ebook img

titanium niobium oxides by changcheng john wang a thesis submitted to the faculty of alfred ... PDF

124 Pages·2014·3.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview titanium niobium oxides by changcheng john wang a thesis submitted to the faculty of alfred ...

TITANIUM NIOBIUM OXIDES BY CHANGCHENG JOHN WANG A THESIS SUBMITTED TO THE FACULTY OF ALFRED UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINEERING ALFRED, NEW YORK JUNE, 2014 Alfred University theses are copyright protected and may be used for education or personal research only. Reproduction or distribution in part or whole is prohibited without written permission from the author. Signature page may be viewed at Scholes Library, New York State College of Ceramics, Alfred University, Alfred, New York. TITANIUM NIOBIUM OXIDES BY CHANGCHENG JOHN WANG B.S. ALFRED UNIVERSITY (2009) SIGNATURE OF AUTHOR APPROVED BY NATHAN MELLOTT, ADVISOR DOREEN D. EDWARDS, ADVISORY COMMITTEE SCOTT MISTURE, ADVISORY COMMITTEE CHAIR, ORAL THESIS DEFENSE ACCEPTED BY DOREEN D. EDWARDS, DEAN KAZUO INAMORI SCHOOL OF ENGINEERING ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Nathan Mellott, for his guidance and advice throughout the graduate studies. His patience and persistence allow me to continuously improve. I would also like to thank my thesis committee members, Dr. Scott Misture and Dr. Doreen Edwards. Their suggestions during the research are greatly appreciated. Several classmates in Dr. Mellott’s lab helped me, including Brian Adams, Anthony Munto and Dimple Pradhan. Mr. Swavek Zdzieszynski and Gerald L. Wynick also provided their assistance in the characterizations. I would also like to thank Terry Guild, Hyojin Lee, Jaime Babcock and NYSCC physical plant, John Rich, Martha Mueller, Pat LaCourse, Catlin Aramburu, Natalie Skwarek and Francesca Maiden. This work is partially funded by US DOE Renewable Energy Labs. iii TABLE OF CONTENTS Page Acknowledgments .................................................................................................... iii Table of Contents ..................................................................................................... iv List of Tables ............................................................................................................ vi List of Figures ......................................................................................................... vii Abstract ..................................................................................................................... x I INTRODUCTION ................................................................................................... 1 A. Motivation and Statement of Objectives ....................................................................... 1 B. Material Systems of Interest .......................................................................................... 1 1. Titanium Dioxides ..............................................................................................................1 2. Niobium Oxides ..................................................................................................................2 3. Titanium Niobium Oxides ..................................................................................................2 C. Sol-gel Processing ......................................................................................................... 3 1. Introduction ........................................................................................................................3 2. Advantages and Disadvantages of Sol-Gel Processing .......................................................5 3. Oxide Systems formed by Sol-Gel Processing ...................................................................5 D. X-Ray Diffraction .......................................................................................................... 6 1. Introduction ........................................................................................................................6 2. Principles ............................................................................................................................7 3. Applications of X-ray Diffraction .......................................................................................7 4. Rietveld Refinement ...........................................................................................................8 5. Quantification ................................................................................................................... 10 6. Limitations ........................................................................................................................ 10 II EXPERIMENTAL METHODS ........................................................................... 12 A. Processing .................................................................................................................... 12 B. Sample Analysis Equipment ........................................................................................ 13 1. DTA/TGA ......................................................................................................................... 13 2. HTXRD ............................................................................................................................ 13 3. MDI Jade and Bruker Topas ............................................................................................. 14 III RESULTS ............................................................................................................... 15 A. 100:0 ............................................................................................................................ 15 iv B. 75:25 ............................................................................................................................ 20 C. 50:50 ............................................................................................................................ 25 D. 25:75 ............................................................................................................................ 31 E. 0:100 ............................................................................................................................ 35 IV DISCUSSION ........................................................................................................ 41 A. Thermal Analysis ......................................................................................................... 41 1. 100:0 ................................................................................................................................. 41 2. 75:25 ................................................................................................................................. 42 3. 50:50 ................................................................................................................................. 42 4. 25:75 ................................................................................................................................. 43 5. 0:100 ................................................................................................................................. 44 B. Ti:Nb Metal Ion Ratio Influence on Phase Assemblage .............................................. 45 C. Crystallization Temperature Influence on Phase Assemblage..................................... 48 D. Phase Transformation Temperatures Influence on Phase Assemblage ....................... 50 E. Phase Diagram Comparison ........................................................................................ 53 V CONCLUSIONS .................................................................................................... 57 VI FUTURE WORK .................................................................................................. 58 REFERENCES ................................................................................................................ 59 APPENDIX ...................................................................................................................... 74 A. Appendix A: XRD Patterns from Rietveld Refinement for 100:0 ............................... 77 B. Appendix B: Numerical Values of Lattice Parameters for 100:0 ................................ 79 C. Appendix C: XRD Patterns from Rietveld Refinement for 75:25 ............................... 84 D. Appendix D: Numerical Values of Lattice Parameters for 75:25 ................................ 86 E. Appendix E: XRD Patterns from Rietveld Refinement for 50:50 ............................... 94 F. Appendix F: Numerical Values of Lattice Parameters for 50:50 ................................ 95 G. Appendix G: XRD Patterns from Rietveld Refinement for 25:75 ............................. 101 H. Appendix H: Numerical Values of Lattice Parameters for 25:75 .............................. 103 I. Appendix I: XRD Patterns from Rietveld Refinement for 0:100 .............................. 109 J. Appendix I: Numerical Values of Lattice Parameters for 0:100 ............................... 110 v LIST OF TABLES Page Table I. Mole Percentage of Each Sample Set ............................................................. 12 Table II. Phase Identification of 100:0 as a Function of Temperature ........................... 17 Table III. Phase Identification of 75:25 as a Function of Temperature ........................... 23 Table IV. Phase Identification of 50:50 as a Function of Temperature ........................... 28 Table V. Phase Identification of 25:75 as a Function of Temperature. .......................... 33 Table VI. Phase Identification of 0:100 as a Function of Temperature ........................... 38 Table VII. Shannon Ionic Radii for Ti4+, Nb4+ and Nb5+ with Coordination Number of 6 ......................................................................................................................... 45 vi LIST OF FIGURES Page Figure 1. Illustration of sol-gel process (after Pierre). ...................................................... 4 Figure 2. Sample preparations for different sample sets. ................................................ 13 Figure 3. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) of 100:0 sample. .................................................................................................. 15 Figure 4. High temperature x-ray diffraction patterns of 100:0 powders from 200ºC to 1100C. ........................................................................................................... 16 Figure 5. High temperature x-ray diffraction patterns of 100:0 powders at 300ºC, 600ºC and 1100ºC (A: TiO2 Anatase, R: TiO2 Rutile). ............................................. 17 Figure 6. Comparison of 100:0 ex-situ (top) vs. in-situ (bottom) XRD patterns. ........... 18 Figure 7. Crystallite size as a function of temperature for 100:0. ................................... 19 Figure 8. Relative phase percentage as a function of temperature for 100:0. ................. 20 Figure 9. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) of 75:25 sample. .................................................................................................. 21 Figure 10. High temperature x-ray diffraction patterns of 75:25 powders from 200°C to 1100°C. ........................................................................................................... 22 Figure 11. High temperature x-ray diffraction patterns of as prepared 75:25 powders at 700ºC, 900ºC and 1100ºC (A: TiO Anatase, R: TiO Rutile, : Ti Nb O , 2 2 2 10 29 ▲: TiNb2O7). .................................................................................................. 23 Figure 12. Crystallite size as a function of temperature for 75:25. ................................... 24 Figure 13. Relative phase percentage as a function of temperature for 75:25. ................. 25 Figure 14. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) of 50:50 sample. .................................................................................................. 26 vii Figure 15. High temperature x-ray diffraction patterns of 50:50 powders from 200ºC to 1100°C. ........................................................................................................... 27 Figure 16. High temperature x-ray diffraction patterns of 50:50 powders at 200ºC, 800ºC and 1100°C (A: TiO2 Anatase, R: TiO2 Rutile, ▲: TiNb2O7). ....................... 28 Figure 17. Crystallite size as a function of temperature for 50:50. ................................... 29 Figure 18. Relative phase percentage as a function of temperature for 50:50. ................ 30 Figure 19. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) of 25:75 sample. .................................................................................................. 31 Figure 20. High temperature x-ray diffraction patterns of 25:75 powders from 200ºC to 1100 °C. .......................................................................................................... 32 Figure 21. High temperature x-ray diffraction patterns of 25:75 powders at 400ºC, 800ºC and 1100°C (: Nb2O5 monoclinic, : Nb2O5 orthorhombic, ▲: TiNb2O7). .. 33 Figure 22. Crystallite size as a function of temperature for 25:75. ................................... 34 Figure 23. Relative phase percentage as a function of temperature for 25:75. ................ 35 Figure 24. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) of 0:100 sample. .................................................................................................. 36 Figure 25. High temperature x-ray diffraction patterns of 0:100 powders from 200ºC to 1100ºC. ............................................................................................................ 37 Figure 26. High temperature x-ray diffraction patterns of 0:100 powders from 400ºC, 700ºC and 1100 °C (: Nb2O5 monoclinic, : Nb2O5 orthorhombic). ............ 38 Figure 27. Crystallite size as a function of temperature for 0:100. ................................... 39 Figure 28. Relative phase percentage as a function of temperature for 0:100. ................ 40 Figure 29. Phase diagram of TiO2-Nb2O5. ........................................................................ 55 Figure 30. Phase assemblage based on Ti:Nb ratio and temperature. .............................. 56 viii Figure 31. Microstrain via Williamson-Hull Plot. ............................................................. 75 Figure 32. Measured, calculated, and difference profiles for various scenarios. ............. 76 ix

Description:
are micro-volts/mg, and the TGA weight loss is measured in percentage. K. Gude, V. M. Gun'ko, and J. P. Blitz, "Adsorption and Photocatalytic .. Characterization of Nanocrystal Grain TiO2 Porous Microspheres," Appl. Catal.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.