ebook img

Tissue Penetration of Antifungal Agents - Clinical Microbiology PDF

21 Pages·2013·2.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tissue Penetration of Antifungal Agents - Clinical Microbiology

Tissue Penetration of Antifungal Agents TimothyFelton,a,bPeterF.Troke,cWilliamW.Hopeb TheUniversityofManchester,AcademicHealthScienceCentre,UniversityHospitalofSouthManchesterNHSFoundationTrust,Manchester,UnitedKingdoma; AntimicrobialPharmacodynamicsandTherapeutics,DepartmentofMolecularandClinicalPharmacology,UniversityofLiverpool,Liverpool,UnitedKingdomb; TheOldCourt,Kingsgate,Kent,UnitedKingdomc SUMMARY...................................................................................................................................................68 INTRODUCTION..............................................................................................................................................68 PENETRATIONOFANTIFUNGALAGENTSINTOTISSUES:CONCEPTS,IMPORTANCE,ANDCURRENTGAPSINKNOWLEDGE ...........................69 ImportanceofTissueConcentrationsforanUnderstandingofAntifungalPharmacodynamics..........................................................69 D DeterminantsofDistributionofAntifungalAgentsintoTissues...........................................................................................69 o LimitationsofCurrentUnderstandingandApproaches...................................................................................................72 w ANTIFUNGALDRUGCONCENTRATIONSINORGANS,TISSUES,ANDBODYFLUIDS.......................................................................72 n BrainandCerebrospinalFluid..............................................................................................................................73 lo Eye.........................................................................................................................................................74 a d Lung.......................................................................................................................................................75 e PulmonaryLymphFluid...................................................................................................................................76 d PleuralFluid................................................................................................................................................76 f r BronchialSecretions.......................................................................................................................................76 o m Saliva,Sputum,BuccalMucosa,andEsophagus...........................................................................................................76 Heart.......................................................................................................................................................76 h Liver........................................................................................................................................................77 tt p Kidney.....................................................................................................................................................77 : Spleen.....................................................................................................................................................77 // c Pancreas...................................................................................................................................................78 m Peritoneum................................................................................................................................................78 r . GenitalSystem.............................................................................................................................................78 a Bone.......................................................................................................................................................78 s m Muscle.....................................................................................................................................................79 . SkinandNails..............................................................................................................................................79 o r UNDERSTANDINGTISSUECONCENTRATIONSFOROPTIMALUSEOFEXISTINGAGENTSANDDEVELOPMENTOFNEWERANTIFUNGALAGENTS....80 g CurrentStateoftheArt....................................................................................................................................80 / o BeyondStateoftheArt....................................................................................................................................80 n ACKNOWLEDGMENTS.......................................................................................................................................80 J REFERENCES.................................................................................................................................................80 a AUTHORBIOS................................................................................................................................................88 n u a r y 1 SUMMARY However,awiderangeofotherfungi,oftenwithlimitedsuscep- 0 , Understanding the tissue penetration of systemically adminis- tibility to first-line antifungal agents, may also cause infection. 2 teredantifungalagentsiscriticalforaproperappreciationoftheir Mortality from IFI remains high (e.g., that from aspergillosis is 0 1 antifungalefficacyinanimalsandhumans.Boththetimecourse (cid:2)50%[3,4],andthatfromcandidemiais10to49%[5,6,7]).An 9 ofanantifungaldruganditsabsoluteconcentrationswithintis- understandingofthepharmacologicalpropertiesofanyantifun- b y sues may differ significantly from those observed in the blood- galagentiscrucialforoptimizingpatientoutcomesforallthese g stream.Inaddition,tissueconcentrationsmustalsobeinterpreted infections(8).Thismaybeespeciallytrueforanincreasinglyrec- u e withinthecontextofthepathogenesisofthevariousinvasivefun- ognizedgroupofpatientswhohavenotpreviouslybeenconsid- s t galinfections,whichdiffersignificantly.Therearemajortechnical eredtobeathighriskofIFI,suchascriticallyillpatientsandthose obstaclestotheestimationofconcentrationsofantifungalagents with chronic obstructive pulmonary disease (COPD), who may invarioustissuesubcompartments,yettheseagents,eventhose demonstratemarkedpharmacokinetic(PK)variability(9,10). withinthesameclass,mayexhibitmarkedlydifferenttissuedis- Penetrationintothesiteofinfectiontoachievemicrobe-elim- tributions.Thisreviewexplorestheseissuesandprovidesasum- inatingconcentrationsisakeyrequirementforefficacyofallan- mary of tissue concentrations of 11 currently licensed systemic timicrobialagents(11,12,13,14,15).Theimportanceoftissue antifungalagents.Italsoexploresthetherapeuticimplicationsof concentrationsforthevariousclassesofantibacterialagentshas theirdistributionatvarioussitesofinfection. been reviewed extensively, but relatively less attention has been INTRODUCTION Despiterecentadvancesinantifungalchemotherapy,invasive AddresscorrespondencetoWilliamW.Hope,[email protected]. fungalinfections(IFI)remainasignificantcauseofmorbid- Copyright©2014,AmericanSocietyforMicrobiology.AllRightsReserved. ityandmortality(1).Candidaspecies,Aspergillusfumigatus,and doi:10.1128/CMR.00046-13 Cryptococcus neoformans are the most common pathogens (2). 68 cmr.asm.org ClinicalMicrobiologyReviews p.68–88 January2014 Volume27 Number1 TissuePenetrationofSystemicAntifungalAgents paidtothecurrentlyavailableantifungalagents(12,16,17,18, 19).Thisreviewexaminesthetissuepenetrationof11commonly used systemic antifungal agents (amphotericin B deoxycholate [AmBd],amphotericinBlipidcomplex[ABLC],liposomalam- photericinB[L-AMB],fluconazole,itraconazole,posaconazole, voriconazole, 5-fluorocytosine [5FC], anidulafungin, caspofun- gin,andmicafungin)intotheclinicallyrelevantcompartmentsfor humaninfectionanddisease.Allhumandata,rangingfromcase studiesthroughautopsiestosmallclinicalstudiesinvolunteersor patients,wereincluded.Wealsoconsideredkeylaboratoryanimal data,whererelevant,especiallyiftherespectiveinformationfor humansisabsent.Becauseonlyfreedrugisconsideredtobebio- logically active (20, 21, 22), tissue and fluid concentrations are placedincontextwiththekeyphysicochemicalpropertiesofeach D agent.Themajororgansystemscoveredincludethelungs,liver, o w kidney,spleen,andheart.Attentionhasalsobeengiventodrug n penetration into sanctuary sites (e.g., brain and eye), with the lo corresponding therapeutic implications. We have also reviewed a d thedataforkeyinterstitialfluids,includingbronchialsecretions, e d epithelialliningfluid(ELF),pleuralfluid,pericardialfluid,syno- f vial fluid, prostatic fluid, and cerebrospinal fluid (CSF), and r o placedthesedatainaclinicalcontext(23). m h t PENETRATIONOFANTIFUNGALAGENTSINTOTISSUES: tp : CONCEPTS,IMPORTANCE,ANDCURRENTGAPSIN // c KNOWLEDGE m r ImportanceofTissueConcentrationsforanUnderstanding .a ofAntifungalPharmacodynamics s m Thepotentialrelevanceofthetissueconcentrationsofanyanti-infec- . o tiveagentmustbeconsideredincontextwiththepathogenesisofthe r g invading fungal organism (24). There must be colocalization of / o “drugandbug”withintissuebedsandtissuesubcompartments. n Suchconsiderationsarerelevantattheleveloftheorganandtissue J a subcompartments but may be elucidated further at the cellular n andevenmolecularlevels(25,26,27,28,29). u a Most agents ultimately exert their effects on microorganisms r y residingwithintissues.However,thedistributionofagentsfrom 1 thebloodstreamtovarioustissuesubcompartmentsisoftenchar- FIG1Potentialdifferencesinplasmaandtissueconcentrations.Theremaybe 0 discordanceinconcentrationsbetweenthesetwocompartments.“Hysteresis” , acterized by considerable variability, beyond that observed in referstodiscordanceintheshapesoftheconcentration-timeprofiles. 2 0 plasmaalone.Consequently,targetsiteconcentrationsoftendif- 1 fermarkedlyfromthosemeasuredinplasma,especiallyinsanc- 9 tuarysitessuchastheeyeorcentralnervoussystem(CNS).Fur- thisreviewaresummarizedinTable1.Thefourmajorclassesof b y thermore, there may be discordance in the shape of the antifungal agents, i.e., the echinocandins, polyenes, pyrimidine g concentration-timeprofilesforplasmaandtissues.Thisphenom- analogues(5FC),andtriazoles,arereviewed.Thesecompounds u e enoniscalledhysteresis(Fig.1)andmayexplainpersistentanti- arealldistinctintermsoftheirchemicalstructure,molecularsize, s t fungalactivitywhenplasmaconcentrationsareloworundetect- lipophilicity,andmetabolism,andthesedifferenceshaveamajor able (e.g., as seen with L-AMB [30], caspofungin [31], and impactupontheirpharmacokineticandpharmacodynamic(PD) itraconazole[76]).Conversely,suboptimaltargetsiteconcentra- characteristics.Furthermore,theremaybesignificantdifferences tionsmaywellexplainsomecasesoftherapeuticfailure(11,13). withinaclass.Forexample,thelipophilicities(expressedaslogD Inaddition,asmostfungalinfectionsareextracellular,interstitial valuesinTable1)ofthefourtriazolesvaryfrom0.5to(cid:3)5.0,and fluid may be the closest measurable compartment to the site of plasma protein binding ranges from 12% to (cid:3)99% (Table 1). infection.However,theimportantcompartmentforprophylaxis Thesephysicochemicalpropertiesdeterminetherateandextent maybedifferent,whichinturnisrelatedtodifferencesinpatho- oftissuepenetrationandbioavailabilitywithinatissue,organ,or genesisandthestageofinfection(Fig.2A)(32,33). fluid (13, 34). Tissue and fluid concentrations for the three tri- azoles(fluconazole,voriconazole,anditraconazole),asmultiples DeterminantsofDistributionofAntifungalAgentsinto ofthoseinbloodorplasma,areshowninFig.3to5toillustrate Tissues this. Theprincipalchemicalandpharmacokineticpropertiesinfluenc- Inverygeneralterms,smallpolarcompoundswithlowplasma ingthetissuedistributionofthe11systemicantifungalagentsin proteinbinding(e.g.,fluconazoleand5FC)havevolumesofdis- January2014 Volume27 Number1 cmr.asm.org 69 Feltonetal. D o w n lo a d e d f r o m h t t p : / / c m r . a s m . o r g / o n J a n u a r y 1 0 , 2 0 1 FIG2Differentstagesofinvasivepulmonaryaspergillosis(IPA)andthepotentialtherapeuticimportanceofdifferenttissuesubcompartments.(A)Inthevery 9 earlieststagesofdisease,therelevantsubcompartmentsincludeepithelialliningfluid,alveolarepithelialcells,pulmonaryendothelialcells,andpulmonary b alveolarmacrophages(PAMs).(B)Intheearlystagesofestablisheddisease,ahalosignmaybeseenthatconsistsofanodule(n)surroundedbyahalo(h),which y iscausedbyactiveinfectionandinflammationaroundthenodule.Inthiscase,therelevantsubcompartmentsarewithinthenoduleandcontiguouslung.(C)In g u latedisease,anaircrescentsignmaybepresent,whichrepresentsanorganizingsequestrum.(Apulmonarysequestrum[s]issurroundedbyanaircrescent[ac].) e Thetherapeuticchallengeinthiscaseistheachievementofantifungaldrugconcentrationswithinarelativelyavasculararea.(Reprintedfromreference262with s permission;imaginganddetailskindlyprovidedbyReginaldGreene.) t tribution that approximate total body water (Table 1), achieve hibit tissue/plasma concentration ratios that exceed 1. Despite betterpenetrationintoaqueoussites(e.g.,CSF,synovialfluid,and this,theymaynotnecessarilypenetratewellintosanctuarysites anterior chamber of the eye), and generally have body fluid/ suchasthebrain,prostate,andeye.Thepolyenes(amphotericin plasma concentration ratios that are (cid:4)1. A compound with an B)andtheechinocandinshavevariabletissuepenetrationbutmay “intermediate”lipophilicity,volumeofdistribution,andplasma alsoexhibitprolongedresidencetimes. proteinbinding(e.g.,voriconazole)isalsopredictedtodistribute Arangeofotherfactorsmayalsohaveasignificantimpactupon intoaqueoussitesbuttoattainrelativelyhighertissueconcentra- tissuepenetration,including(i)pharmacologicfactors,e.g.,route tions than those of fluconazole or 5FC. In contrast, more lipo- ofdrugadministration,suchasaerosolorparenteraltherapy(35), philiccompounds(suchasitraconazoleandposaconazole)have orformulatingdrugswithinlipids,e.g.,amphotericinBcolloidal muchlargervolumesofdistribution(Table1),tendtopenetrate dispersion (ABCD) and L-AMB (36), which may modify their preferentiallyintotissueswithhighlipidcontent,andoftenex- distributionandaltertheirsafety(37,38)andpotency(39);and 70 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents TABLE1Principlephysicochemicalandpharmacokineticpropertiesofantifungaldrugsinhumansthathaveapotentialimpactonplasma concentrationsandtissuepenetration Molwta LogDat %Plasma AUC 0–24 Compound (particlesize[(cid:5)m]) pH7.4 proteinbinding t (h) (mg·h/liter) V b(liters/kg) References 1/2 ss Triazoles Fluconazolec,d 305 0.5 12 24–30 38 0.7 17,18,67 Itraconazolee,f 706 (cid:3)5 99.8 34 8.7–25 11 17,226,227 Posaconazolec 700 2.15 (cid:3)98 20–31 33–39 7–25 228,229 Voriconazolee 349 1.8 58 6 13 4.6 84,230 Polyenes AmBd(conventionalamphotericinB)e 924((cid:6)0.04) (cid:7)2.8 95–99 10–24 1–30 0.5–5 17,144,231–233 ABLC(Abelcet)e 924(1.6–11) (cid:7)2.8 95–99 24 9.5–14(cid:8)7 1.12–8.8 17,144,231,232,234 L-AMB(Ambisome)e 924(0.08) (cid:7)2.8 95–99 6–23 131(cid:8)126 0.11–0.7 17,144,233 D Nucleoside o 5-Fluorocytosinec,d 120 (cid:7)2.34 5 3–5 576,1289g 0.6–2.23 91,179 w n lo Echinocandins a Anidulafunginc 1,140 (cid:7)3.32 84–99 26 110.3 0.8 235,236 d e Caspofungine 1,093 (cid:7)3.88 97 9–11 57–96 0.15 235,236 d Micafunginc 1,291 (cid:7)1.62 (cid:3)99 15–17 29.6(cid:8)4.6 0.24–0.39 182,235 f r o aFromreference18. m bVolumeofdistributionatsteadystate. cDose-proportionalpharmacokinetics. h t dExceptinpatientswithrenalimpairment. tp eConcentration-dependentpharmacokinetics. : / fDatafromoralsolutionandi.v.formulationincyclodextrin. /c gValuesfororalandi.v.formulations,respectively. m r . a s m (ii) physiological factors, such as inflammation, which may in- modification of plasma protein composition and hence drug . creasetissuepermeability,i.e.,bydisruptionofnormalphysiolog- binding(42,43,44);therecruitmentofdrug-containingphago- o r g icalbarrierssuchastheblood-brainbarrier(29,40);theunderly- cytic cells, i.e., the “dump truck phenomenon,” which may in- / ingdisease(41),whichmayresultinarangeofeffects,including creasedrugconcentrationsatthesiteofinfection(12,13,32,45, o n 46);drugexportviapumps,e.g.,foritraconazoleandP-glycopro- J a n u a r y 1 0 , 2 0 1 9 b y g u e s t FIG4Voriconazoletissueandfluidconcentrationsinhumansasmultiplesof FIG3Fluconazoletissueandfluidconcentrationsinhumansasmultiplesof themaximalorsimultaneouslymeasuredconcentrationinplasma((cid:5)g/ml) themaximalorsimultaneouslymeasuredconcentrationinplasma((cid:5)g/ml) aftersystemicadministration.Tissuemultiplesarefrom(cid:5)g/gtissuevalues. aftersystemicadministration.Tissuemultiplesarefrom(cid:5)g/gtissuevalues. Fluidmultiplesarefrom(cid:5)g/mlconcentrations.*,autopsydata;inthesecases, Fluidmultiplesarefrom(cid:5)g/mlconcentrations.Numbersinparenthesesindi- themultiplesarebasedonplasmaC valuesatthesamedoseinvolunteers max caterelevantreferences. (188). January2014 Volume27 Number1 cmr.asm.org 71 Feltonetal. D o w n lo FIG6Crosssectionofthebrainofamousewithcryptococcalmeningoen- a cephalitis.Theorganismwasstainedwithanantibodydirectedtowardthecryp- d e tococcalcapsule.Thediseaseismultifocal.Attemptstousewhole-brainhomoge- d FIG5Itraconazoletissueandfluidconcentrationsinhumansasmultiplesof natestoestimatedrugconcentrationsatthesiteofinfectionmaybemisleading. tahfteermsayxstimemalicoardsmiminuilsttarnaetioouns.lyTimsseuaesumreudlticpolnesceanrterafrtioomni(cid:5)ngp/glatsimssaue((cid:5)vagl/umels). (ARmeperriicnate[dtafkreonmbryefJeurleienScech2w63arbtzy,pCehrmarilsessioRnivoefrtLhaebIonrfaetcotrioieuss].D)iseasesSocietyof from Fluidmultiplesarefrom(cid:5)g/mlconcentrations. h t t p icallyusefulformatisalsoproblematic.Oneofthemostcommon : / / tein (75); variable oral bioavailability, e.g., of itraconazole (47) presentationmethodsistousearatiotoplasmaconcentration, c m andposaconazole(228);andinterpatientvariabilityinclearance, whichmaybeflawedforanumberofreasons.Thisratioisdepen- r e.g.,ofvoriconazole(48). dentonboththedenominatorandthenumerator,e.g.,thebone .a s tissue/plasmaconcentrationratioforABLCinrabbitsis42,while m LimitationsofCurrentUnderstandingandApproaches thecorrespondingratioforL-AMBis0.66,suggestingthatABLC . o Consideringtissueconcentrationsinisolationisoflimitedvalue. penetratesbonemoreeffectivelythanL-AMB.However,theac- r g Adrugmaybepresentatasitebutataconcentrationbeneaththe tualamphotericinconcentrationsachievedwiththetwolipidfor- / thresholdrequiredforactivity,locatedinthewrongsubcompart- mulationsinbonearesimilar(35.4(cid:5)g/gand39.5(cid:5)g/gforABLC on ment,ornotbiologicallyavailable.Ideally,therefore,tissuecon- and L-AMB, respectively) and, in both cases, superior to that J a centrations should be analyzed with concomitant pharmacody- achievedwithAmBd(19).Comparisonofconcentrationstakenat n namic data. Examples of this problem include AmBd and asingletimepointisalsoliabletoinduceerrorsbecauseofhys- u a itraconazole, which have low concentrations in the CSF yet are teresis (Fig. 1), with a delay occurring as drug moves from the r y effectiveagentsfortreatmentofcryptococcalmeningitis(49,50). vasculartothetissuecompartment(55).Forthisreason,itmaybe 1 Tissuehomogenatesarefrequentlyusedtoestimatetissuecon- moreusefultopresentthetissueareaundertheconcentration- 0 , centrations, but they are a relatively crude and potentially mis- timecurve(AUC)forcomparison.Therearefewstudiesthatdo 2 0 leading matrix when used for this purpose. Mouton and col- thisforhumans(56,57,58,59,60,61,62),andwithoneexception 1 leagues (51) highlighted the potential pitfalls in using drug (59),alldealwithpulmonarydistribution. 9 concentrations within whole-tissue homogenates for drawing Mostoftheantifungalagentsconsideredinthisreviewdoex- b y conclusionsrelatedtotheactivityandefficacyofadrug,especially hibithysteresis.Thispersistenceoftissueconcentrationsmayex- g forextracellularpathogens.Thismaybeaparticularissueforam- plain why, in specific situations, linking the tissue pharmacoki- u e photericin B (irrespective of formulation), where there is long- netic data with pharmacodynamic data produces a significantly s t standinguncertaintyrelatedtotheamountofbiologicallyavail- morerobustPK/PDmodelthanusingplasmaPKdataalone(31, abledrugintissues.Thepotentialreasonsthattissuehomogenates 63).ThetechniqueofcomodelingbothPKandPDdatamayalso mayprovideinaccurateinformationregardingthe“true”concen- produceamoreinsightfulreflectionoftheimpactoftissuecon- tration at the site of infection include (i) discordance between centrationthanthesimplisticcomparisonofpeaktissueconcen- intra- and extracellular drug concentrations versus where the trationwiththebreakpointMIC(64). pathogenisactuallylocated,e.g.,forposaconazole(33);(ii)mul- tifocalversusdiffusedisease,resultinginaltereddrugpenetration ANTIFUNGALDRUGCONCENTRATIONSINORGANS, atthesiteofinfectioncomparedwiththenormalcontiguoustis- TISSUES,ANDBODYFLUIDS sue, e.g., pulmonary aspergilloma (257) or cerebral cryptococ- ThepapersinthisreviewwerepublishedbetweenJanuary1965 coma(Fig.6);(iii)theconcentrationoftotalversusbiologically andDecember2012.Inevitably,theyuseddifferingdrugdosagesand active drug, e.g., free amphotericin B versus drug that remains formulations,withdifferentroutesofsystemicadministrationanda complexedtolipid(29,52,53,54);and(iv)incompleteextraction rangeofdrug extraction and assay methods (e.g., bioassay, gas- ofdrugfromtissue,e.g.,foramphotericinB(29,52,53,54). liquid chromatography, high-pressure liquid chromatography, Reportingtissueconcentrationsofanti-infectivedrugsinaclin- 14C-autoradiography,and18F-nuclearmagneticresonance[18F- 72 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents D o w n lo a d e d f r o m h t t p : FIG7Concentrationsintissuesandbodyfluidsforeachsystemicantifungalagentrelativetoitsconcentrationinplasma.X,humandata;O,animaldata.Colors // illustratedifferingratios;multiplecolorswithinacolumngivetherangeofpublisheddata.Red,frombelowlevelofdetectionto(cid:2)0.5timestheplasma cm concentration;yellow,from(cid:3)0.5timesto(cid:2)5timestheplasmaconcentration;green,(cid:3)5timestheplasmaconcentration;white,nodata.(cid:2),pleuralfluid,buccal r mucosa,orpancreaticpseudocyst;opendiamond,basedonautopsydataandhumanpharmacokinetics;(cid:9),woundfluid;o2,onlydetectedininflamedeyes;o3, .a bronchialsecretions;x3,belowlevelofdetectioninbronchialsecretions;o4,pulmonarylymph;x5,bronchialbiopsyspecimen. s m . o r g NMR]).Thedatawerealsopotentiallyinfluencedbytheunderly- plasma,withsomeminorregionalvariation(71).However,infive / o ing disease of the host. Consequently, we only used data where surgicalpatients,fluconazolebraintissue/plasmaconcentrationra- n bothplasmaandtissueconcentrationswerereportedwithinthe tiosof0.7to2.4weremeasuredwhenthefluconazoleplasmacon- J a samestudy(exceptforsomepostmortemstudiesinwhichtissue centrationswereat90%ofsteady-statevalues(72).Fluconazoleisa n u concentrationsalonewerereported). recognizedtherapyforcryptococcalandCandidameningoenceph- a Mosthumandataarefromhealthyadultvolunteersand/ora alitis. ry fewpatients,andtheirapplicabilitytoyoungchildrenorneonates Incontrast,itraconazoleconcentrationsinhumanCSFarevery 1 0 requiresfurtherstudy(65).Informationismostcomprehensive low,withCSF/plasmaconcentrationratiosof(cid:6)0.002to0.12(Fig. , fortheoldertriazoles(fluconazoleanditraconazole),whileboth 5and7)(73,74).Itraconazolepenetratesthebrainsofratsrapidly, 20 humanandanimaldatafortheneweragents(posaconazoleand andinadose-dependentmanner,upto8minafterdrugadmin- 1 thethreeechinocandins)aremorelimited.HumandataforAmBd 9 istration(25).However,tissueconcentrationsarelessthanthose b (discoveredinthe1950s)and5FC(discoveredinthe1970s)are intheplasma(ratioof0.2at60minpostdose)andsubsequently y alsosurprisinglysparse. g declinemorerapidly(half-lifeof0.4h)thanthoseineitherthe u Despite the caveats discussed in the introduction, the pub- plasmaorlivertissue(half-lifeof5h)(25).Thiseffecthasbeen e lisheddataareexpressedastissueorbodyfluid/plasmaorblood s ascribedtoitsactiveeffluxfromthebrainviaP-glycoprotein(Fig. t concentrationratios.TheyaresummarizedinFig.7asthreedif- 6). Studies in mice by Imbert and colleagues (75) confirm the ferently colored ratio bands. The colors in the figure illustrate impact of P-glycoprotein on itraconazole efflux from the brain differingdrugconcentrationratiobandsbutdonotimplydiffer- butalsoindicatethatintracerebralinfectionwithC.neoformans encesinefficacywithinvarioustissuesorbetweendrugs. increases itraconazole exposure in the brain 2.6-fold compared BrainandCerebrospinalFluid withthatinuninfectedanimals.However,inanotherratstudy, ThebrainandCSFaresanctuarysites,astheyaresurroundedby uninfectedanimalsgivenasingleintravenousdoseofitraconazole lipidmembraneswithinward-andoutward-facingtransporters (10mg/kgofbodyweight)hada(mean)braintissueconcentra- (66).Datafromhumanstudiessuggestthatfluconazoleconcen- tionthatwas1.7timestheconcentrationinplasmaat1hpost- trations in CSF are dose dependent and vary between 50% and dose,increasingto21timesat24hpostdose,asthebrainconcen- 100%oftheconcentrationobservedintheplasma(67,68,69,70) tration increased further, while the plasma concentration (Fig. 3 and 7). Fluconazole is also readily detectable in human decreased(76).NoitraconazoleisdetectableintheCSFofrabbits brain parenchyma. Studies with 18F-fluconazole in volunteers treatedwithoralitraconazoleforcryptococcalmeningitis.Never- showedbraintissueconcentrationsthatweresimilartothosein theless, itraconazole achieves an efficacy comparable to that of January2014 Volume27 Number1 cmr.asm.org 73 Feltonetal. fluconazoleinthismodel,eventhoughfluconazoleisreadilyde- from0.002to0.54,whileinthebraintissueofanotherpatient,the tectableinrabbitCSF,withaCSF/plasmaconcentrationratioof tissue/plasmaconcentrationratiowasonly0.17(106,107,252).Mi- 0.6to0.8(77).Itraconazolealsoexhibitsefficacyinhumancryp- cafunginpenetrationintorabbitbrainsisdosedependent,andsignif- tococcosis, suggesting that it does penetrate the meninges and icantlyhigherconcentrationsaremeasurableinthemeningesthanin cerebralparenchymaandachievestheconcentrationsrequiredfor eitherthecerebrumorcerebellum(108).However,theconcentra- antifungalactivity(50,78). tionsinthesevarioussubcompartmentsarealsosufficienttoachieve Voriconazole has a lipophilicity that is intermediate between asignificantanti-Candidaeffect.Animalmodelssuggestequiva- those of fluconazole and itraconazole (Table 1). Voriconazole lentefficaciesbetweentheechinocandinsandamphotericinBfor- penetrateshumanbraintissue(79,80)andabscessmaterial(81), mulations. The clinical value of the echinocandins for various achievingpeakconcentrationssimilartoorevenexceedingthose fungalCNSinfectionsremainstobeestablished(18). seeninplasma(Fig.4and7)(243).However,humanCSFcon- centrations of voriconazole tend to be lower, with CSF/plasma Eye concentrationratiosof0.22to1.0(81,82,83).Thisisconsistent Endogenousfungalendophthalmitis,mostcommonlycausedby withitsintermediateplasmaproteinbindinginhumansof58% CandidaorAspergillusspp.,arisesfromhematogenousdissemi- D (84). Voriconazole is the agent of choice for CNS aspergillosis nation(109).Arangeofsyndromesareseen,includingchorioretini- o w (243). Posaconazole, which resembles itraconazole structurally tis, vitritis, and pan-endophthalmitis. Successful therapy requires n butislesslipophilic(Table1),alsopenetratestheCSFrelatively penetrationofdrugintotherelevantsubcompartment(s)oftheeye, lo poorly (85), with CSF/plasma concentration ratios of (cid:6)0.009 i.e.,thechoroid,retina,vitreoushumor,andaqueoushumor(16). a d (86). Its diffusion into the CSF may be increased by meningeal Formanyantifungalagents,suboptimalpenetrationcanmeanthat e d inflammation.Thus,CSFconcentrationsintwopatientswithbac- medicaltherapyaloneisineffective,andsuccessfultreatmentmay f terial meningitis and cerebral fungal infection were 44% and requirevitrectomyand/orintracameralinjection(Fig.7). r o 230%,respectively,ofthoseinplasma(87).Inmiceinfectedwith Early human and animal data for azoles, polyenes, and 5FC m Cryptococcus gattii or Fonsecaea monophora, a bioassay revealed havebeenwellsummarizedelsewhere(16).Fluconazole(110,111, h t that brain tissue concentrations of posaconazole were approxi- 112),voriconazole(113,114,252),and5FC(115,116)aredetect- t p mately53%ofthoseinserumatdailydosesof(cid:2)20mg/kgbut ableinboththeaqueousandvitreoushumorsofanimaland/or :/ / increasedto70%to80%atadailydoseof40mg/kg(88,89). humaneyes,withandwithoutendophthalmitis,atconcentrations c m Postmortem studies of humans show that amphotericin B is approximately 40% to 100% of those observed in serum. Al- r . detectable,butonlyatlowconcentrations,inthebraintissueof thoughtheuseof5FCisnowuncommon,bothtriazolesareem- a s patientsreceivingAmBdandL-AMB(52,53,90).AmphotericinB ployedquiteextensivelyfortreatingfungalophthalmicinfections m concentrations in the CSF are also low after administration of inhumans(109,117).Thevisualadverseeventsexperiencedby . o intravenousAmBd(91).SimilarCSFandbraindataforAmBd, some patients receiving systemic voriconazole are related to r g L-AMB,andABLC(i.e.,CSFandtissue/plasmaconcentrationra- plasmaexposure(258)butnotyettoretinalconcentrationsperse. / o tiosof(cid:6)0.3)havebeenrecordedforrabbits(92).Incontrasttothe Theseadverseevents,whichhavebeenascribedtoinhibitionof n casewithposaconazole,inflammationdoesnotseemtoincrease theBwaveof“ON”bipolarcellsintheretina(118),donotappear J a theconcentrationofanyamphotericinformulationinthebrain, toresultinlong-termadverseeffectsortoxicity(119). n atleastinanimals(40,92).Toovercomethesepotentiallimita- Penetrationofitraconazoleintotheeyesofrabbitsafterasingle u a tions,intraventricularinstillationofAmBdviaanOmmyareser- oraldoseisminimal(120).Nodrugisdetectable(usingbioassay) r y voirhasbeenusedforseverecerebralinfections(93,94,95). intheaqueousorvitreousofuninflamedeyes,withonly0.3(cid:5)g/ml 1 The concentrations of 5FC in human CSF are similar to its observed in the cornea, despite plasma concentrations of more 0 , correspondingserumconcentrations(91,96,250),andacombi- than10timesthisvalue.Withinflamedeyes,concentrationsinthe 2 0 nation of 5FC with AmBd or L-AMB is a recognized first-line aqueousandvitreousarestill4-and10-foldlower,respectively, 1 inductiontherapyforcryptococcalmeningitis(97). than those in the plasma, while in the cornea they are low and 9 The three echinocandins, i.e., caspofungin, micafungin, and unchangedrelativetothoseinuninflamedeyes.Despitethesere- b y anidulafungin, are large, amphipathic, cyclic peptides—proper- sults,itraconazoleisasefficaciousasketoconazoleandflucona- g ties that do not ordinarily favor penetration into the brain and zoleagainstCandidaalbicansendophthalmitisinvivowhenther- u e CSF(98,99).Therearenohumandataforanidulafungin.How- apyisinitiatedwithin24hofinfection(120).Similarly,asingle s t ever, its concentration in rabbit brains after multiple dosing is patientwithC.albicansendophthalmitiswastreatedsuccessfully onlyabout10%ofthemaximumconcentrationofdruginserum with200mg/dayofitraconazole(capsules)andtwovitrectomies (C )(100,101).Deliveryof14C-anidulafungin(astotaldrug- (121).Thiswasdespiteconcentrationsintheaqueousandvitre- max derivedradioactivity)intothebrainsofratsisdelayedcompared oushumorsthatwereundetectableand0.02(cid:5)g/ml,respectively, tothatintothebloodandothertissues,anditisnotdetectablein whileplasmaconcentrationswereapproximately0.5(cid:5)g/ml.Hey- braintissueuntil24hafterasingledose(102).Incontrast,CSF kants and colleagues (122) have also reported that itraconazole concentrationsaresimilartothoseinthebloodwithin30minof concentrationsinhumanaqueousareusuallyonly1to2ng/ml. dosing (102). The administration of caspofungin to rodents re- Thereareminimaldataforposaconazole,butthesesuggestthat sultsinbraintissueconcentrationsandexposuresthatareapprox- it does penetrate into the inflamed eye. In a single patient with imately10%ofthoseinplasma(103,104).Inasinglepatientwith Fusarium solani keratitis and ophthalmitis, receiving 200 mg CNS coccidioidomycosis, CSF concentrations of caspofungin orally (p.o.) four times daily plus topical instillation of the oral wereundetectable,despiteconcentrationsinplasmaof2.7to5.5 solution, the aqueous and vitreous/plasma concentration ratios (cid:5)g/ml (105). Similarly, the CSF/plasma concentration ratios of were0.6and0.21,respectively,andtherapywassuccessful(244). threepatientsreceivingmicafunginwerelowandvariable,ranging Two patients, with rhinofacial and orbital zygomycoses, each 74 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents received0.6mg/kgintravenous(i.v.)AmBd(123).Penetrationof conazolewas7(139),whileHeykantsandcolleagues(73)reported AmBdintoboththeaqueousandvitreousoftheinfectedeyewas concentrations0.9to2.4timeshigherthanthoseintheplasmasof higherinthepatientwithrhinofacialdiseaseandextensiveretinal fourpatients.However,itraconazoleconcentrationsinbronchoal- inflammation(fluid/serumconcentrationratioof0.4)thaninthe veolarlavage(BAL)fluidandairwaytissuewere10-foldlowerthan secondpatient,whohadminimalretinalinflammation(ratioof thoseinplasmainapatientwithallergicbronchopulmonaryasper- 0.06).PenetrationofallformulationsofamphotericinBintothe gillosis(ABPA)(140).Itraconazolehasbeenusedextensivelytotreat eyesofrabbitsisalsoenhancedbyinflammation(124,125,249). pulmonaryfungalinfections. Indeed,amphotericinBisnotdetectedinnoninflamedeyes,even Postmortemstudiesshowlungtissuehomogenateconcentra- aftermultipledosingofAmBd,ABLC,orL-AMB(16,124,125). tionsforvoriconazolethatarecomparablewiththeplasmacon- Consequently,intracameralinjectionisthefavoreddeliveryroute centrations(80,141).Involunteersreceivingani.v.loadingdose for these agents in patients with severe keratomycosis or endo- onday1andthen200mgofvoriconazolep.o.twiceaday(b.i.d.), phthalmitis. For AmBd, this may lead to significant local toxicity, the ELF/plasma concentration ratio was 11 (142). However, in whichissomewhatamelioratedbylipidformulations(109). volunteersreceivingthesamei.v.loadingdoseonday1,butfol- Allthreeechinocandinsalsoshowlimitedpenetrationintothe lowedbythreedosesof4mg/kgi.v.every12h(q12h),theELF/ D aqueousandvitreoushumorsoflaboratoryanimalsaftersystemic plasmaconcentrationratioatsteadystatevariedover12hfrom o w administration, with either undetectable or low concentrations approximately 6 to 9, while for alveolar macrophages the ratio n relativetothoseinplasma(100,108,109,126,127,128).However, variedfromapproximately3.8to6.5(58).Posaconazoleexhibits lo micafunginconcentrationsspecificallyintheretinaandchoroid ELFconcentrationsinhumanssimilartothoseseenintheplasma, a d of the eyes of rabbits range from 0.75 to 15.97 (cid:5)g/ml and are buttheexposureinalveolarcellsisover30timesthatinplasmain e d comparablewiththeconcentrationsinplasma(129).Aswitham- both volunteers (57) and lung transplant patients (143). It has f photericinB,inflammationappearstoimprovetheextentofechi- been suggested that high intracellular posaconazole concentra- r o nocandin penetration (127). Potentially subtherapeutic vitreal tionsmayexplainitseffectivenessforprophylaxis(Fig.2A)(33). m penetration of caspofungin has been associated with treatment Meanlungtissueconcentrationsofposaconazoleinrabbitshave h failureinCandidaalbicansendophthalmitis(130),andlowcon- beenreportedtorangefrom0.3(cid:5)g/mlto2.1(cid:5)g/mlafterdosingat tt p centrationsofcaspofunginweremeasuredintheaqueousofone 2to6mg/kg(145). :/ / humanendophthalmitispatient(113).Similarly,lowmicafungin TheadministrationofallformulationsofamphotericinBre- c m concentrationsintheaqueousandvitreousofaC.albicansendo- sultsinquantifiableconcentrationsintheELFinbothrabbitsand r . phthalmitispatient(0.001%ofthesimultaneousconcentrationin humans,buttheplasma/ELFconcentrationratiosappeartodiffer a s plasma)wereassociatedwithclinicalfailure(131),andthedrug betweenformulationsandspecies.Theprecisestateoftheampho- m wasalsoineffectiveinapatientwithendophthalmitiscausedby tericin in these studies is not clear (i.e., free, protein bound, or . o Candidatropicalis,despitesevereinflammationandaMICof0.03 lipidassociated).Furthermore,thebiologicalrelevanceoftheto- r g (cid:5)g/ml(132). tal concentrations associated with each formulation is also un- / o clear. Human data for the various amphotericin formulations n Lung suggestthattheremaybesomedifferencescomparedwithrabbits J a Pulmonaryinfectionbeginswithintheairspace(Fig.2A).There- (146,147).Thus,intravenousABLCproducesELFamphotericin n fore,fortheagentsusedforprophylaxisortreatmentofinfection Bconcentrationsthatareapproximately4timesthoseproduced u a confinedtotheairspace,concentrationsinepithelialliningfluid afteradministrationofL-AMBinhumans(147).In18patients r y (ELF)andwithinpulmonaryalveolarmacrophagesareofdirect undergoingthoracotomyandresectionforlungcancer,asingle 1 importance.TheinhalationofaerosolizedamphotericinBformu- doseof1.5mg/kgi.v.ofL-AMBresultedinhysteresis,suchthat 0 , lationsisapotentialoptionforprophylaxis(133,134,135).Anti- tissue/plasmaconcentrationratioswere0.29and2.5at10and25 2 0 fungaldrugconcentrationswithinELFafteraerosolinhalationor hpostdose,respectively(248).Inapostmortemstudy,lungtissue 1 systemic administration were recently reviewed (12). However, homogenateconcentrationswerefoundtobe3timeshigherwith 9 fortreatmentofestablishedinvasiveinfections,drugconcentra- asimilardoseofABLCthanwithL-AMB(90).Similarly,ABLC b y tionsinthelungparenchymamaybemorerelevant(Fig.2Band concentrations in mouse lung homogenates exceeded those for g C).Drugconcentrationsmayalsobemeasurableinanumberof equivalentdosesofL-AMB(39).Pulmonaryinflammationmay u e otherrespiratoryfluids,includingbronchialsecretions,sputum, increase amphotericin concentrations following administration s t pleuralfluid,andpulmonarylymph(seebelowandFig.7). ofL-AMB(148).TheamphotericinBformulationsremainfirst- Humanstudiessuggestthat18F-fluconazoledistributesrapidly lineagentsforthetherapyofpulmonaryfungalinfections. intothelungtissueofvolunteers,producingconcentrationsap- Therearenopublisheddataforechinocandinconcentrations proximatelydoublethoseinplasma(71).In20patientsreceiving withinhumanlungtissue.However,theconcentrationsofcaspo- asingle200-mgdoseoffluconazole,thelungtissue/plasmacon- fungininalveolarmacrophageswere(cid:3)5timesthecorresponding centrationratiorangewas1.1to1.6(136).Similarly,theflucona- concentrationsinplasmainasinglepatient(149).Bothanidula- zole ELF/plasma concentration ratio in cats was 1.2 (137). Flu- funginandmicafunginalsoaccumulatedinthealveolarmacro- conazolealsoreadilypenetratestheextracellularspaceoftherat phagesofvolunteers,attainingconcentrationsapproximately14 lung(fluid/plasmaconcentrationratioof1.38),andthisisunaf- and4timeshigherthanthoseinplasma,respectively(58,62).In fected by inflammation (138). Itraconazole exhibits ELF expo- 18lungtransplantpatientsreceivingasingle150-mgi.v.micafun- suresthatareone-thirdoftheplasmaAUCinhumanvolunteers, gindose,ELF/plasmaandalveolarcell/plasmaconcentrationra- while the AUC in alveolar cells is more than double that of the tios varied with time postdose. Mean ratios ranged from 0.1 to plasma(56).Inpostmortemsamplesfromfourhematologypa- 1.53 at 3 h and from 1.1 to 6.2 at 24 h postdose (62). The vast tients, the mean lung tissue/plasma concentration ratio of itra- majority of anidulafungin and micafungin found in the ELF is January2014 Volume27 Number1 cmr.asm.org 75 Feltonetal. presentwithinmacrophagesratherthaninthefluiditself(58,61, (67,157,158)anditraconazole(73,159)havebothbeendetected 62).Caspofungin,micafungin,andanidulafunginexhibitlungtis- inthesalivaandsputumofpatients(Fig.7).Consistentwiththeir sueexposuresinrodentsthatexceedthoseinplasmaby1.1-fold, physicochemicalproperties(Table1),theconcentrationratiosfor 2.8-fold,and10-fold,respectively(102,103,150). fluconazoleinsalivaandsputumcomparedwithserumare(cid:4)1, whileforitraconazoletheyaregenerallymuchlower(73)andvery PulmonaryLymphFluid variable (159). Itraconazole can also be detected in esophageal Therearenohumandataforantifungaldrugconcentrationsin tissue,at3timestheconcentrationinplasma(160),andinbron- pulmonarylymph,butHoeprichandcolleagues(151)examined chialexudates(73).However,clinicaldatasuggestthatflucona- theconcentrationsof5FCandAmBdinsheepcannulatedviathe zole is superior to itraconazole for treating oropharyngeal and afferentductoftherightcaudalmediastinallymphnode.Alldrugs esophagealcandidiasis(161,162).Voriconazoleispresentinthe tested (also including ketoconazole, the triazole Bay n733, and salivaofvolunteers,andconcentrationsincreaseovertime,using AmBdmethylester[AME])appearedpromptlyinthelymphafter astandarddose.Thus,salivaryexposureonday1isapproximately asingleintravenousdose,withtheirconcentrationssubsequently 25%ofthatinplasmaandincreasesto88%ofthatinplasmawith decayingexponentially.Ingeneral,theconcentrationsofallfive multipledosing(163).Fluconazoleandvoriconazoleshowcom- D drugs in lymph slightly exceeded those in plasma measured parableefficaciesinimmunocompromisedpatientswithesopha- o w shortly after the end of the 30-min infusion period (maximum gealcandidiasis(164).Whiletherearenopublisheddataforpo- n ratioforlymphtoplasmaof1.0to1.9),exceptforAME,where saconazole concentrations in saliva, sputum, or mucosal and lo lymphatic concentrations were lower. Koizumi and colleagues esophagealtissues,thisdrugisaseffectiveasfluconazoleintreat- a d (152) also examined AmBd concentrations in sheep lung and ingHIVpatientswithoropharyngealcandidiasis(165). e d lymphafterani.v.infusion.Theconcentrationsinthelymphwere BuccalmucosalconcentrationsofamphotericinBincreaseina f similarto(orslightlyexceeded)thoseintheplasma,dependingon dose-dependentmannerinhumansafterL-AMBadministration r o thedurationoftheinfusion.Giventherangeoflipophilicitiesand and attain concentrations approximately 7 to 43 times those in m plasmaproteinbindingoftheaboveantifungalagents,theseproper- plasma (166). A wide range of amphotericin B concentrations h t tiesdonotseemtohaveasignificantimpactonpenetrationintothe were also detectable in esophageal autopsy samples from seven t p lymphaticsystem,atleastfollowingintravenousadministration. patientsafterAmBdadministration(54). :/ / Theconcentrationsof5FCinhumansalivaareslightlylower c m PleuralFluid thanthoseintheplasma,butthe5FCconcentrationsmeasuredin r . Dataonantifungaldrugpleuralfluidconcentrationsarelimited thebronchialsecretionsofdogsarecomparabletoserumconcen- a s (Fig.7).Voriconazolepenetratesintothepleuralfluid,producing trations(91). m troughconcentrationsinhumansthataresimilartopairedplasma Therearenohumanorlaboratoryanimaldatagivingthecon- . o concentrations (153, 154). For AmBd, pleural fluid concentra- centrationsofcaspofunginormicafunginatthesesites.Anidula- r g tionsareapproximately50%ofthoseinplasma(91,247).How- funginispresentinboththesalivaandesophagusinrabbitswith / o ever,pleuralfluidamphotericinconcentrationsfollowingthead- oropharyngealandesophagealcandidiasis,butonlyatconcentra- n ministrationofL-AMBorABCDareapproximately5%to25%of tionsbetween1%and33%ofthoseinplasma(167).However,all J a theirplasmaexposures(60,155).Penetrationoftheechinocan- threeechinocandinsshowefficacyattheendoftherapyequivalent n dinsintopleuralfluidappearstobelow.Thus,foranidulafungin tothatoffluconazoleafterintravenousadministrationtopatients u a inonepatientwithCandidaempyemaandforthreemicafungin withAIDSandoropharyngealoresophagealcandidiasis(168,169, r y patients,pleuralfluidconcentrationswerelessthan1%and10%, 170).Therearenodatatoindicatewhetheranyefficacydiffer- 1 respectively,ofthosemeasuredintheplasma(107,251). encesbetweenfluconazoleandtheechinocandinsseenonlon- 0 , ger-termfollow-upofthesepatientsarerelatedtoresidualtis- 2 BronchialSecretions sueconcentrations. 01 Watkinsandcolleagues(140)demonstrated,foronepatient,that 9 itraconazoleaccumulatestoapproximatelytwicetheplasmacon- Heart b y centrationinbronchialbiopsytissueandisalsodetectable(atonly Fluconazoleandvoriconazoleconcentrationsinhumanhearttis- g ng/ml concentrations) in BAL fluid and bronchial washings. suearecomparabletothoseinplasma,basedon18F-NMRstudies u e However,noallowancewasmadeforthesignificantdilutionfac- inhealthyvolunteersandautopsydata,respectively(71,80).The s t torinvolvedwiththeirsamplingmethods.Theyconcludedthat pericardialfluid/plasmaconcentrationratiosoffluconazolein20 itraconazoleispresentin“relativelyhigh”concentrationsinpul- patientsrangedfrom0.9to1.0(136).Datafromasinglepatient monary fluids and tissues. In contrast, amphotericin B was de- withdisseminatedaspergillosisalsosuggestthatvoriconazoledif- tected,butonlybrieflypostdoseandatlowconcentrations,inthe fusesintothepericardialfluid,ataconcentrationcomparableto trachealsecretionsofhumans(91)andthetracheasofdogsfol- theplasmaconcentration(153).Autopsydataalsoindicatethat lowingadministrationofAmBd(91),althoughpenetrationmay myocardial voriconazole concentrations are similar to those in bedosedependent(156).For5FC,concentrationsindogbron- otherbodyorgans,includingthelungandkidney(80).Incon- chialsecretionsareapproximately75%ofcorrespondingplasma trast, itraconazole exposure in the hearts of mice after a single concentrations(156). 10-mg/kgi.v.doseisonly8%ofthatinplasma(171).However,in rats, at 1 h postdose, the concentration is 6 times the level in Saliva,Sputum,BuccalMucosa,andEsophagus plasma,andboththeabsoluteconcentrationandtheplasmaratio Theattainmentofeffectiveantifungaldrugconcentrationswithin increasefurtherafter24h(76).Therearenopublishedhuman the saliva, sputum, and bronchial fluid is critical for therapy of heart tissue concentration data for itraconazole. Nevertheless, oropharyngeal,esophageal,andbronchialinfections.Fluconazole itraconazolecancausecongestiveheartfailure(172)vianegative 76 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents inotropic effects, although the precise mechanism is unknown areapproximately10timesthoseinhumanplasma(Fig.7)(67). (173). Fluconazolealsoreadilypenetrateskidneytissue,withpeaktissue Postmortem studies of patients following administration of concentrationsof18F-fluconazolethatareapproximately4times AmBdorL-AMBshowawiderangeofconcentrations((cid:6)0.1to thepeakinhumanplasma(71).Similartofluconazole,voricona- 9.1(cid:5)g/g)ofamphotericininhearttissueandmyocardium(52, zoleislargelyexcretedviatheurine(78%)andfecesinhumans, 90).Intheheartsofdogs,theAmBdconcentrationafter14daysof but mostly as metabolites, with less than 2% excreted as un- dosing with 0.6 mg/kg/day is approximately 7 times the corre- changeddrug(84).Postmortemstudiesofeightpatientsshowed sponding plasma value (37), while in rats given a single AmBd thatvoriconazolewasdetectableinkidneytissue,atameancon- doseof1.0mg/kg,itisapproximately3timeshigher(225). centrationof6.47(cid:5)g/g,butwithsignificantinterindividualvari- Aswithfluconazole,theconcentrationof18F-5FCinratheart ability (80). In contrast to fluconazole, itraconazole concentra- tissueissimilartothatinblood(174). tions in urine are very low due to its negligible renal excretion Caspofunginisdetectableintherodentheartafterasingledose, (122).Whenadministeredintravenouslytorats,itraconazoleat- ataconcentrationapproximately20%ofthepeakplasmaconcen- tainsconcentrationsinkidneytissueof5.5(cid:5)g/gafter1h(3times tration, which then declines at a lower rate than in the plasma theplasmaconcentration)and5.9(cid:5)g/g(31timestheplasmacon- D (103,104).Incontrast,anidulafunginexposureinthehearttissue centration)at24hpostdose(76).However,akidneytissuecon- o ofneonatalratsincreasestoapproximately1.3timestheconcen- centrationofonly0.5(cid:5)g/g(1.5timestheplasmaconcentration) w n trationinplasmaafterasingledoseand1.8timesaftermultiple wasrecordedinasinglepatient(73). lo dosing(175). Thekidneysareaprimarysiteoftoxicityforallpolyenes.Post- a d mortem studies show that amphotericin B (from AmBd or L- e Liver AMB)isreadilydetectableinkidneytissue(52–54,90).Therenal d f Givenitsmajorroleinmetabolismandclearance,manyxenobi- concentrationofamphotericinBinratkidneysafterAmBdad- r o oticsarelikelytoachievehigherconcentrationsintheliverthanin ministrationis10timesthatintheserum,whilethecorrespond- m theplasma.Twentyminutesafterintravenousadministration,the ingrenalconcentrationafterL-AMBadministrationisone-third h concentration of 18F-fluconazole in human livers is approxi- that of AmBd and only 4 times the serum concentration (177). tt p mately3timesthepairedplasmaconcentration,whileinrabbitsit ThisisconsistentwiththereductioninamphotericinB-associated :/ / istwicethatintheplasma(71).Itraconazolealsoaccumulatesin renal toxicity after its administration as L-AMB (or other lipid c m the liver (Fig. 7) (122), and it reached a concentration in one amphotericinformulations)ratherthanAmBd(178).Theclear- r . patientthatwasoverthreetimesthatinplasma(73).However,in anceofamphotericinBfromthekidneysofrodentsisprolonged, a s the livers of rats, itraconazole achieves concentrations that are andthedrugisdetectableforatleast48hafterasingleadminis- m approximately13timesthoseinplasma1hafterasingleintravenous tration of AmBd (177) and at least 14 days after a prolonged . o dose,andthisincreasesfurtherover24h(76).Theplasmaconcen- courseofL-AMB(38).Inmousekidneyhomogenates,concentra- r g trationdeclines9-foldoverthisperiod,resultinginatissue/plasma tions of amphotericin B following administration of L-AMB or / o concentrationratioexceeding150at24hpostdose(76). ABLCatadoseof80mg/kgi.p.arecomparabletothoseobserved n Incontrast,thenucleoside18F-5FC,whichisevenmorepolar with20mg/kgi.p.ofAmBd(39). J a thanfluconazole,attainsconcentrationsinratliversthataresim- Likefluconazole,5FCisprincipallyeliminatedintheurineasun- n ilartothoseinplasma(174). changeddrug(97%),andplasmaclearanceiscloselyrelatedtocreat- u a Hepatic concentrations of amphotericin are detectable from inineclearance(91,179).Theconcentrationof18F-5FCinratkidneys r y tissue obtained at postmortem (52, 54). There is a relationship is3timesthatinblood2hafterdosing,withveryhighconcentrations 1 betweentheplasmaexposureofL-AMBandlivertissueconcen- (60timestheplasmaconcentration)intheurine(174). 0 , trationsofamphotericinBinhumanautopsysamples.AfterL- Allthreeechinocandinsreadilypenetrateintothekidneytissue 2 AMB dosing, the mean amphotericin B concentration that was oflaboratoryanimals.Afterasingledose,14C-anidulafunginex- 01 achievedwas102(cid:5)g/gliver,butwithsubstantialinterpatientvari- posure in rat kidney tissue is approximately 10 times that in 9 ability (90). AmphotericinBhasalongresidencetimeinhepatic plasma (102). In addition, anidulafungin exhibits an extended b y tissueofmice.Concentrations(measuredusingbioassay)aredetect- residencetimeinthekidney,withaterminalhalf-lifethatistwice g able 14 days after dosing with L-AMB (38). However, Andes and that in plasma (102). Anidulafungin also accumulates in rabbit u e colleagues(39)haveshownthatABLCexhibitslowerconcentrations kidneysaftermultipledosing(100).Afterasingledoseadminis- s t inmouseliverhomogenatesthanequivalentdosesofAmBdorL- teredtomice,caspofunginexhibitsalongermeanresidencetime AMB(atleastfollowingintraperitoneal[i.p.]administration). in the kidneys (31) and has a tissue/plasma concentration ratio Theexposuresofanidulafunginandcaspofunginintheliversof over24hofapproximately7(103).Incontrast,micafungincon- rodents are raised approximately 10- and 16-fold, respectively, centrationsinratkidneysexceedthoseinplasma5minafterdos- comparedwithplasmaconcentrations(102,103).Thisislargely ing,by1.6-fold,butthendeclineinparallelwithplasmaconcen- relatedtodelayedclearancefromtheliver.However,micafungin trations(150).Allthreeechinocandinsexhibitlowconcentrations appearstobehavedifferently,withalowerpeakconcentrationin ((cid:6)2%ofthedose)(104,181,182)ofunchangeddruginhuman theliversofratsandanAUCthatissimilartothatoftheplasma urine.Therearereportedcasesoftheefficacyoftheechinocandins (150).Forcaspofungin,specifichepatictransportersthatmediate in patients with candiduria (183, 184), but this may reflect the uptakeintoratliverhavebeenidentified(26). attainmentofhighconcentrationsinrenalparenchyma. Kidney Spleen Approximately 80% of a fluconazole dose is eliminated as un- Fluconazolepenetratesintothespleeninbothhumansandrab- changeddrugintheurine.Consequently,urinaryconcentrations bits,althoughtodifferentextents(71,185,213).Higherconcen- January2014 Volume27 Number1 cmr.asm.org 77

Description:
Pharmacodynamics . .69. Determinants of Distribution of Antifungal Agents into Tissues
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.