ebook img

Time Series Econometrics PDF

421 Pages·2016·6.145 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Time Series Econometrics

Springer Texts in Business and Economics Klaus Neusser Time Series Econometrics Springer Texts in Business and Economics Moreinformationaboutthisseriesathttp://www.springer.com/series/10099 Klaus Neusser Time Series Econometrics 123 KlausNeusser Bern,Switzerland ISSN2192-4333 ISSN2192-4341 (electronic) SpringerTextsinBusinessandEconomics ISBN978-3-319-32861-4 ISBN978-3-319-32862-1 (eBook) DOI10.1007/978-3-319-32862-1 LibraryofCongressControlNumber:2016938514 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Overthepastdecades,timeseriesanalysishasexperiencedaproliferousincreaseof applicationsineconomics,especiallyinmacroeconomicsandfinance.Todaythese toolshavebecomeindispensabletoanyempiricallyworkingeconomist.Whereasin thebeginningthetransferofknowledgeessentiallyflowedfromthenaturalsciences, especially statistics and engineering, to economics, over the years theoretical and applied techniques specifically designed for the nature of economic time series and models have been developed. Thereby, the estimation and identification of structuralvectorautoregressivemodels,theanalysisofintegratedandcointegrated time series, andmodelsofvolatility havebeenextremelyfruitfulandfar-reaching areas of research. With the award of the Nobel Prizes to Clive W. J. Granger and RobertF. Engle III in 2003and to ThomasJ. Sargentand ChristopherA. Sims in 2011, the field has reached a certain degree of maturity. Thus, the idea suggests itself to assemble the vast amount of material scattered over many papers into a comprehensivetextbook. Thebookisself-containedandaddresseseconomicsstudentswhohavealready some prerequisite knowledge in econometrics. It is thus suited for advanced bachelor,master’s,orbeginningPhDstudentsbutalsoforappliedresearchers.The book tries to bring them in a position to be able to follow the rapidly growing research literature and to implement these techniques on their own. Although the book is trying to be rigorous in terms of concepts, definitions, and statements of theorems, not all proofs are carried out. This is especially true for the more technically and lengthy proofs for which the reader is referred to the pertinent literature. The book covers approximately a two-semester course in time series analysis andisdividedintwoparts.Thefirstparttreatsunivariatetimeseries,inparticular autoregressivemoving-averageprocesses.Most ofthe topicsare standardandcan form the basis for a one-semester introductory time series course. This part also contains a chapter on integrated processes and on models of volatility. The latter topicscouldbeincludedinamoreadvancedcourse.Thesecondpartisdevotedto multivariatetimeseriesanalysisandinparticulartovectorautoregressiveprocesses. It can be taught independently of the first part. The identification, modeling, and estimation of these processes form the core of the second part. A special chapter treatstheestimation,testing,andinterpretationofcointegratedsystems. Thebook alsocontainsachapterwithanintroductiontostatespacemodelsandtheKalman v vi Preface filter. Whereasthe booksis almost exclusivelyconcernedwith linear systems, the last chapter gives a perspectiveon some more recent developmentsin the context ofnonlinearmodels.Ihaveincludedexercisesandworkedoutexamplestodeepen the teachingand learning content.Finally, I have producedfive appendiceswhich summarizeimportanttopicssuchascomplexnumbers,lineardifferenceequations, andstochasticconvergence. Astimeseriesanalysishasbecomeatremendouslygrowingfieldwithanactive researchin manydirections,it goeswithoutsayingthatnotalltopicsreceivedthe attentiontheydeservedandthatthereareareasnotcoveredatall.Thisisespecially true for the recent advances made in nonlinear time series analysis and in the applicationofBayesian techniques.These two topicsalonewould justify an extra book. The data manipulations and computations have been performed using the software packages EVIEWS and MATLAB.1 Of course, there are other excellent packages available. The data for the examples and additional information can be downloaded from my home page www.neusser.ch. To maximize the learning success, it is advised to replicate the examples and to perform similar exercises with alternative data. Interesting macroeconomictime series can, for example, be downloadedfromthefollowinghomepages: Germany: www.bundesbank.de Switzerland: www.snb.ch UnitedKingdom: www.statistics.gov.uk UnitedStates: research.stlouisfed.org/fred2 The book grew out of lectures which I had the occasion to give over the years in Bern and other universities. Thus, it is a concern to thank the many students, in particular Philip Letsch, who had to work through the manuscript and who called my attention to obscurities and typos. I also want to thank my colleagues andteachingassistantsAndreasBachmann,GregorBäurle,FabriceCollard,Sarah Fischer,StephanLeist,SenadaNukic,KurtSchmidheiny,RetoTanner,andMartin Wagner for reading the manuscript or part of it and for making many valuable criticisms and comments. Specialthanksgo to my formercolleague and coauthor Robert Kunst who meticulously read and commented on the manuscript. It goes withoutsayingthatallerrorsandshortcomingsgotomyexpense. Bern,Switzerland/Eggenburg,Austria KlausNeusser February2016 1EVIEWSisaproductofIHSGlobalInc.MATLABisamatrix-orientedsoftwaredevelopedby MathWorkswhichisideallysuitedforeconometricandtimeseriesapplications. Contents PartI UnivariateTimeSeriesAnalysis 1 Introduction................................................................. 3 1.1 SomeExamples ...................................................... 4 1.2 FormalDefinitions ................................................... 7 1.3 Stationarity ........................................................... 11 1.4 ConstructionofStochasticProcesses................................ 15 1.4.1 WhiteNoise................................................. 15 1.4.2 ConstructionofStochasticProcesses:SomeExamples .. 16 1.4.3 Moving-AverageProcessofOrderOne ................... 17 1.4.4 RandomWalk............................................... 19 1.4.5 ChangingMean............................................. 20 1.5 PropertiesoftheAutocovarianceFunction ......................... 20 1.5.1 AutocovarianceFunctionofMA(1)Processes............ 21 1.6 Exercises.............................................................. 22 2 ARMAModels.............................................................. 25 2.1 TheLagOperator..................................................... 26 2.2 SomeImportantSpecialCases ...................................... 27 2.2.1 Moving-AverageProcessofOrderq ...................... 27 2.2.2 FirstOrderAutoregressiveProcess........................ 29 2.3 CausalityandInvertibility ........................................... 32 2.4 ComputationofAutocovarianceFunction .......................... 38 2.4.1 FirstProcedure.............................................. 39 2.4.2 SecondProcedure........................................... 41 2.4.3 ThirdProcedure............................................. 43 2.5 Exercises.............................................................. 44 3 ForecastingStationaryProcesses ......................................... 45 3.1 LinearLeast-SquaresForecasts...................................... 45 3.1.1 ForecastingwithanAR(p)Process........................ 48 3.1.2 ForecastingwithMA(q)Processes ........................ 50 3.1.3 ForecastingfromtheInfinitePast.......................... 53 3.2 TheWoldDecompositionTheorem................................. 54 3.3 ExponentialSmoothing.............................................. 58 vii viii Contents 3.4 Exercises.............................................................. 60 3.5 PartialAutocorrelation............................................... 61 3.5.1 Definition ................................................... 62 3.5.2 InterpretationofACFandPACF........................... 64 3.6 Exercises.............................................................. 65 4 EstimationofMeanandACF ............................................. 67 4.1 EstimationoftheMean .............................................. 67 4.2 EstimationofACF ................................................... 73 4.3 EstimationofPACF.................................................. 78 4.4 EstimationoftheLong-RunVariance............................... 79 4.4.1 AnExample................................................. 83 4.5 Exercises.............................................................. 85 5 EstimationofARMAModels ............................................. 87 5.1 TheYule-WalkerEstimator.......................................... 87 5.2 OLSEstimationofanAR(p)Model ................................ 91 5.3 EstimationofanARMA(p,q)Model................................ 94 5.4 EstimationoftheOrderspandq .................................... 99 5.5 ModelingaStochasticProcess ...................................... 102 5.6 ModelingRealGDPofSwitzerland................................. 103 6 SpectralAnalysisandLinearFilters..................................... 109 6.1 SpectralDensity...................................................... 110 6.2 SpectralDecompositionofaTimeSeries........................... 113 6.3 ThePeriodogramandtheEstimationofSpectralDensities........ 117 6.3.1 Non-ParametricEstimation ................................ 117 6.3.2 ParametricEstimation...................................... 121 6.4 LinearTime-InvariantFilters........................................ 122 6.5 SomeImportantFilters............................................... 127 6.5.1 ConstructionofLow-andHigh-PassFilters .............. 127 6.5.2 TheHodrick-PrescottFilter................................ 128 6.5.3 SeasonalFilters............................................. 130 6.5.4 UsingFilteredData......................................... 131 6.6 Exercises.............................................................. 132 7 IntegratedProcesses........................................................ 133 7.1 Definition,PropertiesandInterpretation............................ 133 7.1.1 Long-RunForecast ......................................... 135 7.1.2 VarianceofForecastError ................................. 136 7.1.3 ImpulseResponseFunction................................ 137 7.1.4 TheBeveridge-NelsonDecomposition.................... 138 7.2 Properties of the OLS Estimator in the Case ofIntegratedVariables............................................... 141 7.3 Unit-RootTests....................................................... 145 7.3.1 Dickey-FullerTest.......................................... 147 7.3.2 Phillips-PerronTest......................................... 149 Contents ix 7.3.3 Unit-RootTest:TestingStrategy........................... 150 7.3.4 ExamplesofUnit-RootTests .............................. 152 7.4 GeneralizationsofUnit-RootTests.................................. 153 7.4.1 StructuralBreaksintheTrendFunction................... 153 7.4.2 TestingforStationarity..................................... 157 7.5 RegressionwithIntegratedVariables................................ 158 7.5.1 TheSpuriousRegressionProblem......................... 158 7.5.2 BivariateCointegration..................................... 159 7.5.3 RulestoDealwithIntegratedTimesSeries............... 162 8 ModelsofVolatility......................................................... 167 8.1 SpecificationandInterpretation ..................................... 168 8.1.1 ForecastingPropertiesofAR(1)-Models.................. 168 8.1.2 TheARCH(1)Model....................................... 169 8.1.3 GeneralModelsofVolatility............................... 173 8.1.4 TheGARCH(1,1)Model................................... 177 8.2 TestsforHeteroskedasticity ......................................... 183 8.2.1 AutocorrelationofQuadraticResiduals................... 183 8.2.2 Engle’sLagrange-MultiplierTest.......................... 184 8.3 EstimationofGARCH(p,q)Models................................. 184 8.3.1 Maximum-LikelihoodEstimation ......................... 184 8.3.2 MethodofMomentEstimation ............................ 187 8.4 Example:SwissMarketIndex(SMI) ............................... 188 PartII MultivariateTimeSeriesAnalysis 9 Introduction ................................................................ 197 10 DefinitionsandStationarity .............................................. 201 11 EstimationofCovarianceFunction....................................... 207 11.1 EstimatorsandAsymptoticDistributions........................... 207 11.2 TestingCross-CorrelationsofTimeSeries.......................... 209 11.3 SomeExamplesforIndependenceTests............................ 211 12 VARMAProcesses.......................................................... 215 12.1 TheVAR(1)Process ................................................. 216 12.2 RepresentationinCompanionForm................................. 218 12.3 CausalRepresentation................................................ 218 12.4 ComputationofCovarianceFunction............................... 221 13 EstimationofVARModels ................................................ 225 13.1 Introduction........................................................... 225 13.2 TheLeast-SquaresEstimator ........................................ 226 13.3 ProofsofAsymptoticNormality .................................... 231 13.4 TheYule-WalkerEstimator.......................................... 238

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.