Tissue Penetration of Antifungal Agents TimothyFelton,a,bPeterF.Troke,cWilliamW.Hopeb TheUniversityofManchester,AcademicHealthScienceCentre,UniversityHospitalofSouthManchesterNHSFoundationTrust,Manchester,UnitedKingdoma; AntimicrobialPharmacodynamicsandTherapeutics,DepartmentofMolecularandClinicalPharmacology,UniversityofLiverpool,Liverpool,UnitedKingdomb; TheOldCourt,Kingsgate,Kent,UnitedKingdomc SUMMARY...................................................................................................................................................68 INTRODUCTION..............................................................................................................................................68 PENETRATIONOFANTIFUNGALAGENTSINTOTISSUES:CONCEPTS,IMPORTANCE,ANDCURRENTGAPSINKNOWLEDGE ...........................69 ImportanceofTissueConcentrationsforanUnderstandingofAntifungalPharmacodynamics..........................................................69 D DeterminantsofDistributionofAntifungalAgentsintoTissues...........................................................................................69 o LimitationsofCurrentUnderstandingandApproaches...................................................................................................72 w ANTIFUNGALDRUGCONCENTRATIONSINORGANS,TISSUES,ANDBODYFLUIDS.......................................................................72 n BrainandCerebrospinalFluid..............................................................................................................................73 lo Eye.........................................................................................................................................................74 a d Lung.......................................................................................................................................................75 e PulmonaryLymphFluid...................................................................................................................................76 d PleuralFluid................................................................................................................................................76 f r BronchialSecretions.......................................................................................................................................76 o m Saliva,Sputum,BuccalMucosa,andEsophagus...........................................................................................................76 Heart.......................................................................................................................................................76 h Liver........................................................................................................................................................77 tt p Kidney.....................................................................................................................................................77 : Spleen.....................................................................................................................................................77 // c Pancreas...................................................................................................................................................78 m Peritoneum................................................................................................................................................78 r . GenitalSystem.............................................................................................................................................78 a Bone.......................................................................................................................................................78 s m Muscle.....................................................................................................................................................79 . SkinandNails..............................................................................................................................................79 o r UNDERSTANDINGTISSUECONCENTRATIONSFOROPTIMALUSEOFEXISTINGAGENTSANDDEVELOPMENTOFNEWERANTIFUNGALAGENTS....80 g CurrentStateoftheArt....................................................................................................................................80 / o BeyondStateoftheArt....................................................................................................................................80 n ACKNOWLEDGMENTS.......................................................................................................................................80 J REFERENCES.................................................................................................................................................80 a AUTHORBIOS................................................................................................................................................88 n u a r y 1 SUMMARY However,awiderangeofotherfungi,oftenwithlimitedsuscep- 0 , Understanding the tissue penetration of systemically adminis- tibility to first-line antifungal agents, may also cause infection. 2 teredantifungalagentsiscriticalforaproperappreciationoftheir Mortality from IFI remains high (e.g., that from aspergillosis is 0 1 antifungalefficacyinanimalsandhumans.Boththetimecourse (cid:2)50%[3,4],andthatfromcandidemiais10to49%[5,6,7]).An 9 ofanantifungaldruganditsabsoluteconcentrationswithintis- understandingofthepharmacologicalpropertiesofanyantifun- b y sues may differ significantly from those observed in the blood- galagentiscrucialforoptimizingpatientoutcomesforallthese g stream.Inaddition,tissueconcentrationsmustalsobeinterpreted infections(8).Thismaybeespeciallytrueforanincreasinglyrec- u e withinthecontextofthepathogenesisofthevariousinvasivefun- ognizedgroupofpatientswhohavenotpreviouslybeenconsid- s t galinfections,whichdiffersignificantly.Therearemajortechnical eredtobeathighriskofIFI,suchascriticallyillpatientsandthose obstaclestotheestimationofconcentrationsofantifungalagents with chronic obstructive pulmonary disease (COPD), who may invarioustissuesubcompartments,yettheseagents,eventhose demonstratemarkedpharmacokinetic(PK)variability(9,10). withinthesameclass,mayexhibitmarkedlydifferenttissuedis- Penetrationintothesiteofinfectiontoachievemicrobe-elim- tributions.Thisreviewexplorestheseissuesandprovidesasum- inatingconcentrationsisakeyrequirementforefficacyofallan- mary of tissue concentrations of 11 currently licensed systemic timicrobialagents(11,12,13,14,15).Theimportanceoftissue antifungalagents.Italsoexploresthetherapeuticimplicationsof concentrationsforthevariousclassesofantibacterialagentshas theirdistributionatvarioussitesofinfection. been reviewed extensively, but relatively less attention has been INTRODUCTION Despiterecentadvancesinantifungalchemotherapy,invasive AddresscorrespondencetoWilliamW.Hope,[email protected]. fungalinfections(IFI)remainasignificantcauseofmorbid- Copyright©2014,AmericanSocietyforMicrobiology.AllRightsReserved. ityandmortality(1).Candidaspecies,Aspergillusfumigatus,and doi:10.1128/CMR.00046-13 Cryptococcus neoformans are the most common pathogens (2). 68 cmr.asm.org ClinicalMicrobiologyReviews p.68–88 January2014 Volume27 Number1 TissuePenetrationofSystemicAntifungalAgents paidtothecurrentlyavailableantifungalagents(12,16,17,18, 19).Thisreviewexaminesthetissuepenetrationof11commonly used systemic antifungal agents (amphotericin B deoxycholate [AmBd],amphotericinBlipidcomplex[ABLC],liposomalam- photericinB[L-AMB],fluconazole,itraconazole,posaconazole, voriconazole, 5-fluorocytosine [5FC], anidulafungin, caspofun- gin,andmicafungin)intotheclinicallyrelevantcompartmentsfor humaninfectionanddisease.Allhumandata,rangingfromcase studiesthroughautopsiestosmallclinicalstudiesinvolunteersor patients,wereincluded.Wealsoconsideredkeylaboratoryanimal data,whererelevant,especiallyiftherespectiveinformationfor humansisabsent.Becauseonlyfreedrugisconsideredtobebio- logically active (20, 21, 22), tissue and fluid concentrations are placedincontextwiththekeyphysicochemicalpropertiesofeach D agent.Themajororgansystemscoveredincludethelungs,liver, o w kidney,spleen,andheart.Attentionhasalsobeengiventodrug n penetration into sanctuary sites (e.g., brain and eye), with the lo corresponding therapeutic implications. We have also reviewed a d thedataforkeyinterstitialfluids,includingbronchialsecretions, e d epithelialliningfluid(ELF),pleuralfluid,pericardialfluid,syno- f vial fluid, prostatic fluid, and cerebrospinal fluid (CSF), and r o placedthesedatainaclinicalcontext(23). m h t PENETRATIONOFANTIFUNGALAGENTSINTOTISSUES: tp : CONCEPTS,IMPORTANCE,ANDCURRENTGAPSIN // c KNOWLEDGE m r ImportanceofTissueConcentrationsforanUnderstanding .a ofAntifungalPharmacodynamics s m Thepotentialrelevanceofthetissueconcentrationsofanyanti-infec- . o tiveagentmustbeconsideredincontextwiththepathogenesisofthe r g invading fungal organism (24). There must be colocalization of / o “drugandbug”withintissuebedsandtissuesubcompartments. n Suchconsiderationsarerelevantattheleveloftheorganandtissue J a subcompartments but may be elucidated further at the cellular n andevenmolecularlevels(25,26,27,28,29). u a Most agents ultimately exert their effects on microorganisms r y residingwithintissues.However,thedistributionofagentsfrom 1 thebloodstreamtovarioustissuesubcompartmentsisoftenchar- FIG1Potentialdifferencesinplasmaandtissueconcentrations.Theremaybe 0 discordanceinconcentrationsbetweenthesetwocompartments.“Hysteresis” , acterized by considerable variability, beyond that observed in referstodiscordanceintheshapesoftheconcentration-timeprofiles. 2 0 plasmaalone.Consequently,targetsiteconcentrationsoftendif- 1 fermarkedlyfromthosemeasuredinplasma,especiallyinsanc- 9 tuarysitessuchastheeyeorcentralnervoussystem(CNS).Fur- thisreviewaresummarizedinTable1.Thefourmajorclassesof b y thermore, there may be discordance in the shape of the antifungal agents, i.e., the echinocandins, polyenes, pyrimidine g concentration-timeprofilesforplasmaandtissues.Thisphenom- analogues(5FC),andtriazoles,arereviewed.Thesecompounds u e enoniscalledhysteresis(Fig.1)andmayexplainpersistentanti- arealldistinctintermsoftheirchemicalstructure,molecularsize, s t fungalactivitywhenplasmaconcentrationsareloworundetect- lipophilicity,andmetabolism,andthesedifferenceshaveamajor able (e.g., as seen with L-AMB [30], caspofungin [31], and impactupontheirpharmacokineticandpharmacodynamic(PD) itraconazole[76]).Conversely,suboptimaltargetsiteconcentra- characteristics.Furthermore,theremaybesignificantdifferences tionsmaywellexplainsomecasesoftherapeuticfailure(11,13). withinaclass.Forexample,thelipophilicities(expressedaslogD Inaddition,asmostfungalinfectionsareextracellular,interstitial valuesinTable1)ofthefourtriazolesvaryfrom0.5to(cid:3)5.0,and fluid may be the closest measurable compartment to the site of plasma protein binding ranges from 12% to (cid:3)99% (Table 1). infection.However,theimportantcompartmentforprophylaxis Thesephysicochemicalpropertiesdeterminetherateandextent maybedifferent,whichinturnisrelatedtodifferencesinpatho- oftissuepenetrationandbioavailabilitywithinatissue,organ,or genesisandthestageofinfection(Fig.2A)(32,33). fluid (13, 34). Tissue and fluid concentrations for the three tri- azoles(fluconazole,voriconazole,anditraconazole),asmultiples DeterminantsofDistributionofAntifungalAgentsinto ofthoseinbloodorplasma,areshowninFig.3to5toillustrate Tissues this. Theprincipalchemicalandpharmacokineticpropertiesinfluenc- Inverygeneralterms,smallpolarcompoundswithlowplasma ingthetissuedistributionofthe11systemicantifungalagentsin proteinbinding(e.g.,fluconazoleand5FC)havevolumesofdis- January2014 Volume27 Number1 cmr.asm.org 69 Feltonetal. D o w n lo a d e d f r o m h t t p : / / c m r . a s m . o r g / o n J a n u a r y 1 0 , 2 0 1 FIG2Differentstagesofinvasivepulmonaryaspergillosis(IPA)andthepotentialtherapeuticimportanceofdifferenttissuesubcompartments.(A)Inthevery 9 earlieststagesofdisease,therelevantsubcompartmentsincludeepithelialliningfluid,alveolarepithelialcells,pulmonaryendothelialcells,andpulmonary b alveolarmacrophages(PAMs).(B)Intheearlystagesofestablisheddisease,ahalosignmaybeseenthatconsistsofanodule(n)surroundedbyahalo(h),which y iscausedbyactiveinfectionandinflammationaroundthenodule.Inthiscase,therelevantsubcompartmentsarewithinthenoduleandcontiguouslung.(C)In g u latedisease,anaircrescentsignmaybepresent,whichrepresentsanorganizingsequestrum.(Apulmonarysequestrum[s]issurroundedbyanaircrescent[ac].) e Thetherapeuticchallengeinthiscaseistheachievementofantifungaldrugconcentrationswithinarelativelyavasculararea.(Reprintedfromreference262with s permission;imaginganddetailskindlyprovidedbyReginaldGreene.) t tribution that approximate total body water (Table 1), achieve hibit tissue/plasma concentration ratios that exceed 1. Despite betterpenetrationintoaqueoussites(e.g.,CSF,synovialfluid,and this,theymaynotnecessarilypenetratewellintosanctuarysites anterior chamber of the eye), and generally have body fluid/ suchasthebrain,prostate,andeye.Thepolyenes(amphotericin plasma concentration ratios that are (cid:4)1. A compound with an B)andtheechinocandinshavevariabletissuepenetrationbutmay “intermediate”lipophilicity,volumeofdistribution,andplasma alsoexhibitprolongedresidencetimes. proteinbinding(e.g.,voriconazole)isalsopredictedtodistribute Arangeofotherfactorsmayalsohaveasignificantimpactupon intoaqueoussitesbuttoattainrelativelyhighertissueconcentra- tissuepenetration,including(i)pharmacologicfactors,e.g.,route tions than those of fluconazole or 5FC. In contrast, more lipo- ofdrugadministration,suchasaerosolorparenteraltherapy(35), philiccompounds(suchasitraconazoleandposaconazole)have orformulatingdrugswithinlipids,e.g.,amphotericinBcolloidal muchlargervolumesofdistribution(Table1),tendtopenetrate dispersion (ABCD) and L-AMB (36), which may modify their preferentiallyintotissueswithhighlipidcontent,andoftenex- distributionandaltertheirsafety(37,38)andpotency(39);and 70 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents TABLE1Principlephysicochemicalandpharmacokineticpropertiesofantifungaldrugsinhumansthathaveapotentialimpactonplasma concentrationsandtissuepenetration Molwta LogDat %Plasma AUC 0–24 Compound (particlesize[(cid:5)m]) pH7.4 proteinbinding t (h) (mg·h/liter) V b(liters/kg) References 1/2 ss Triazoles Fluconazolec,d 305 0.5 12 24–30 38 0.7 17,18,67 Itraconazolee,f 706 (cid:3)5 99.8 34 8.7–25 11 17,226,227 Posaconazolec 700 2.15 (cid:3)98 20–31 33–39 7–25 228,229 Voriconazolee 349 1.8 58 6 13 4.6 84,230 Polyenes AmBd(conventionalamphotericinB)e 924((cid:6)0.04) (cid:7)2.8 95–99 10–24 1–30 0.5–5 17,144,231–233 ABLC(Abelcet)e 924(1.6–11) (cid:7)2.8 95–99 24 9.5–14(cid:8)7 1.12–8.8 17,144,231,232,234 L-AMB(Ambisome)e 924(0.08) (cid:7)2.8 95–99 6–23 131(cid:8)126 0.11–0.7 17,144,233 D Nucleoside o 5-Fluorocytosinec,d 120 (cid:7)2.34 5 3–5 576,1289g 0.6–2.23 91,179 w n lo Echinocandins a Anidulafunginc 1,140 (cid:7)3.32 84–99 26 110.3 0.8 235,236 d e Caspofungine 1,093 (cid:7)3.88 97 9–11 57–96 0.15 235,236 d Micafunginc 1,291 (cid:7)1.62 (cid:3)99 15–17 29.6(cid:8)4.6 0.24–0.39 182,235 f r o aFromreference18. m bVolumeofdistributionatsteadystate. cDose-proportionalpharmacokinetics. h t dExceptinpatientswithrenalimpairment. tp eConcentration-dependentpharmacokinetics. : / fDatafromoralsolutionandi.v.formulationincyclodextrin. /c gValuesfororalandi.v.formulations,respectively. m r . a s m (ii) physiological factors, such as inflammation, which may in- modification of plasma protein composition and hence drug . creasetissuepermeability,i.e.,bydisruptionofnormalphysiolog- binding(42,43,44);therecruitmentofdrug-containingphago- o r g icalbarrierssuchastheblood-brainbarrier(29,40);theunderly- cytic cells, i.e., the “dump truck phenomenon,” which may in- / ingdisease(41),whichmayresultinarangeofeffects,including creasedrugconcentrationsatthesiteofinfection(12,13,32,45, o n 46);drugexportviapumps,e.g.,foritraconazoleandP-glycopro- J a n u a r y 1 0 , 2 0 1 9 b y g u e s t FIG4Voriconazoletissueandfluidconcentrationsinhumansasmultiplesof FIG3Fluconazoletissueandfluidconcentrationsinhumansasmultiplesof themaximalorsimultaneouslymeasuredconcentrationinplasma((cid:5)g/ml) themaximalorsimultaneouslymeasuredconcentrationinplasma((cid:5)g/ml) aftersystemicadministration.Tissuemultiplesarefrom(cid:5)g/gtissuevalues. aftersystemicadministration.Tissuemultiplesarefrom(cid:5)g/gtissuevalues. Fluidmultiplesarefrom(cid:5)g/mlconcentrations.*,autopsydata;inthesecases, Fluidmultiplesarefrom(cid:5)g/mlconcentrations.Numbersinparenthesesindi- themultiplesarebasedonplasmaC valuesatthesamedoseinvolunteers max caterelevantreferences. (188). January2014 Volume27 Number1 cmr.asm.org 71 Feltonetal. D o w n lo FIG6Crosssectionofthebrainofamousewithcryptococcalmeningoen- a cephalitis.Theorganismwasstainedwithanantibodydirectedtowardthecryp- d e tococcalcapsule.Thediseaseismultifocal.Attemptstousewhole-brainhomoge- d FIG5Itraconazoletissueandfluidconcentrationsinhumansasmultiplesof natestoestimatedrugconcentrationsatthesiteofinfectionmaybemisleading. tahfteermsayxstimemalicoardsmiminuilsttarnaetioouns.lyTimsseuaesumreudlticpolnesceanrterafrtioomni(cid:5)ngp/glatsimssaue((cid:5)vagl/umels). (ARmeperriicnate[dtafkreonmbryefJeurleienScech2w63arbtzy,pCehrmarilsessioRnivoefrtLhaebIonrfaetcotrioieuss].D)iseasesSocietyof from Fluidmultiplesarefrom(cid:5)g/mlconcentrations. h t t p icallyusefulformatisalsoproblematic.Oneofthemostcommon : / / tein (75); variable oral bioavailability, e.g., of itraconazole (47) presentationmethodsistousearatiotoplasmaconcentration, c m andposaconazole(228);andinterpatientvariabilityinclearance, whichmaybeflawedforanumberofreasons.Thisratioisdepen- r e.g.,ofvoriconazole(48). dentonboththedenominatorandthenumerator,e.g.,thebone .a s tissue/plasmaconcentrationratioforABLCinrabbitsis42,while m LimitationsofCurrentUnderstandingandApproaches thecorrespondingratioforL-AMBis0.66,suggestingthatABLC . o Consideringtissueconcentrationsinisolationisoflimitedvalue. penetratesbonemoreeffectivelythanL-AMB.However,theac- r g Adrugmaybepresentatasitebutataconcentrationbeneaththe tualamphotericinconcentrationsachievedwiththetwolipidfor- / thresholdrequiredforactivity,locatedinthewrongsubcompart- mulationsinbonearesimilar(35.4(cid:5)g/gand39.5(cid:5)g/gforABLC on ment,ornotbiologicallyavailable.Ideally,therefore,tissuecon- and L-AMB, respectively) and, in both cases, superior to that J a centrations should be analyzed with concomitant pharmacody- achievedwithAmBd(19).Comparisonofconcentrationstakenat n namic data. Examples of this problem include AmBd and asingletimepointisalsoliabletoinduceerrorsbecauseofhys- u a itraconazole, which have low concentrations in the CSF yet are teresis (Fig. 1), with a delay occurring as drug moves from the r y effectiveagentsfortreatmentofcryptococcalmeningitis(49,50). vasculartothetissuecompartment(55).Forthisreason,itmaybe 1 Tissuehomogenatesarefrequentlyusedtoestimatetissuecon- moreusefultopresentthetissueareaundertheconcentration- 0 , centrations, but they are a relatively crude and potentially mis- timecurve(AUC)forcomparison.Therearefewstudiesthatdo 2 0 leading matrix when used for this purpose. Mouton and col- thisforhumans(56,57,58,59,60,61,62),andwithoneexception 1 leagues (51) highlighted the potential pitfalls in using drug (59),alldealwithpulmonarydistribution. 9 concentrations within whole-tissue homogenates for drawing Mostoftheantifungalagentsconsideredinthisreviewdoex- b y conclusionsrelatedtotheactivityandefficacyofadrug,especially hibithysteresis.Thispersistenceoftissueconcentrationsmayex- g forextracellularpathogens.Thismaybeaparticularissueforam- plain why, in specific situations, linking the tissue pharmacoki- u e photericin B (irrespective of formulation), where there is long- netic data with pharmacodynamic data produces a significantly s t standinguncertaintyrelatedtotheamountofbiologicallyavail- morerobustPK/PDmodelthanusingplasmaPKdataalone(31, abledrugintissues.Thepotentialreasonsthattissuehomogenates 63).ThetechniqueofcomodelingbothPKandPDdatamayalso mayprovideinaccurateinformationregardingthe“true”concen- produceamoreinsightfulreflectionoftheimpactoftissuecon- tration at the site of infection include (i) discordance between centrationthanthesimplisticcomparisonofpeaktissueconcen- intra- and extracellular drug concentrations versus where the trationwiththebreakpointMIC(64). pathogenisactuallylocated,e.g.,forposaconazole(33);(ii)mul- tifocalversusdiffusedisease,resultinginaltereddrugpenetration ANTIFUNGALDRUGCONCENTRATIONSINORGANS, atthesiteofinfectioncomparedwiththenormalcontiguoustis- TISSUES,ANDBODYFLUIDS sue, e.g., pulmonary aspergilloma (257) or cerebral cryptococ- ThepapersinthisreviewwerepublishedbetweenJanuary1965 coma(Fig.6);(iii)theconcentrationoftotalversusbiologically andDecember2012.Inevitably,theyuseddifferingdrugdosagesand active drug, e.g., free amphotericin B versus drug that remains formulations,withdifferentroutesofsystemicadministrationanda complexedtolipid(29,52,53,54);and(iv)incompleteextraction rangeofdrug extraction and assay methods (e.g., bioassay, gas- ofdrugfromtissue,e.g.,foramphotericinB(29,52,53,54). liquid chromatography, high-pressure liquid chromatography, Reportingtissueconcentrationsofanti-infectivedrugsinaclin- 14C-autoradiography,and18F-nuclearmagneticresonance[18F- 72 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents D o w n lo a d e d f r o m h t t p : FIG7Concentrationsintissuesandbodyfluidsforeachsystemicantifungalagentrelativetoitsconcentrationinplasma.X,humandata;O,animaldata.Colors // illustratedifferingratios;multiplecolorswithinacolumngivetherangeofpublisheddata.Red,frombelowlevelofdetectionto(cid:2)0.5timestheplasma cm concentration;yellow,from(cid:3)0.5timesto(cid:2)5timestheplasmaconcentration;green,(cid:3)5timestheplasmaconcentration;white,nodata.(cid:2),pleuralfluid,buccal r mucosa,orpancreaticpseudocyst;opendiamond,basedonautopsydataandhumanpharmacokinetics;(cid:9),woundfluid;o2,onlydetectedininflamedeyes;o3, .a bronchialsecretions;x3,belowlevelofdetectioninbronchialsecretions;o4,pulmonarylymph;x5,bronchialbiopsyspecimen. s m . o r g NMR]).Thedatawerealsopotentiallyinfluencedbytheunderly- plasma,withsomeminorregionalvariation(71).However,infive / o ing disease of the host. Consequently, we only used data where surgicalpatients,fluconazolebraintissue/plasmaconcentrationra- n bothplasmaandtissueconcentrationswerereportedwithinthe tiosof0.7to2.4weremeasuredwhenthefluconazoleplasmacon- J a samestudy(exceptforsomepostmortemstudiesinwhichtissue centrationswereat90%ofsteady-statevalues(72).Fluconazoleisa n u concentrationsalonewerereported). recognizedtherapyforcryptococcalandCandidameningoenceph- a Mosthumandataarefromhealthyadultvolunteersand/ora alitis. ry fewpatients,andtheirapplicabilitytoyoungchildrenorneonates Incontrast,itraconazoleconcentrationsinhumanCSFarevery 1 0 requiresfurtherstudy(65).Informationismostcomprehensive low,withCSF/plasmaconcentrationratiosof(cid:6)0.002to0.12(Fig. , fortheoldertriazoles(fluconazoleanditraconazole),whileboth 5and7)(73,74).Itraconazolepenetratesthebrainsofratsrapidly, 20 humanandanimaldatafortheneweragents(posaconazoleand andinadose-dependentmanner,upto8minafterdrugadmin- 1 thethreeechinocandins)aremorelimited.HumandataforAmBd 9 istration(25).However,tissueconcentrationsarelessthanthose b (discoveredinthe1950s)and5FC(discoveredinthe1970s)are intheplasma(ratioof0.2at60minpostdose)andsubsequently y alsosurprisinglysparse. g declinemorerapidly(half-lifeof0.4h)thanthoseineitherthe u Despite the caveats discussed in the introduction, the pub- plasmaorlivertissue(half-lifeof5h)(25).Thiseffecthasbeen e lisheddataareexpressedastissueorbodyfluid/plasmaorblood s ascribedtoitsactiveeffluxfromthebrainviaP-glycoprotein(Fig. t concentrationratios.TheyaresummarizedinFig.7asthreedif- 6). Studies in mice by Imbert and colleagues (75) confirm the ferently colored ratio bands. The colors in the figure illustrate impact of P-glycoprotein on itraconazole efflux from the brain differingdrugconcentrationratiobandsbutdonotimplydiffer- butalsoindicatethatintracerebralinfectionwithC.neoformans encesinefficacywithinvarioustissuesorbetweendrugs. increases itraconazole exposure in the brain 2.6-fold compared BrainandCerebrospinalFluid withthatinuninfectedanimals.However,inanotherratstudy, ThebrainandCSFaresanctuarysites,astheyaresurroundedby uninfectedanimalsgivenasingleintravenousdoseofitraconazole lipidmembraneswithinward-andoutward-facingtransporters (10mg/kgofbodyweight)hada(mean)braintissueconcentra- (66).Datafromhumanstudiessuggestthatfluconazoleconcen- tionthatwas1.7timestheconcentrationinplasmaat1hpost- trations in CSF are dose dependent and vary between 50% and dose,increasingto21timesat24hpostdose,asthebrainconcen- 100%oftheconcentrationobservedintheplasma(67,68,69,70) tration increased further, while the plasma concentration (Fig. 3 and 7). Fluconazole is also readily detectable in human decreased(76).NoitraconazoleisdetectableintheCSFofrabbits brain parenchyma. Studies with 18F-fluconazole in volunteers treatedwithoralitraconazoleforcryptococcalmeningitis.Never- showedbraintissueconcentrationsthatweresimilartothosein theless, itraconazole achieves an efficacy comparable to that of January2014 Volume27 Number1 cmr.asm.org 73 Feltonetal. fluconazoleinthismodel,eventhoughfluconazoleisreadilyde- from0.002to0.54,whileinthebraintissueofanotherpatient,the tectableinrabbitCSF,withaCSF/plasmaconcentrationratioof tissue/plasmaconcentrationratiowasonly0.17(106,107,252).Mi- 0.6to0.8(77).Itraconazolealsoexhibitsefficacyinhumancryp- cafunginpenetrationintorabbitbrainsisdosedependent,andsignif- tococcosis, suggesting that it does penetrate the meninges and icantlyhigherconcentrationsaremeasurableinthemeningesthanin cerebralparenchymaandachievestheconcentrationsrequiredfor eitherthecerebrumorcerebellum(108).However,theconcentra- antifungalactivity(50,78). tionsinthesevarioussubcompartmentsarealsosufficienttoachieve Voriconazole has a lipophilicity that is intermediate between asignificantanti-Candidaeffect.Animalmodelssuggestequiva- those of fluconazole and itraconazole (Table 1). Voriconazole lentefficaciesbetweentheechinocandinsandamphotericinBfor- penetrateshumanbraintissue(79,80)andabscessmaterial(81), mulations. The clinical value of the echinocandins for various achievingpeakconcentrationssimilartoorevenexceedingthose fungalCNSinfectionsremainstobeestablished(18). seeninplasma(Fig.4and7)(243).However,humanCSFcon- centrations of voriconazole tend to be lower, with CSF/plasma Eye concentrationratiosof0.22to1.0(81,82,83).Thisisconsistent Endogenousfungalendophthalmitis,mostcommonlycausedby withitsintermediateplasmaproteinbindinginhumansof58% CandidaorAspergillusspp.,arisesfromhematogenousdissemi- D (84). Voriconazole is the agent of choice for CNS aspergillosis nation(109).Arangeofsyndromesareseen,includingchorioretini- o w (243). Posaconazole, which resembles itraconazole structurally tis, vitritis, and pan-endophthalmitis. Successful therapy requires n butislesslipophilic(Table1),alsopenetratestheCSFrelatively penetrationofdrugintotherelevantsubcompartment(s)oftheeye, lo poorly (85), with CSF/plasma concentration ratios of (cid:6)0.009 i.e.,thechoroid,retina,vitreoushumor,andaqueoushumor(16). a d (86). Its diffusion into the CSF may be increased by meningeal Formanyantifungalagents,suboptimalpenetrationcanmeanthat e d inflammation.Thus,CSFconcentrationsintwopatientswithbac- medicaltherapyaloneisineffective,andsuccessfultreatmentmay f terial meningitis and cerebral fungal infection were 44% and requirevitrectomyand/orintracameralinjection(Fig.7). r o 230%,respectively,ofthoseinplasma(87).Inmiceinfectedwith Early human and animal data for azoles, polyenes, and 5FC m Cryptococcus gattii or Fonsecaea monophora, a bioassay revealed havebeenwellsummarizedelsewhere(16).Fluconazole(110,111, h t that brain tissue concentrations of posaconazole were approxi- 112),voriconazole(113,114,252),and5FC(115,116)aredetect- t p mately53%ofthoseinserumatdailydosesof(cid:2)20mg/kgbut ableinboththeaqueousandvitreoushumorsofanimaland/or :/ / increasedto70%to80%atadailydoseof40mg/kg(88,89). humaneyes,withandwithoutendophthalmitis,atconcentrations c m Postmortem studies of humans show that amphotericin B is approximately 40% to 100% of those observed in serum. Al- r . detectable,butonlyatlowconcentrations,inthebraintissueof thoughtheuseof5FCisnowuncommon,bothtriazolesareem- a s patientsreceivingAmBdandL-AMB(52,53,90).AmphotericinB ployedquiteextensivelyfortreatingfungalophthalmicinfections m concentrations in the CSF are also low after administration of inhumans(109,117).Thevisualadverseeventsexperiencedby . o intravenousAmBd(91).SimilarCSFandbraindataforAmBd, some patients receiving systemic voriconazole are related to r g L-AMB,andABLC(i.e.,CSFandtissue/plasmaconcentrationra- plasmaexposure(258)butnotyettoretinalconcentrationsperse. / o tiosof(cid:6)0.3)havebeenrecordedforrabbits(92).Incontrasttothe Theseadverseevents,whichhavebeenascribedtoinhibitionof n casewithposaconazole,inflammationdoesnotseemtoincrease theBwaveof“ON”bipolarcellsintheretina(118),donotappear J a theconcentrationofanyamphotericinformulationinthebrain, toresultinlong-termadverseeffectsortoxicity(119). n atleastinanimals(40,92).Toovercomethesepotentiallimita- Penetrationofitraconazoleintotheeyesofrabbitsafterasingle u a tions,intraventricularinstillationofAmBdviaanOmmyareser- oraldoseisminimal(120).Nodrugisdetectable(usingbioassay) r y voirhasbeenusedforseverecerebralinfections(93,94,95). intheaqueousorvitreousofuninflamedeyes,withonly0.3(cid:5)g/ml 1 The concentrations of 5FC in human CSF are similar to its observed in the cornea, despite plasma concentrations of more 0 , correspondingserumconcentrations(91,96,250),andacombi- than10timesthisvalue.Withinflamedeyes,concentrationsinthe 2 0 nation of 5FC with AmBd or L-AMB is a recognized first-line aqueousandvitreousarestill4-and10-foldlower,respectively, 1 inductiontherapyforcryptococcalmeningitis(97). than those in the plasma, while in the cornea they are low and 9 The three echinocandins, i.e., caspofungin, micafungin, and unchangedrelativetothoseinuninflamedeyes.Despitethesere- b y anidulafungin, are large, amphipathic, cyclic peptides—proper- sults,itraconazoleisasefficaciousasketoconazoleandflucona- g ties that do not ordinarily favor penetration into the brain and zoleagainstCandidaalbicansendophthalmitisinvivowhenther- u e CSF(98,99).Therearenohumandataforanidulafungin.How- apyisinitiatedwithin24hofinfection(120).Similarly,asingle s t ever, its concentration in rabbit brains after multiple dosing is patientwithC.albicansendophthalmitiswastreatedsuccessfully onlyabout10%ofthemaximumconcentrationofdruginserum with200mg/dayofitraconazole(capsules)andtwovitrectomies (C )(100,101).Deliveryof14C-anidulafungin(astotaldrug- (121).Thiswasdespiteconcentrationsintheaqueousandvitre- max derivedradioactivity)intothebrainsofratsisdelayedcompared oushumorsthatwereundetectableand0.02(cid:5)g/ml,respectively, tothatintothebloodandothertissues,anditisnotdetectablein whileplasmaconcentrationswereapproximately0.5(cid:5)g/ml.Hey- braintissueuntil24hafterasingledose(102).Incontrast,CSF kants and colleagues (122) have also reported that itraconazole concentrationsaresimilartothoseinthebloodwithin30minof concentrationsinhumanaqueousareusuallyonly1to2ng/ml. dosing (102). The administration of caspofungin to rodents re- Thereareminimaldataforposaconazole,butthesesuggestthat sultsinbraintissueconcentrationsandexposuresthatareapprox- it does penetrate into the inflamed eye. In a single patient with imately10%ofthoseinplasma(103,104).Inasinglepatientwith Fusarium solani keratitis and ophthalmitis, receiving 200 mg CNS coccidioidomycosis, CSF concentrations of caspofungin orally (p.o.) four times daily plus topical instillation of the oral wereundetectable,despiteconcentrationsinplasmaof2.7to5.5 solution, the aqueous and vitreous/plasma concentration ratios (cid:5)g/ml (105). Similarly, the CSF/plasma concentration ratios of were0.6and0.21,respectively,andtherapywassuccessful(244). threepatientsreceivingmicafunginwerelowandvariable,ranging Two patients, with rhinofacial and orbital zygomycoses, each 74 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents received0.6mg/kgintravenous(i.v.)AmBd(123).Penetrationof conazolewas7(139),whileHeykantsandcolleagues(73)reported AmBdintoboththeaqueousandvitreousoftheinfectedeyewas concentrations0.9to2.4timeshigherthanthoseintheplasmasof higherinthepatientwithrhinofacialdiseaseandextensiveretinal fourpatients.However,itraconazoleconcentrationsinbronchoal- inflammation(fluid/serumconcentrationratioof0.4)thaninthe veolarlavage(BAL)fluidandairwaytissuewere10-foldlowerthan secondpatient,whohadminimalretinalinflammation(ratioof thoseinplasmainapatientwithallergicbronchopulmonaryasper- 0.06).PenetrationofallformulationsofamphotericinBintothe gillosis(ABPA)(140).Itraconazolehasbeenusedextensivelytotreat eyesofrabbitsisalsoenhancedbyinflammation(124,125,249). pulmonaryfungalinfections. Indeed,amphotericinBisnotdetectedinnoninflamedeyes,even Postmortemstudiesshowlungtissuehomogenateconcentra- aftermultipledosingofAmBd,ABLC,orL-AMB(16,124,125). tionsforvoriconazolethatarecomparablewiththeplasmacon- Consequently,intracameralinjectionisthefavoreddeliveryroute centrations(80,141).Involunteersreceivingani.v.loadingdose for these agents in patients with severe keratomycosis or endo- onday1andthen200mgofvoriconazolep.o.twiceaday(b.i.d.), phthalmitis. For AmBd, this may lead to significant local toxicity, the ELF/plasma concentration ratio was 11 (142). However, in whichissomewhatamelioratedbylipidformulations(109). volunteersreceivingthesamei.v.loadingdoseonday1,butfol- Allthreeechinocandinsalsoshowlimitedpenetrationintothe lowedbythreedosesof4mg/kgi.v.every12h(q12h),theELF/ D aqueousandvitreoushumorsoflaboratoryanimalsaftersystemic plasmaconcentrationratioatsteadystatevariedover12hfrom o w administration, with either undetectable or low concentrations approximately 6 to 9, while for alveolar macrophages the ratio n relativetothoseinplasma(100,108,109,126,127,128).However, variedfromapproximately3.8to6.5(58).Posaconazoleexhibits lo micafunginconcentrationsspecificallyintheretinaandchoroid ELFconcentrationsinhumanssimilartothoseseenintheplasma, a d of the eyes of rabbits range from 0.75 to 15.97 (cid:5)g/ml and are buttheexposureinalveolarcellsisover30timesthatinplasmain e d comparablewiththeconcentrationsinplasma(129).Aswitham- both volunteers (57) and lung transplant patients (143). It has f photericinB,inflammationappearstoimprovetheextentofechi- been suggested that high intracellular posaconazole concentra- r o nocandin penetration (127). Potentially subtherapeutic vitreal tionsmayexplainitseffectivenessforprophylaxis(Fig.2A)(33). m penetration of caspofungin has been associated with treatment Meanlungtissueconcentrationsofposaconazoleinrabbitshave h failureinCandidaalbicansendophthalmitis(130),andlowcon- beenreportedtorangefrom0.3(cid:5)g/mlto2.1(cid:5)g/mlafterdosingat tt p centrationsofcaspofunginweremeasuredintheaqueousofone 2to6mg/kg(145). :/ / humanendophthalmitispatient(113).Similarly,lowmicafungin TheadministrationofallformulationsofamphotericinBre- c m concentrationsintheaqueousandvitreousofaC.albicansendo- sultsinquantifiableconcentrationsintheELFinbothrabbitsand r . phthalmitispatient(0.001%ofthesimultaneousconcentrationin humans,buttheplasma/ELFconcentrationratiosappeartodiffer a s plasma)wereassociatedwithclinicalfailure(131),andthedrug betweenformulationsandspecies.Theprecisestateoftheampho- m wasalsoineffectiveinapatientwithendophthalmitiscausedby tericin in these studies is not clear (i.e., free, protein bound, or . o Candidatropicalis,despitesevereinflammationandaMICof0.03 lipidassociated).Furthermore,thebiologicalrelevanceoftheto- r g (cid:5)g/ml(132). tal concentrations associated with each formulation is also un- / o clear. Human data for the various amphotericin formulations n Lung suggestthattheremaybesomedifferencescomparedwithrabbits J a Pulmonaryinfectionbeginswithintheairspace(Fig.2A).There- (146,147).Thus,intravenousABLCproducesELFamphotericin n fore,fortheagentsusedforprophylaxisortreatmentofinfection Bconcentrationsthatareapproximately4timesthoseproduced u a confinedtotheairspace,concentrationsinepithelialliningfluid afteradministrationofL-AMBinhumans(147).In18patients r y (ELF)andwithinpulmonaryalveolarmacrophagesareofdirect undergoingthoracotomyandresectionforlungcancer,asingle 1 importance.TheinhalationofaerosolizedamphotericinBformu- doseof1.5mg/kgi.v.ofL-AMBresultedinhysteresis,suchthat 0 , lationsisapotentialoptionforprophylaxis(133,134,135).Anti- tissue/plasmaconcentrationratioswere0.29and2.5at10and25 2 0 fungaldrugconcentrationswithinELFafteraerosolinhalationor hpostdose,respectively(248).Inapostmortemstudy,lungtissue 1 systemic administration were recently reviewed (12). However, homogenateconcentrationswerefoundtobe3timeshigherwith 9 fortreatmentofestablishedinvasiveinfections,drugconcentra- asimilardoseofABLCthanwithL-AMB(90).Similarly,ABLC b y tionsinthelungparenchymamaybemorerelevant(Fig.2Band concentrations in mouse lung homogenates exceeded those for g C).Drugconcentrationsmayalsobemeasurableinanumberof equivalentdosesofL-AMB(39).Pulmonaryinflammationmay u e otherrespiratoryfluids,includingbronchialsecretions,sputum, increase amphotericin concentrations following administration s t pleuralfluid,andpulmonarylymph(seebelowandFig.7). ofL-AMB(148).TheamphotericinBformulationsremainfirst- Humanstudiessuggestthat18F-fluconazoledistributesrapidly lineagentsforthetherapyofpulmonaryfungalinfections. intothelungtissueofvolunteers,producingconcentrationsap- Therearenopublisheddataforechinocandinconcentrations proximatelydoublethoseinplasma(71).In20patientsreceiving withinhumanlungtissue.However,theconcentrationsofcaspo- asingle200-mgdoseoffluconazole,thelungtissue/plasmacon- fungininalveolarmacrophageswere(cid:3)5timesthecorresponding centrationratiorangewas1.1to1.6(136).Similarly,theflucona- concentrationsinplasmainasinglepatient(149).Bothanidula- zole ELF/plasma concentration ratio in cats was 1.2 (137). Flu- funginandmicafunginalsoaccumulatedinthealveolarmacro- conazolealsoreadilypenetratestheextracellularspaceoftherat phagesofvolunteers,attainingconcentrationsapproximately14 lung(fluid/plasmaconcentrationratioof1.38),andthisisunaf- and4timeshigherthanthoseinplasma,respectively(58,62).In fected by inflammation (138). Itraconazole exhibits ELF expo- 18lungtransplantpatientsreceivingasingle150-mgi.v.micafun- suresthatareone-thirdoftheplasmaAUCinhumanvolunteers, gindose,ELF/plasmaandalveolarcell/plasmaconcentrationra- while the AUC in alveolar cells is more than double that of the tios varied with time postdose. Mean ratios ranged from 0.1 to plasma(56).Inpostmortemsamplesfromfourhematologypa- 1.53 at 3 h and from 1.1 to 6.2 at 24 h postdose (62). The vast tients, the mean lung tissue/plasma concentration ratio of itra- majority of anidulafungin and micafungin found in the ELF is January2014 Volume27 Number1 cmr.asm.org 75 Feltonetal. presentwithinmacrophagesratherthaninthefluiditself(58,61, (67,157,158)anditraconazole(73,159)havebothbeendetected 62).Caspofungin,micafungin,andanidulafunginexhibitlungtis- inthesalivaandsputumofpatients(Fig.7).Consistentwiththeir sueexposuresinrodentsthatexceedthoseinplasmaby1.1-fold, physicochemicalproperties(Table1),theconcentrationratiosfor 2.8-fold,and10-fold,respectively(102,103,150). fluconazoleinsalivaandsputumcomparedwithserumare(cid:4)1, whileforitraconazoletheyaregenerallymuchlower(73)andvery PulmonaryLymphFluid variable (159). Itraconazole can also be detected in esophageal Therearenohumandataforantifungaldrugconcentrationsin tissue,at3timestheconcentrationinplasma(160),andinbron- pulmonarylymph,butHoeprichandcolleagues(151)examined chialexudates(73).However,clinicaldatasuggestthatflucona- theconcentrationsof5FCandAmBdinsheepcannulatedviathe zole is superior to itraconazole for treating oropharyngeal and afferentductoftherightcaudalmediastinallymphnode.Alldrugs esophagealcandidiasis(161,162).Voriconazoleispresentinthe tested (also including ketoconazole, the triazole Bay n733, and salivaofvolunteers,andconcentrationsincreaseovertime,using AmBdmethylester[AME])appearedpromptlyinthelymphafter astandarddose.Thus,salivaryexposureonday1isapproximately asingleintravenousdose,withtheirconcentrationssubsequently 25%ofthatinplasmaandincreasesto88%ofthatinplasmawith decayingexponentially.Ingeneral,theconcentrationsofallfive multipledosing(163).Fluconazoleandvoriconazoleshowcom- D drugs in lymph slightly exceeded those in plasma measured parableefficaciesinimmunocompromisedpatientswithesopha- o w shortly after the end of the 30-min infusion period (maximum gealcandidiasis(164).Whiletherearenopublisheddataforpo- n ratioforlymphtoplasmaof1.0to1.9),exceptforAME,where saconazole concentrations in saliva, sputum, or mucosal and lo lymphatic concentrations were lower. Koizumi and colleagues esophagealtissues,thisdrugisaseffectiveasfluconazoleintreat- a d (152) also examined AmBd concentrations in sheep lung and ingHIVpatientswithoropharyngealcandidiasis(165). e d lymphafterani.v.infusion.Theconcentrationsinthelymphwere BuccalmucosalconcentrationsofamphotericinBincreaseina f similarto(orslightlyexceeded)thoseintheplasma,dependingon dose-dependentmannerinhumansafterL-AMBadministration r o thedurationoftheinfusion.Giventherangeoflipophilicitiesand and attain concentrations approximately 7 to 43 times those in m plasmaproteinbindingoftheaboveantifungalagents,theseproper- plasma (166). A wide range of amphotericin B concentrations h t tiesdonotseemtohaveasignificantimpactonpenetrationintothe were also detectable in esophageal autopsy samples from seven t p lymphaticsystem,atleastfollowingintravenousadministration. patientsafterAmBdadministration(54). :/ / Theconcentrationsof5FCinhumansalivaareslightlylower c m PleuralFluid thanthoseintheplasma,butthe5FCconcentrationsmeasuredin r . Dataonantifungaldrugpleuralfluidconcentrationsarelimited thebronchialsecretionsofdogsarecomparabletoserumconcen- a s (Fig.7).Voriconazolepenetratesintothepleuralfluid,producing trations(91). m troughconcentrationsinhumansthataresimilartopairedplasma Therearenohumanorlaboratoryanimaldatagivingthecon- . o concentrations (153, 154). For AmBd, pleural fluid concentra- centrationsofcaspofunginormicafunginatthesesites.Anidula- r g tionsareapproximately50%ofthoseinplasma(91,247).How- funginispresentinboththesalivaandesophagusinrabbitswith / o ever,pleuralfluidamphotericinconcentrationsfollowingthead- oropharyngealandesophagealcandidiasis,butonlyatconcentra- n ministrationofL-AMBorABCDareapproximately5%to25%of tionsbetween1%and33%ofthoseinplasma(167).However,all J a theirplasmaexposures(60,155).Penetrationoftheechinocan- threeechinocandinsshowefficacyattheendoftherapyequivalent n dinsintopleuralfluidappearstobelow.Thus,foranidulafungin tothatoffluconazoleafterintravenousadministrationtopatients u a inonepatientwithCandidaempyemaandforthreemicafungin withAIDSandoropharyngealoresophagealcandidiasis(168,169, r y patients,pleuralfluidconcentrationswerelessthan1%and10%, 170).Therearenodatatoindicatewhetheranyefficacydiffer- 1 respectively,ofthosemeasuredintheplasma(107,251). encesbetweenfluconazoleandtheechinocandinsseenonlon- 0 , ger-termfollow-upofthesepatientsarerelatedtoresidualtis- 2 BronchialSecretions sueconcentrations. 01 Watkinsandcolleagues(140)demonstrated,foronepatient,that 9 itraconazoleaccumulatestoapproximatelytwicetheplasmacon- Heart b y centrationinbronchialbiopsytissueandisalsodetectable(atonly Fluconazoleandvoriconazoleconcentrationsinhumanhearttis- g ng/ml concentrations) in BAL fluid and bronchial washings. suearecomparabletothoseinplasma,basedon18F-NMRstudies u e However,noallowancewasmadeforthesignificantdilutionfac- inhealthyvolunteersandautopsydata,respectively(71,80).The s t torinvolvedwiththeirsamplingmethods.Theyconcludedthat pericardialfluid/plasmaconcentrationratiosoffluconazolein20 itraconazoleispresentin“relativelyhigh”concentrationsinpul- patientsrangedfrom0.9to1.0(136).Datafromasinglepatient monary fluids and tissues. In contrast, amphotericin B was de- withdisseminatedaspergillosisalsosuggestthatvoriconazoledif- tected,butonlybrieflypostdoseandatlowconcentrations,inthe fusesintothepericardialfluid,ataconcentrationcomparableto trachealsecretionsofhumans(91)andthetracheasofdogsfol- theplasmaconcentration(153).Autopsydataalsoindicatethat lowingadministrationofAmBd(91),althoughpenetrationmay myocardial voriconazole concentrations are similar to those in bedosedependent(156).For5FC,concentrationsindogbron- otherbodyorgans,includingthelungandkidney(80).Incon- chialsecretionsareapproximately75%ofcorrespondingplasma trast, itraconazole exposure in the hearts of mice after a single concentrations(156). 10-mg/kgi.v.doseisonly8%ofthatinplasma(171).However,in rats, at 1 h postdose, the concentration is 6 times the level in Saliva,Sputum,BuccalMucosa,andEsophagus plasma,andboththeabsoluteconcentrationandtheplasmaratio Theattainmentofeffectiveantifungaldrugconcentrationswithin increasefurtherafter24h(76).Therearenopublishedhuman the saliva, sputum, and bronchial fluid is critical for therapy of heart tissue concentration data for itraconazole. Nevertheless, oropharyngeal,esophageal,andbronchialinfections.Fluconazole itraconazolecancausecongestiveheartfailure(172)vianegative 76 cmr.asm.org ClinicalMicrobiologyReviews TissuePenetrationofSystemicAntifungalAgents inotropic effects, although the precise mechanism is unknown areapproximately10timesthoseinhumanplasma(Fig.7)(67). (173). Fluconazolealsoreadilypenetrateskidneytissue,withpeaktissue Postmortem studies of patients following administration of concentrationsof18F-fluconazolethatareapproximately4times AmBdorL-AMBshowawiderangeofconcentrations((cid:6)0.1to thepeakinhumanplasma(71).Similartofluconazole,voricona- 9.1(cid:5)g/g)ofamphotericininhearttissueandmyocardium(52, zoleislargelyexcretedviatheurine(78%)andfecesinhumans, 90).Intheheartsofdogs,theAmBdconcentrationafter14daysof but mostly as metabolites, with less than 2% excreted as un- dosing with 0.6 mg/kg/day is approximately 7 times the corre- changeddrug(84).Postmortemstudiesofeightpatientsshowed sponding plasma value (37), while in rats given a single AmBd thatvoriconazolewasdetectableinkidneytissue,atameancon- doseof1.0mg/kg,itisapproximately3timeshigher(225). centrationof6.47(cid:5)g/g,butwithsignificantinterindividualvari- Aswithfluconazole,theconcentrationof18F-5FCinratheart ability (80). In contrast to fluconazole, itraconazole concentra- tissueissimilartothatinblood(174). tions in urine are very low due to its negligible renal excretion Caspofunginisdetectableintherodentheartafterasingledose, (122).Whenadministeredintravenouslytorats,itraconazoleat- ataconcentrationapproximately20%ofthepeakplasmaconcen- tainsconcentrationsinkidneytissueof5.5(cid:5)g/gafter1h(3times tration, which then declines at a lower rate than in the plasma theplasmaconcentration)and5.9(cid:5)g/g(31timestheplasmacon- D (103,104).Incontrast,anidulafunginexposureinthehearttissue centration)at24hpostdose(76).However,akidneytissuecon- o ofneonatalratsincreasestoapproximately1.3timestheconcen- centrationofonly0.5(cid:5)g/g(1.5timestheplasmaconcentration) w n trationinplasmaafterasingledoseand1.8timesaftermultiple wasrecordedinasinglepatient(73). lo dosing(175). Thekidneysareaprimarysiteoftoxicityforallpolyenes.Post- a d mortem studies show that amphotericin B (from AmBd or L- e Liver AMB)isreadilydetectableinkidneytissue(52–54,90).Therenal d f Givenitsmajorroleinmetabolismandclearance,manyxenobi- concentrationofamphotericinBinratkidneysafterAmBdad- r o oticsarelikelytoachievehigherconcentrationsintheliverthanin ministrationis10timesthatintheserum,whilethecorrespond- m theplasma.Twentyminutesafterintravenousadministration,the ingrenalconcentrationafterL-AMBadministrationisone-third h concentration of 18F-fluconazole in human livers is approxi- that of AmBd and only 4 times the serum concentration (177). tt p mately3timesthepairedplasmaconcentration,whileinrabbitsit ThisisconsistentwiththereductioninamphotericinB-associated :/ / istwicethatintheplasma(71).Itraconazolealsoaccumulatesin renal toxicity after its administration as L-AMB (or other lipid c m the liver (Fig. 7) (122), and it reached a concentration in one amphotericinformulations)ratherthanAmBd(178).Theclear- r . patientthatwasoverthreetimesthatinplasma(73).However,in anceofamphotericinBfromthekidneysofrodentsisprolonged, a s the livers of rats, itraconazole achieves concentrations that are andthedrugisdetectableforatleast48hafterasingleadminis- m approximately13timesthoseinplasma1hafterasingleintravenous tration of AmBd (177) and at least 14 days after a prolonged . o dose,andthisincreasesfurtherover24h(76).Theplasmaconcen- courseofL-AMB(38).Inmousekidneyhomogenates,concentra- r g trationdeclines9-foldoverthisperiod,resultinginatissue/plasma tions of amphotericin B following administration of L-AMB or / o concentrationratioexceeding150at24hpostdose(76). ABLCatadoseof80mg/kgi.p.arecomparabletothoseobserved n Incontrast,thenucleoside18F-5FC,whichisevenmorepolar with20mg/kgi.p.ofAmBd(39). J a thanfluconazole,attainsconcentrationsinratliversthataresim- Likefluconazole,5FCisprincipallyeliminatedintheurineasun- n ilartothoseinplasma(174). changeddrug(97%),andplasmaclearanceiscloselyrelatedtocreat- u a Hepatic concentrations of amphotericin are detectable from inineclearance(91,179).Theconcentrationof18F-5FCinratkidneys r y tissue obtained at postmortem (52, 54). There is a relationship is3timesthatinblood2hafterdosing,withveryhighconcentrations 1 betweentheplasmaexposureofL-AMBandlivertissueconcen- (60timestheplasmaconcentration)intheurine(174). 0 , trationsofamphotericinBinhumanautopsysamples.AfterL- Allthreeechinocandinsreadilypenetrateintothekidneytissue 2 AMB dosing, the mean amphotericin B concentration that was oflaboratoryanimals.Afterasingledose,14C-anidulafunginex- 01 achievedwas102(cid:5)g/gliver,butwithsubstantialinterpatientvari- posure in rat kidney tissue is approximately 10 times that in 9 ability (90). AmphotericinBhasalongresidencetimeinhepatic plasma (102). In addition, anidulafungin exhibits an extended b y tissueofmice.Concentrations(measuredusingbioassay)aredetect- residencetimeinthekidney,withaterminalhalf-lifethatistwice g able 14 days after dosing with L-AMB (38). However, Andes and that in plasma (102). Anidulafungin also accumulates in rabbit u e colleagues(39)haveshownthatABLCexhibitslowerconcentrations kidneysaftermultipledosing(100).Afterasingledoseadminis- s t inmouseliverhomogenatesthanequivalentdosesofAmBdorL- teredtomice,caspofunginexhibitsalongermeanresidencetime AMB(atleastfollowingintraperitoneal[i.p.]administration). in the kidneys (31) and has a tissue/plasma concentration ratio Theexposuresofanidulafunginandcaspofunginintheliversof over24hofapproximately7(103).Incontrast,micafungincon- rodents are raised approximately 10- and 16-fold, respectively, centrationsinratkidneysexceedthoseinplasma5minafterdos- comparedwithplasmaconcentrations(102,103).Thisislargely ing,by1.6-fold,butthendeclineinparallelwithplasmaconcen- relatedtodelayedclearancefromtheliver.However,micafungin trations(150).Allthreeechinocandinsexhibitlowconcentrations appearstobehavedifferently,withalowerpeakconcentrationin ((cid:6)2%ofthedose)(104,181,182)ofunchangeddruginhuman theliversofratsandanAUCthatissimilartothatoftheplasma urine.Therearereportedcasesoftheefficacyoftheechinocandins (150).Forcaspofungin,specifichepatictransportersthatmediate in patients with candiduria (183, 184), but this may reflect the uptakeintoratliverhavebeenidentified(26). attainmentofhighconcentrationsinrenalparenchyma. Kidney Spleen Approximately 80% of a fluconazole dose is eliminated as un- Fluconazolepenetratesintothespleeninbothhumansandrab- changeddrugintheurine.Consequently,urinaryconcentrations bits,althoughtodifferentextents(71,185,213).Higherconcen- January2014 Volume27 Number1 cmr.asm.org 77
Description: