ) (3.2) K T max K T max db db bT bmax max (cid:12)parametrized bT bmax max (cid:12)truncatedPT (cid:28) (cid:12) (cid:28) (cid:12) (cid:12) (cid:12) where“parametrized”referstoa(cid:12) specificmodelofg (b ;b )while“t(cid:12)runcatedPT”refers K T max to a truncated perturbative expansion. Eqs. (2.3,2.4) satisfy this requirement through order α (µ ). s b ∗ 6. Atlargeb ,b -independenceoftheexactK˜(b ,µ)impliesthat,toausefulapproximation, T max T d dK˜(b ;C /b ) max 1 max g (b =∞;b )= γ (α (C /b )) , (3.3) K T max K s 1 max dlnb dlnb − max (cid:20) max (cid:21)truncatedPT as obtained from Eq. (1.7) and the definition of g . Equation (2.2) ensures that Eq. (2.1) K satisfies Eq. (1.8) so long as everything is calculated only to order α (µ ). Enforcing both s b ∗ Eq.(3.2)andEq.(3.3)simultaneouslymeansg (b ;b )willproduceab independent K T max max contribution to K˜(b ;Q) for all b except perhaps for an intermediate region at the border T T between perturbative and non-perturbative b -dependence. The residual b dependence T max therecanbereducedbycalculatinghigherordersandrefiningknowledgeofnon-perturbative behavior. For a much more detailed discussion of these considerations, see Sect. VII of Ref. [1]. Equa- tion(2.1)isoneofthesimplestmodelsthatsatisfiesall6ofthesepropertiessimultaneously. 5 TMDEvolutionatModerateHardScales TedC.Rogers 4. Conclusion In Sect. 3 we enumerated properties that a model of g (b ;b ) needs tp ensure basic con- K T max sistencyinacalculationK˜(b ;Q). AsimpleparametrizationwasproposedinSect.2. T Note that a quadratic (b /b )2 dependence at small b emerges naturally from (2.1), but T max T with a perturbatively calculable coefficient. Furthermore, the dependence is not exactly quadratic becausethecoefficientscontainlogarithmicb dependencethroughα (µ ). T s b ∗ In a process dominated by very large b , Sect. 3 and Eq. (2.1) predict an especially simple T evolution for the low-Q cross section. Namely, the cross section scales as (Q/Q )a where a is 0 combinationofg (∞,b )andperturbativelycalculablequantities. (SeeEq.(85,86)ofRef.[1].) K max Futurephenomenologicalworkshouldincludeeffortstoconstraing . Becauseofitsstrongly 0 universalnature,thisoffersarelativelysimplewaytotestTMDfactorization. Acknowledgments ThisworkwassupportedbyDOEcontractNo.DE-AC05-06OR23177,underwhichJefferson ScienceAssociates,LLCoperatesJeffersonLab.,andbyDOEgrantNo.DE-SC0013699. References [1] J.CollinsandT.Rogers,“Understandingthelarge-distancebehaviorof transverse-momentum-dependentpartondensitiesandtheCollins-Soperevolutionkernel,”Phys.Rev. D91,no.7,074020(2015)doi:10.1103/PhysRevD.91.074020[arXiv:1412.3820[hep-ph]]. [2] J.Collins,“FoundationsofperturbativeQCD,”(Cambridgemonographsonparticlephysics,nuclear physicsandcosmology.32) [3] T.C.Rogers,“AnOverviewofTransverseMomentumDependentFactorizationandEvolution,” arXiv:1509.04766[hep-ph]. [4] A.V.KonychevandP.M.Nadolsky,“UniversalityoftheCollins-Soper-Stermannonperturbative functioningaugebosonproduction,”Phys.Lett.B633,710(2006) doi:10.1016/j.physletb.2005.12.063[hep-ph/0506225]. [5] P.SunandF.Yuan,“Transversemomentumdependentevolution: Matchingsemi-inclusivedeep inelasticscatteringprocessestoDrell-YanandW/Zbosonproduction,”Phys.Rev.D88,no.11, 114012(2013)doi:10.1103/PhysRevD.88.114012[arXiv:1308.5003[hep-ph]]. [6] C.A.Aidala,B.Field,L.P.GambergandT.C.Rogers,“Limitsontransversemomentumdependent evolutionfromsemi-inclusivedeepinelasticscatteringatmoderateQ,”Phys.Rev.D89,no.9, 094002(2014)doi:10.1103/PhysRevD.89.094002[arXiv:1401.2654[hep-ph]]. [7] P.Schweitzer,M.StrikmanandC.Weiss,“Intrinsictransversemomentumandpartoncorrelations fromdynamicalchiralsymmetrybreaking,”JHEP1301,163(2013)doi:10.1007/JHEP01(2013)163 [arXiv:1210.1267[hep-ph]]. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.