ebook img

Title LMI conditions for robust consensus of uncertain nonlinear multi-agent systems Advisor(s) PDF

150 Pages·2014·2.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Title LMI conditions for robust consensus of uncertain nonlinear multi-agent systems Advisor(s)

LMI conditions for robust consensus of uncertain nonlinear Title multi-agent systems Advisor(s) Chesi, G Author(s) Han, Dongkun; 韓東昆 Citation Issued Date 2014 URL http://hdl.handle.net/10722/206333 The author retains all proprietary rights, (such as patent rights) Rights and the right to use in future works. Abstractofthesisentitled “LMI Conditions for Robust Consensus of Uncertain Nonlinear Multi-agent Systems” Submittedby Dongkun Han forthedegreeofDoctorofPhilosophy at TheUniversityofHong Kong in August2014 Establishingconsensusisakeyprobleminmulti-agentsystems(MASs). Thisthesis proposes a novel methodology based on convex optimization in the form of linear matrix inequalities (LMIs) for establishing consensus in linear and nonlinear MAS inthepresenceofmodeluncertainties,i.e., robustconsensus. Firstly, this thesis investigates robust consensus for uncertain MAS with linear dynamics. Specifically,itissupposedthatthesystemisdescribedbyaweightedad- jacencymatrixwhoseentriesaregenericpolynomialfunctionsofanuncertainvec- torconstrainedinasetdescribedbygenericpolynomialinequalities. Forcontinuous- timedynamics,necessaryandsufficientconditionsareproposedtoensuretherobust first-order consensus and the robust second-order consensus, in both cases of pos- itive and non-positive weighted adjacency matrices. For discrete-time dynamics, necessary and sufficient conditions are provided for robust consensus based on the existence of a Lyapunov function polynomially dependent on the uncertainty. In particular, an upper bound on the degree required for achieving necessity is pro- vided. Furthermore,anecessaryandsufficientconditionisprovidedforrobustcon- sensus with single integrator and nonnegative weighted adjacency matrices based onthezerosofapolynomial. Lastly,itisshownhowtheseconditionscanbeinves- tigatedthroughconvexoptimizationby exploitingLMIs. Secondly,localandglobalconsensusareconsideredinMASwithintrinsicnon- lineardynamicswithrespecttoboundedsolutions,likeequilibriumpoints,periodic orbits, and chaotic orbits. For local consensus, a method is proposed based on the transformation of the original system into an uncertain polytopic system and on theuseofhomogeneouspolynomialLyapunovfunctions(HPLFs). Forglobalcon- sensus, another method is proposed based on the search for a suitable polynomial Lyapunovfunction(PLF).Inaddition,robustlocalconsensusinMASisconsidered with time-varying parametric uncertainties constrained in a polytope. Also, by us- ingHPLFs,anewcriteriaisproposedwheretheoriginalsystemissuitablyapprox- imated by an uncertain polytopic system. Tractable conditions are hence provided in terms of LMIs. Then, the polytopic consensus margin problem is proposed and investigatedviageneralized eigenvalueproblems(GEVPs). Lastly, this thesis investigates robust consensus problem of polynomial nonlin- ear system affected by time-varying uncertainties on topology, i.e., structured un- certain parameters constrained in a bounded-rate polytope. Via partial contraction analysis, novel conditions, both for robust exponential consensus and for robust asymptotical consensus, are proposed by using parameter-dependent contraction matrices. In addition, for polynomial nonlinear system, this paper introduces a new class of contraction matrix, i.e., homogeneous parameter-dependent polyno- mial contraction matrix (HPD-PCM), by which tractable conditions of LMIs are providedviaaffinespaceparametrizations. Furthermore,thevariantratemarginfor robust asymptotical consensus is proposed and investigated via handling general- ized eigenvalueproblems(GEVPs). For each section, a set of representative numerical examples are presented to demonstratetheeffectivenessoftheproposedresults. Anabstract ofexactly473 words LMI Conditions for Robust Consensus of Uncertain Nonlinear Multi-agent Systems by Dongkun Han B.Eng., M.Eng. A thesissubmittedinpartial fulfilmentoftherequirementsfor theDegree ofDoctorofPhilosophy at theUniversityofHongKong Department ofElectrical and ElectronicEngineering TheUniversityofHongKong August2014 Declaration I declare that the thesis and the research work thereof represent my own work, except where due acknowledgement is made, and that it has not been previously included in a thesis, dissertation or report submitted to this University or to any otherinstitutionfor adegree, diplomaorotherqualifications. Signed .................................................... DongkunHan i Acknowledgements Four years experience at the University of Hong Kong has been nothing short of amazing. Since my first day at HKU on August 17th, 2010, I have been given unique opportunities from a number of people without whom this thesis might not havebeen writtenand to whomIamgreatly indebted. First and foremost I wish to give my heartfelt gratitude to my supervisors Dr. Graziano Chesi and Prof. Yeung Sam Hung, for their instruction, guidance and support throughout my Ph. D. study. I am also thankful for the excellent example that Dr. Graziano Chesi has provided as a successful young scientist and will al- ways be a guiding light for my future career. I am indebted to his encouragements when our paper was rejected, his enlightening ideas when my research sank in the mire, his inspiring smile when I made any academic achievement and his all-out recommendationsformyvisitingprogram lastyear. My sincere thanks also go to Prof. Stephen Boyd and Dr. Sanjay Lall, for offering me a position of visiting research student at Stanford University in their groups and leading me to work on diverse interesting areas. I also appreciate the helps and stimulating discussions from Pontus Giselsson, Madeleine Udell, Ernest Ryu and EricChu at InformationSystemsLaboratory,Stanford University. Iamindebtedtomanystudentcolleaguesforprovidingastimulatingandenjoy- ableenvironmentinwhichtoendowandgrow. Particularly,Iamespeciallygrateful toDr. PingLi andDr. Bo Shen fortheirsoundadviceandinsightfulideas. Iwould liketo express my appreciation to other group members including Dr. Fei Mai, Dr. Jian Zhang, Dr. Jiewei Li, Dr. Tiantian Shen, Dr. Xiongbo Zhang and Chuen Kit ii Lukfortheirhelps. I wish to thank Alan Ng, the accommodation manager of HKU, who offered me a position of Honorary Resident Tutor at Pokfield Road Residence during my Ph. D. study. For the fun and jollities, I would like to thank the colleagues of PRR including Ivy Lee, Jie Hing, Dr. Anson Zeng, Dr. Abby Ding, Dylan Zhang and CarlaLung. As long as I am writing names down, I cannot neglect these without whom my lifeinPh. D.pursuitmaynotbealwaysfullofcolourandsunshine. Iamindebtedto YiLong,GuolinNiu,XiongboZhang,ShizhouFu,ChunguoLi,FanSun,Liangyin Zhang, Zhiguang Feng, Fei Wang, Yaxin Hu, Wenchao Hu, Xin He, Qinliang Su and LinfengChen forthehappytimeweshared. Last but certainly not least, my grateful thanks to my beloved family for their endlessloveand boundlesssupport. DongkunHan August2014 CYC807, HKU iii Contents Declaration i Acknowledgements ii TableofContents iv ListofTables vii ListofFigures viii ListofPublications ix ListofAbbreviations xi ListofSymbols xii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Consensusin NetworkswithFixedTopology . . . . . . . . 4 1.2.2 Consensusin NetworkswithChangingTopology . . . . . . 8 1.2.3 Consensusin NetworkswithNonlinearDynamics . . . . . 10 1.3 MathematicalPreliminaries . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 AlgebraicGraph Theory . . . . . . . . . . . . . . . . . . . 13 1.3.2 LyapunovStabilityTheory . . . . . . . . . . . . . . . . . . 14 1.3.3 Square MatrixRepresentation . . . . . . . . . . . . . . . . 18 iv 1.4 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.6 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Robust Consensus forUncertain andLinear Dynamics 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Continuous-timeDynamics . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 First-orderConsensus . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Second-order Consensus . . . . . . . . . . . . . . . . . . . 36 2.4 Discrete-timeDynamics . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1 First-orderConsensus . . . . . . . . . . . . . . . . . . . . 40 2.4.2 Second-order Consensus . . . . . . . . . . . . . . . . . . . 48 2.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.5.1 Example1 . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.5.2 Example2 . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5.3 Example3 . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5.4 Example4 . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3 Consensus forNonlinearDynamics 61 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 ConsensusConditionswithNonlinearDynamics . . . . . . . . . . 63 3.3.1 Local ConsensusConditions . . . . . . . . . . . . . . . . . 63 3.3.2 GlobalConsensusConditions . . . . . . . . . . . . . . . . 68 3.4 Robust LocalConsensuswith Time-varyingUncertainties . . . . . . 72 3.4.1 SystemApproximation . . . . . . . . . . . . . . . . . . . . 73 3.4.2 ConditionsviaUsingHPLF . . . . . . . . . . . . . . . . . 77 3.4.3 PolytopicConsensusMargin . . . . . . . . . . . . . . . . . 81 v 3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Example1 . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Example2 . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.3 Example3 . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.5.4 Example4 . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Robust Consensus forUncertain andNonlinearDynamics 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.1 Basics ofContractionTheory . . . . . . . . . . . . . . . . 92 4.1.2 RobustConsensus Problems . . . . . . . . . . . . . . . . . 95 4.2 Robust ConsensusConditions . . . . . . . . . . . . . . . . . . . . 98 4.3 AnalysisviaHPD-PCM . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Robust ConsensusPerformance . . . . . . . . . . . . . . . . . . . 110 4.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5.1 Example1 . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5.2 Example2 . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5 Conclusions andFuture Works 119 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 FutureWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A Runtime andNumerical Complexity 123 References 124 vi

Description:
robust asymptotical consensus is proposed and investigated via handling .. When the corresponding advances come to the technologies of information which may refer to artificial entities, like computer, robots and electronic remote control of AUVs (autonomous underwater vehicles), networked
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.