ebook img

TiO2 Nanotube Arrays: Synthesis, Properties, and Applications PDF

379 Pages·2009·7.581 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview TiO2 Nanotube Arrays: Synthesis, Properties, and Applications

TiO Nanotube Arrays 2 Craig A. Grimes Gopal K. Mor l TiO Nanotube Arrays 2 Synthesis, Properties, and Applications CraigA.Grimes GopalK.Mor PennsylvaniaStateUniversity PennsylvaniaStateUniversity ElectricalEngineering MaterialsResearchInstitute Department UniversityPark,PA16802 UniversityPark,PA16802 USA USA [email protected] [email protected] ISBN978-1-4419-0067-8 e-ISBN978-1-4419-0068-5 DOI10.1007/978-1-4419-0068-5 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009930642 #SpringerScienceþBusinessMedia,LLC2009 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjectto proprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface As the title of this book implies, we examine the fabrication, properties, and different applications of highly ordered vertically oriented TiO nanotube arrays 2 madebyTianodization.SincethefirstreportofthehighlyorderedTiO nanotube 2 arrays by Gong et al. (J Mater Res 16:3331–3334, 2001), the field has grown so rapidlyastomakeitdifficulttosummarizethescopeofallrelatedwork.Builtupon a suite of synthesis chemistries that enable significant differences in nanotube morphologies,theTiO nanotubearrayshavedemonstratedremarkableproperties 2 that have successfully given rise to a large number of diverse applications that include, but are certainly not limited to, super capacitors, solar cells, drug eluting surfaces, hydrogen sensors, biofiltration membranes, and photoelectrochemical cells for the solar generation of hydrogen. It appears, for the moment, impossible tocompletelycanvasthefieldasitmovesmorerapidlythanonecanreportonit.Be thatasitmaywehavetriedtoatleasttouchonkeyaspectsofthefield,reviewing thecontributionsmadebyvariousresearchgroupstothefabrication,andapplica- tionofthenanotubearrays,andapologizetothoseauthorsofsignificantworkwe mayhaveoverlooked. The book is intended for researchers in the field, which could encompass undergraduate students, graduate students and beyond. It is meant as both an introductory work as well as a reference to the field. While the book could be read cover to cover by those having such energy and interest, the individual chapters are self-contained per their specific topic. Chapter 1 considers nanotube arraysynthesistechniques.Chapter2summarizesthestructural,elemental,optical, mechanical, and electrical properties of the TiO nanotube arrays. Chapter 3 2 examinesuseofTiO nanotubearraysashydrogengassensors.Chapter4considers 2 useofthematerialarchitectureforphotoelectrochemicalwatersplitting.Chapter5 considers application of TiO nanotube arrays to dye-sensitized solar cells and 2 polymer-basedsolidstateheterojunctionsolarcells.Chapter6discussestheuseof TiO nanotubesinbiologicalapplications,includingtheiruseasabaseforbiosen- 2 sors, drug eluting surfaces, osseointegration, biotemplating, enhanced blood clotting,andasbiofiltrationmembranes. v vi Preface We wish to thank Emeritus Professor Dale M. Grimes for helpful comments towardsimprovingthemanuscript,theanonymousreviewersofthebookwhoput forth many helpful suggestions, and thank the many authors who generously granted us permission to use their figures in this book, with a particular nod to Dr. Radim Bera´nek, Department of Chemistry & Pharmacy, University of Erlangen-Nu¨rnberg,whowaswillingtoredrawsomeofhisfiguresforuseherein. UniversityPark,PA CraigA.Grimes GopalK.Mor Contents Introduction ................................................................ xiii 1 FabricationofTiO NanotubeArraysbyElectrochemical 2 Anodization:FourSynthesisGenerations ................................. 1 1.1 Introduction ............................................................... 1 1.1.1 TheElectrochemicalAnodizationProcess ........................ 2 1.2 NanotubeArraySynthesisUsingAqueousElectrolytes: TheFirstGeneration ...................................................... 3 1.2.1 HF-BasedElectrolytes ............................................. 3 1.2.2 TaperedConicalShapeNanotubes ................................ 5 1.2.3 WallThicknessVariation ......................................... 6 1.2.4 UsingHNO /HF ................................................... 7 3 1.2.5 UsingH SO /HF .................................................. 8 2 4 1.2.6 UsingH Cr O /HF ................................................ 8 2 2 7 1.2.7 UsingCH COOH/NH F,H SO /NH F ........................... 9 3 4 2 4 4 1.2.8 UsingH PO /HF,H PO /NH F .................................. 10 3 4 3 4 4 1.3 NanotubeArraySynthesisUsingBufferedElectrolytes: TheSecondGeneration .................................................. 12 1.3.1 Step-by-StepProcedure:SolutionPreparation, MixingandpHAdjustment ...................................... 15 1.3.2 SolutionSetPreparation .......................................... 15 1.3.3 AnodizationwithConstantCurrentDensity ..................... 16 1.4 SynthesisofNanotubeArraysUsingPolarOrganicElectrolytes: TheThirdGeneration .................................................... 18 1.4.1 UsingFormamideandDimethylformamideelectrolyte ......... 18 1.4.2 DimethylSulfoxideElectrolytes ................................. 22 1.4.3 EthyleneGlycolElectrolytes ..................................... 26 1.4.4 DiethyleneGlycolElectrolytes ................................... 34 1.4.5 UsingGlycerolandNH F ........................................ 37 4 1.4.6 Methanol,Water,andHF ........................................ 38 1.5 NanotubeArraySynthesisUsingNon-FluorideBasedElectrolytes: TheFourthGeneration .................................................. 38 vii viii Contents 1.5.1 UsingHCl ........................................................ 40 1.5.2 H O AqueousElectrolytes ...................................... 40 2 2 1.5.3 HCl/H O AqueousElectrolytes ................................. 42 2 2 1.6 FabricationofTransparentTiO NanotubesArrays .................... 44 2 1.7 MechanisticModelofNanotubeArrayFormationby PotentiostaticAnodization .............................................. 48 References .................................................................... 59 2 MaterialPropertiesofTiO NanotubeArrays:Structural,Elemental, 2 Mechanical,Optical,andElectrical ....................................... 67 2.1 Introduction .............................................................. 67 2.2 StructuralandElementalCharacterization .............................. 67 2.2.1 AnodicFormationofCrystallineMetalOxideNanotubes ...... 73 2.2.2 ImprovedCrystallizationviaSolvothermalTreatment .......... 76 2.2.3 PartiallyCrystallineAnatasePhaseNanotubes byAnodization ................................................... 78 2.3 CharacterizationofDopedTitaniaNanotubes .......................... 79 2.3.1 CarbonIncorporationWithintheNanotubes .................... 79 2.3.2 NitrogenIncorporationWithintheNanotubes ................... 80 2.3.3 Boron-DopedNanotubes ......................................... 82 2.3.4 OrganicBath ...................................................... 82 2.3.5 CdS-CoatedNanotubes ........................................... 83 2.4 OpticalPropertiesofTitaniaNanotubesArrays ........................ 83 2.4.1 FiniteDifferenceTimeDomainSimulation ofLightPropagationinNanotubeArrays ........................ 83 2.4.2 MeasuredOpticalProperties ..................................... 88 2.4.3 EllipsometricMeasurements ..................................... 92 2.4.4 RamanSpectraMeasurements ................................... 96 2.5 ElectricalPropertyMeasurements ...................................... 97 2.5.1 PhotocurrentTransientMeasurements ........................... 97 2.5.2 CapacitanceMeasurements ....................................... 98 2.6 MechanicalProperties ................................................. 105 References .................................................................. 106 3 TiO NanotubeArrays:ApplicationtoHydrogenSensing ............ 115 2 3.1 Introduction ............................................................ 115 3.2 HighTemperatureSensorsusingTiO NanotubeArrays ............. 117 2 3.3 Self-CleaningRoom-TemperatureHydrogenSensors ................ 121 3.4 Room-TemperatureHydrogenSensorsofEnhancedSensitivity ..... 126 3.4.1 TiO NanotubeArraysonTiFoil ............................... 126 2 3.4.2 TransparentHydrogenSensors .................................. 131 3.5 ExtremeHydrogenGasSensitivitiesatRoomTemperature ......... 132 3.6 TranscutaneousHydrogenMonitoringusingTiO 2 NanotubeArrays ....................................................... 136 3.6.1 CrossInterferenceandCalibration .............................. 137 Contents ix 3.6.2 TranscutaneousHydrogenandLactoseIntolerance ............ 141 References .................................................................. 142 4 TiO NanotubeArrays:ApplicationtoPhotoelectrochemical 2 WaterSplitting ............................................................ 149 4.1 Introduction ............................................................ 149 4.2 PhotoelectrolysisCell ................................................. 150 4.2.1 WaterSplittingEfficiency ....................................... 153 4.2.2 QuantumEfficiencyCalculation ................................ 157 4.3 PhotoelectrolysisUsingUnmodifiedTiO Nanotubes ................ 158 2 4.3.1 ShortNanotubes ................................................. 159 4.3.2 MediumLengthNanotubes ..................................... 161 4.3.3 LongNanotubes ................................................. 164 4.3.4 RoughnessFactor ................................................ 166 4.3.5 EffectofElectrolyteAdditives .................................. 168 4.4 PhotoelectrolysisUsingAnionicandCationicDoped TiO Nanotubes ........................................................ 170 2 4.4.1 N-DopedTiO Nanotubes ....................................... 170 2 4.4.2 CarbonDopedTiO Nanotubes ................................. 174 2 4.4.3 Sulfur-DopedTiO Nanotubes .................................. 175 2 4.4.4 Boron-DopedTiO Nanotubes .................................. 176 2 4.4.5 Silicon-DopedTiO Nanotubes ................................. 177 2 4.5 PhotoelectrolysisUsingSurface-SensitizedTiO Nanotubes ........ 178 2 4.5.1 CdSSensitizedTiO Nanotubes ................................ 178 2 4.5.2 CdSeSensitizedTiO Nanotubes ............................... 180 2 4.5.3 CdTeSensitizedTiO NanotubeArrays[137] .................. 180 2 4.5.4 WO CoatedTiO Nanotubes ................................... 183 3 2 4.5.5 PtSensitizedTiO Nanotubes ................................... 184 2 4.6 OtherApproaches ..................................................... 185 4.6.1 PolyoxophosphotungstateEncapsulatedin TiO Nanotubes .................................................. 185 2 4.6.2 LightSensitizedEnzymaticSystem withTiO Nanotubes ............................................ 186 2 4.7 Self-BiasedPhotoelectrochemicalDiodesUsingCu-Ti-OTernary OxideNanotubes ...................................................... 188 4.7.1 Fabricationofp-TypeCopperRichCu-Ti-ONanotubes ....... 189 4.7.2 PhotoelectrochemicalProperties ................................ 192 4.7.3 Self-BiasedHeterojunctionPhotoelectrochemicalDiodes ..... 193 4.8 VisiblelightresponsiveTi-Fe-Oternaryoxidenanotubes ........... 195 4.8.1 Benefitsofnanostructuringhematite ............................ 195 4.8.2 Self-AlignedNanoporousIron(III)Oxide ...................... 196 4.8.3 PhotoelectrochemicalPropertiesofSelf–Aligned NanoporousIron(III)Oxide .................................... 198 4.8.4 FabricationandStructuralCharacterizationof Ti-Fe-ONanotubes .............................................. 198 x Contents 4.8.5 PhotoelectrochemicalPropertiesofTi–Fe–ONanotubes ....... 203 4.9 CompositionallyGradedTernaryOxideNanotubeArrays ........... 205 References .................................................................. 206 5 Dye-SensitizedandBulk-HeterojunctionsSolarCells: TiO NanotubeArraysasaBaseMaterial .............................. 217 2 5.1 Introduction ............................................................ 217 5.2 DyeSensitizedSolarCells:OperatingPrinciples ..................... 218 5.2.1 KeyDSCProcesses .............................................. 219 5.2.2 FactorsInfluencingConversionEfficiencies .................... 220 5.2.3 NanocrystallineDSCs ........................................... 223 5.3 SolarCellParameters .................................................. 225 5.4 J–VCharacterizationUnderStandardConditions .................... 226 5.4.1 CalibratingtheSolarSimulatorforDSC andPolymericSolarCells ....................................... 226 5.4.2 ExperimentalSetup .............................................. 227 5.5 BenefitsofVerticallyOrientedUniformlyAlignedTiO 2 NanotubeArraysinDSCs ............................................. 228 5.5.1 FiniteDifferenceTimeDomainApplicationtoDSCs .......... 229 5.6 LiquidJunctionDSCs ................................................. 234 5.6.1 TransparentTiO NanotubeArraysonFTO 2 CoatedGlass:FrontSideIllumination .......................... 239 5.6.2 TiO NanotubeArraysonTiFoil:BackSideIllumination ..... 245 2 5.6.3 ChargeCollectionProperties .................................... 252 5.6.4 ElectronTransportandRecombinationProperties .............. 253 5.7 PolymerBasedBulkHeterojunctionSolarCells ..................... 258 5.7.1 TiO NanotubesonFTOGlass:PolymericBulk 2 HeterojunctionSolarCells ...................................... 262 5.7.2 SolarCellFabricationandPerformance ........................ 266 5.7.3 TiO -PolymerBasedSolarCells:BackSideIllumination 2 Geometry ........................................................ 270 References .................................................................. 274 6 UseofTiO NanotubeArraysforBiologicalApplications ............ 285 2 6.1 Introduction ............................................................ 285 6.2 Biosensors ............................................................. 286 6.2.1 H O Detection:NanotubesCo-immobilized 2 2 withHRPandThionine ......................................... 286 6.2.2 Co-ImmobilizedwithCytochromec ............................ 288 6.2.3 DetectionofH O andGlucose ................................. 288 2 2 6.3 EnhancedBloodClotting .............................................. 290 6.4 CellAdhesionandOsteoblastGrowth ................................ 292 6.5 DrugElutionfromTiO Nanotubes ................................... 296 2 6.6 HydrophobicNanotubes:SAMsonSurfaceonHydrophilic Nanotubes .............................................................. 301 Contents xi 6.7 BiologicalFluidsFiltrationandDrugDeliveryUsingTiO 2 NanotubularMembrane ............................................... 302 6.8 ApplicationofPhotocatalyticTiO NanotubeProperties ............. 308 2 References .................................................................. 309 7 ConclusionsandNewDirections ......................................... 315 7.1 Conclusions ............................................................ 315 7.2 SomeFutureDirections ............................................... 320 7.2.1 IntercalationandSupercapacitors ............................... 320 7.2.2 CO ReductionUsingVisibleLight ............................ 329 2 References .................................................................. 340 Index ........................................................................... 347

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.