RemoteSensingofEnvironment157(2015)170–184 ContentslistsavailableatScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities FelipeL.Loboa,⁎,MayciraP.F.Costaa,EvlynM.L.M.Novob aSpectralLab,DepartmentofGeography,UniversityofVictoria,Victoria,BC,V8W3R4,Canada bNationalInstituteforSpaceResearch(INPE),RemoteSensingDivision,Av.dosAstronautas,1758-JardimdaGranja,SãoJosédosCampos,SP-12227-010,Brazil a r t i c l e i n f o a b s t r a c t Articlehistory: WatersiltationcausedbyartisanalgoldmininghasimpactedtheTapajósRiverBasininBrazilforthepast Received30December2013 40years,howeverspatial-temporalinformationaboutchangesinwaterqualityandconsequencestotheaquatic Receivedinrevisedform30March2014 environmentislacking.Toaddressthis,theLandsatsatellitefamilysensorswereusedtoretrievetotalsuspended Accepted17April2014 solids(TSS)ofthewateroftheTapajósRiverfrom1973to2013.Animageprocessingapproachthatincludesat- Availableonline9July2014 mosphericcorrection,basedonthe6Smodel,andglintremoving,basedonshortwaveinfraredcorrection,was appliedandvalidatedwithinsituradiometricdata.Anoptimizationoftheatmosphericcorrectionhavingdark Keywords: denseforestspectraasreferencewasappliedandallowedarobustcorrectionofMSS,TMandOLIsignaltosurface Landsattime-series Atmosphericcorrection reflectancevalues.Sedimentconcentrationwasestimatedbasedonanon-linearempiricalregressionbetween Deglinting measuredTSSandsatellitesurfacereflectanceatredband.Themulti-temporalanalysisofTSSshowedthatthe Turbidrivers sedimentloadintheTapajósaquaticsystemisinsynchronywithminingactivities,andaconstantseasonalvar- Suspendedsolids iationofwatersiltationisobservedthroughoutthetimeframeofthisstudy.Attheendoftherainyseason,min- Temporalanalysis ingactivitiesintensifyand,coupledwithlowwaterflow,TSSincreases.Duringthehighwaterlevel,TSS Goldmining concentrationswereconsistentlylowerbecauseofhighwaterdilutionandlowminingactivity.Inadecadalanal- TheBrazilianAmazon ysis,apeakofsedimentconcentrationcoincideswithapeakofgoldproductioninallsitesanalyzedduringearly 1990s.Morerecently,duetothecurrentlygoldrush,anincreaseinsuspendedsolidshasbeenobservedmainlyin theNovoandTocantinsriverswhereindustrialmininghasbeeninstalled. ©2014ElsevierInc.Allrightsreserved. 1.Introduction oftheincominglight,thusreducinglightavailabilityinthewatercol- umn(Kirk,2011).RolandandEsteves(1998)haveshownthatanin- TheTapajósRiverBasin,intheAmazonBasin,hasbeencontaminat- crease in suspended matter of nearly 34 mg/l in an Amazonian edwithmercuryandimpactedwithwatersiltationduetodischargesof crystallinelake(BatataLake)raisestotallightattenuation,andconse- artisanalgold-miningtailingsintoitstributariessince1950s(Sousa& quently reduces the phytoplankton density by approximately 50%. Veiga,2009).Theartisanalminingactivitiesexpandedinthe1980s GuentherandBozelli(2004)suggestedthatthedecreaseinphytoplank- whenhighgoldpricesstimulatedaround30,000workerstoextract tondensitiesrecordedinBatataLakemaynotberelatedtophytoplank- goldinthisarea(Bezerra,Veríssimo,&Uhl,1998).Theactivityde- tonlossduetoalgal-clayaggregation,butratherisaconsequenceof creasedinthefollowingdecades;however,duetocurrenthighgold decreasinggrowthratesbecauseoflightattenuation.Thehighlight prices,anewgoldrushistakingplacenotonlyintheAmazon,but backscatteringinturbidwatersresultsinhighwater-leavingreflec- also in many other countries (Schueler, Kuemmerle, & Schroeder, tance, easily detected by remote sensors as shown by Telmer and 2011;Tudesque,Grenouillet,Gevrey,Khazraie,&Brosse,2012). Stapper(2007)intheTapajósRiver.Consideringthelargescaleofthe Previousstudiesin theTapajósBasin(Rodrigues,1994; Telmer, watersiltationimpact,TelmerandStapper(2007)haveindicatedthe Costa,SimõesAngélica,Araujo,&Maurice,2006)reportedthatartisanal potentialofusingremotesensingdatatomonitorturbidityandtoinves- goldminingdischargeintotheriversenormousamountsoffineinor- tigateitsconsequencestotheecosystemsoftheTapajósRiver. ganicsedimentbyremovingtopsoillayersfromthemargins,andalso Althoughnotdesignedforwaterbodystudies,LandsatMSSandTM byrevolvingsedimentfromthebottom.Becauseofitshighscattering havebeeneffectivelyusedtoestimatetotalsuspendedsolids(TSS)in properties,inorganicsuspendedparticlesinthewaterbackscatterpart coastalandinlandwaters(Binding,Bowers,&Mitchelson-Jacob,2005; Harrington,Schiebe,&Nix,1992).Detectionofwaterleavingradiance fromturbidwaterswithhighconfidenceispossible,firstbecausethe ⁎ Correspondingauthorat:DepartmentofGeographyUniversityofVictoriaPOBox sensor'sspatialresolution(upto80monMSS)allowsimagingrivers 3060STNCSC,Victoria,BC,CanadaV8W3R4.Tel.:+17786782043. E-mailaddress:[email protected](F.L.Lobo). andestuarineareas,andsecondbecauseofthesignal-to-noiseratioof http://dx.doi.org/10.1016/j.rse.2014.04.030 0034-4257/©2014ElsevierInc.Allrightsreserved. F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 171 thesesensors(250:1)(Dekker,Vos,&Peters,2002).Theuseofthese aboutatmosphericconditionstomodeltheeffectsandremovethem sensorsforestimatingsuspendedsolidsinthewatergenerallyfollows fromthesensor'ssignal.Accordingtothe6Smodel,surfacereflectance twoapproaches:theempiricalapproach,whichreliesondirectcorrela- (ρ )isderivedfromthefollowingequation(Vermote,Tanre,Deuze, surf tionbetweenmeasuredTSSandsatellitedata(Hadjimitsis&Clayton, Herman,&Morcette,1997): 2009;Mertes,Smith,&Adams,1993);oranalyticalmethods,which h i relyonmeasuredwateropticalproperties(Albert&Mobley,2003; ρTOA¼tgasðO3; O2Þ(cid:3) ρrþaþtH2O(cid:2)trþa(cid:2)ρsurf ð4Þ Doxaranetal.,2012).Thesestudiesshowthatgreenandredbandscor- relatewellwithTSSuptoapproximately100mg/l.Underhighercon- whereρ istheTOAreflectance;ρ ,Rayleighandaerosolreflec- TOA r+a centrations,however,thesebandssaturateandNIRbandspresenta tance;t ,Rayleighandaerosoltransmittance;t (O ,O ),gases r+a gas 3 2 betterpredictorofTSS(Wang,Lu,Liew,&Zhou,2009). transmittance;andt ,watervaportransmittance. H2O GiventherecentlylaunchedOLI(OperationalLandImager)sensor The6Smodelprovidespre-definedatmosphereconditionstobe onboardLandsat-8,withsimilarcharacteristicsofaTMsensor,theca- chosenaccordingtoscenelocationandaltitude,atmospherictype,and pabilityofusingtimeseriesbasedonLandsatimageryforevaluation relativehumidity, to accommodate thecommon lack of inputdata oftemporalchangesandmonitoringpurposesisextendedtothepres- aboutinsitugasesandaerosolconcentrations(Vermoteetal.,1997). ent;atimeseriesof40years(1973–2013)ofLandsatimageryiscur- FortheBrazilianAmazon,forexample,tropicalatmosphericandconti- rentlyavailable.However,givendifferencesinthesensor'sresolution nentalaerosolconditionsarecommonlyused(Lu,Mausel,Brondizio,& andinatmosphericconditionsatthetimeofimageryacquisition,a Moran,2002). propercomparisonbetweenwaterleavingsignalsrequiresthatallim- Besidesatmosphericeffects,surfacespecularreflectance,commonly ageshavetobecorrectedforatmosphericeffectsandnormalizedtoref- calledglint,hastobeconsideredforderivingaccuratewaterreflectance erenceimagesorreferencetargets(Hadjimitsis&Clayton,2009).Most (Hedley,Harborne,&Mumby,2005).Thedeglintingprocedureasde- oftheimagesfromthestudyareapresentatleast40%cloudcover.At- scribedbyHochberg,Andrefouet,andTyler(2003)andHedleyetal. mosphericcorrectionwouldbenecessarytominimizetheatmospheric (2005)reliesontwosimpleassumptions:(1)thatthebrightnessin effectsonhistoricalLandsatimagesthatarenotvalidatedwithinsitu theinfra-rediscomposedonlyofsunglint;and(2)thattheamount measurements. ofsunglintinthevisiblebandsislinearlyrelatedtothebrightnessin Thispaperhasathreefoldobjective:(i)defineanimageprocessing theNIRband.TheuseofNIRfordeglintingsignalfromturbidwaters procedurethatcorrectsLandsatdigitalnumbers(DN)tosurfacereflec- mayovercorrectthevisiblebands(Le,Li,Zha,Sun,&Yin,2009)because tance(ρsurf(λ)),allowinginter-comparisonbetweenLandsatdatafrom itcanpresentconsiderablesignal(upto5%)whenTSSisupto25.0mg/ 1973(MSS)to2013(OLI);(ii)applytheproceduretobuildareliable l,asanexamplegivenbyBale,Tocher,Weaver,Hudson,andAiken timeseriesofwatersurfacereflectancetoretrieveTSSconcentration (1994).Forthatreason,WangandShi(2007)suggesttheSWIRband fromhistoricalimagesintheTapajósRiverBasin;(iii)usetheretrieved (1600nm), which is less affectedor not affected by sediment-rich suspendedsedimentconcentrationsfortemporalandspatialanalysisof waterbodies,tocorrecttheVNIRbandsfromglintingeffectbysimple sedimentchangesandgoldminingactivityintheTapajósRiverBasin. subtraction: 2.Theoreticalbackground ρdeglintðVNIRÞ¼ ρsurfðVNIRÞ−ρsurfðSWIRÞ ð5Þ 2.1.Atmosphericeffectsandcorrectionmethods 2.2.Time-seriesforchangesdetection Whensensingawaterbody,themeasuredradiance,L (λ),isthe total sumofthetargetradianceandradiancefromatmosphericattenuation: Thepotentialtousetemporalseriesofsatelliteimagestodetect changesinsurfacewaterqualityhasbeendemonstrated,forexample, LtotalðλÞ¼LpathðλÞþ t(cid:2)LtargetðλÞ ð1Þ by Dekker, Vos, and Peters (2001) and Wang, Xia, Fu, and Sheng (2004).Foranabsolutemulti-temporalanalysis(i.e.,detectedchanges whereL (λ)standsforradiancescatteredbytheatmospheregivena havetoattributesolelytovariationontarget`ssignal),onehastoper- path wavelength(λ),tisthediffusetransmittancefromthetargettothesen- formradiometriccorrection(includingatmosphericcorrection)follow- sorandL (λ)istheupwellingradiancefromthewaterbody. edbynormalizationoftheimages(Hadjimitsis&Clayton,2009;Moran target Dependingontheatmosphericconditions,morethan80%ofthe etal.,2001).Normalizationbetweenimagesrequiresanapplicationof total signal can be attributed to atmospheric scattering processes histogrammatchingbasedonthesignalfrompseudo-invarianttargets (Albert & Mobley, 2003; Hu, Muller-Karger, Andrefouet, & Carder, withintheimage.Theassumptionisthatthespectraofthesetargets 2001).Notethatthetotalradiance,L (λ),canalsoincludethesurface donotchangeovertimeandarethereforeusedtoequalizehistogram total reflectionofthedirectsolarbeam,L (λ),and,inshallowwaters,the images(Moranetal.,2001).Thepseudo-invarianttargetscommonly glint effectoflightreflectedfromthebottom,L (λ). usedareconcrete,sandandbarrenlandsashighlyreflectivetargets bottom (Puttonen,Suomalainen,Hakala,&Peltoniemi,2009),andwaterbodies LtotalðλÞ¼LpathðλÞþLglintðλÞþt(cid:2)LbottomðλÞþ t(cid:2)LtargetðλÞ ð2Þ asdarktargets.However,concreteandbarrenlandsareoftennotavail- ableforthestudyarea,andusingwaterbodiesasdarkobjectscancom- Eq.(2)isoftennormalizedtoincidentallighttoyieldadimension- promisetheabsolutesurfacereflectanceofthewaterbodiesofinterest. lessreflectanceterm,ρ (λ)(Gordon&Wang,1994): As an alternative to histogram matching (Liew, Saengtuksin, & TOA Kwoh,2009),anabsoluteatmosphericcorrectionmethodisproposed ρ ðλÞ¼π(cid:2) L ðλÞ=E (cid:2)cosθ ð3Þ basedontheassumptionthatdensedarkvegetation(DDV)isconsid- TOA total o 0 eredaspectrallyinvarianttarget,andcanbeusedasareferencetarget whereE isthetopofatmosphere(TOA)solarirradianceandθ isthe tooptimizeatmosphericcorrection.Thismethodwasestablishedhav- o 0 solarzenithangle. ingAmazoniandarkdenseforestspectraasreferencetargets,including Inordertocorrectρ (λ)toρ (λ),atmosphericcorrectionon spectrafromtheTapajósarea(Liewetal.,2009),andpostulatesthere- TOA surf Landsat-TMdataoverinlandwatershasbeencarriedoutusingradiative lation,ρ (blue)=0.33*ρ (SWIR),toestimatesurfacereflectance surf surf transfermodels(physicallybased),suchasLowtranand6S,becauseof forthevisiblebands.Comparingthecalculatedρ totheTOAreflec- surf accurate outputs when local atmospheric conditions are known tance,aerosolopticalthickness(AOT)canbeestimateddirectlyfrom (Gong,Huang,Li,&Wang,2008).Thismethodrequiresinformation theimagery.Maseketal.(2006)showthatAOTderivedfromLandsat 172 F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 TMimageryishighlycorrelatedtoinsituAOTmeasurements,andcon- propertiesinthevisiblespectrarange.Thecombinationofabsorption firmtheapplicationofDDVasreferencetargetstooptimizeatmospher- and scattering properties of the OAC defines the ρ (Gordon & surf iccorrectionforamulti-temporalanalysisofρ . Brown,1975). surf ThehydrologicalregimeintheTapajósRiverisveryconsistentover 3.Studyarea theyears(Fig.1b),andisanimportantfactorinthebiogeochemicaldy- namicofthewater.Thewaterreachesthehighestlevel(MarchtoMay) TheTapajósRiverBasincoversmorethan200,000km2(Fig.1)inthe attheendoftherainyseason,andthelowestlevelduringthelowwater centeroftheBrazilianAmazon.Itdrainslixiviatedoldrocks(N2000mil- season(fromSeptembertoNovember),withadifferenceof6.0mon lionyears,Pre-Cambrian)whichresultsinanaturallyclearwatersys- average.Forconsistencythroughoutthedocument,thehighwater tem with low amounts of sediments and dissolved matter (Junk, levelseasonreferstotheperiodbetweenMarchandMay,andlow 1997).Forexample,Costa,Novo,andTelmer(2013)reportedTSSup waterlevelseasonreferstotheperiodbetweenAugustandNovember to 5.0 mg/l in the mouth of the Tapajós River as opposed to the (Fig.1b).Theonlyupstreamsite(ItaitubaCityregion,seeFig.1)that sediment-rich (whitewater) Amazon River that shows TSS up to haslongtermsamplingforTSSestimationbytheBrazilianWaterAgen- 150mg/lduringwaterrecedingperiods.Colored-dissolvedorganic cy(ANA,2013)showsthatconcentrationreachedalmost30mg/linthe matter(CDOMat440nm)isalsolow(upto2.1m−1)whencompared early1990sanddroppedtoarangebetween5and12mg/linthefol- toCDOM-rich(blackwater)riverssuchastheNegro(upto10.7m−1) lowingyearsforbothseasons(Fig.1c). (Costaetal.,2013).Therefore,becauseofitsnaturalclearwaterandbet- TheTapajósRiverBasinrepresentsoneofthelargestgoldreservesin terlightconditions,phytoplanktonproductionintheTapajósRivercan theworld,andsincethecreationoftheGoldMiningDistrictin1983, beconsiderablygreaterthaninwhitewaterandblackwater(Costaetal., thisareahasbeenintensivelymined.Goldproductionreachedamaxi- 2013;Junk,1997).Thelargemouth-baysoftheTapajós,forexample, mumof22.0tonsperyearin1992(12.5%ofBrazil'stotalproduction collectnutrientsthat,alongwithrelativelygoodlightpenetration,sup- thatyear)(Sousa&Veiga,2009).Inthesameperiod,anorth–south portseasonalphytoplanktonblooms(Novoetal.,2006).Costaetal. highway(BR-163)wasestablishedtoconnectSantarémtoCuiabáin (2013)reportedaseasonalvariationonchlorophyll-aconcentration ordertosupportterritorycolonizationandagricultureactivities.Asare- (chl-a)from2.1μg/lattherecedingwaterperiodto16.3μg/lduring sult,largedeforestedareasalongthehighwaycanbeobserved,mainly theebbingseasonatSantarémarea(seeFig.1).Thevariabilityoftheop- attheJamanximsub-basin(Fig.1).Deforestationareasarealsoob- ticallyactivecomponents(OAC),suchasTSS,chl-aandCDOM,caninflu- servedaroundSantarémandItaitubacitiesandintheGoldMiningDis- enceρ becauseoftheirinherentlydifferentabsorptionandscattering trictasaconsequenceofminingsettlementsinthearea. surf properties (Mobley, 1994). TSS is a highly-scattering component, Gold-mininginthisareaistraditionallyperformedeitherbyusing whereas chl-a and CDOM are characterized by high absorption water-jetstoremovetopsoillayers,orbyusingsmallboatscalled Fig.1.(a)LocationoftheTapajósRiverBasinintheBrazilianAmazonwithindicationofthemainwaterbodies,samplesites(seeSection4.1),Aeronetstation(Belterra),deforestation (INPE,2011),gold-miningdistrict,mines(CPRM,2009),andLandsatTMscenes.(b)HydrologicalandprecipitationregimeoftheTapajósRiveratItaitubagaugestation(centerof228/ 63scene)forthepast10years,periodsoffieldcampaignsarealsoshown.(c)Historical(1992–2011)TSSconcentrationintheTapajósRiver-ItaitubaCityarea.(Sourcefor(b)and(c): ANA-BrazilianNationalAgencyforWaterResources2013.) F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 173 ‘balsas’thattakethesedimentfromthebottomoftheriversusingsuc- 2011, during high water level (23 sample points); and September tionandseparatethegoldbygravity(AraújoNeto,2009;Telmeretal., 2012,duringlowwaterlevel(16samplepoints)(seeFig.1forsample 2006).Bothtechniquesdischargelargeconcentrationsoffinesediment pointlocations).Thefieldcampaignsweredefinedbasedonperiods intothemaintributaries(Crepori,Jamanxim,andTocantins)thatcanbe whenthewatersystemislessdynamicandchangesinwaterquality measuredkilometresdownstream(Telmeretal.,2006).Accordingto are slower compared to receding or flooding periods. This choice Bezerraetal.(1998),atotalof67.0millionm3/yearofsedimenthave wouldcontributetomatchinginsitudatawithconcurrentsatelliteim- beenremovedfromthemarginsofmanytributariesoftheTapajós ages.Itwouldalsohelpwiththeinter-annualcomparisonbetweenim- Riverinthe1980sduetogoldminingactivities.Furthermore,Telmer ages.Thesamplepointlocationsweredefinedinordertocoverthe etal.(2006)showedthatthesedimentplumegeneratedduringmining spatialdistributiononthemainTapajósRivertributariesbeforeand operationsiscomposedmostlyoffineinorganicparticlesthatcancarry aftertheirdischarge,andalongtheTapajósRivertocoveritslengthwise significantamountsofmercury,whichisusedintheamalgamationpro- variation. cess.Telmeretal.(2006)alsodemonstratetheapplicabilityofmonitor- Foreachsamplepoint,twowatersamplesweretakenatadepthof ing the sediment plume using Landsat TM data, and indicate that 0.3mtodetermineTSSconcentrationsaccordingtothegravimetric satelliteimageryshowsgreatpromisetobeusedasamodernmonitor- method(APHA,2005).Foreachwatersampletaken,triplicatesofpre- ingsystemgiventhelargeandremotearea. weighted(0.7μm)filterswereusedtodetermineTSSaverageandstan- darddeviationsinthelaboratory.Bydoingso,atotalfullprecisionofTSS estimationisachievedbyaccountingforvariabilityoffilteringmethods, 4.Methods andforheterogeneityofwatersamples. Three main steps were conducted in order to define an image Todeterminetheinsitusurfacereflectance,above-waterdownward irradiance(E),andacontinuousdepthprofileofin-waterupwellingra- processingmethodforLandsatdatathatallowsmulti-temporalanalysis s ofwatersurfacereflectanceandsuspendedsolidsinTapajósRiverBasin diance,Lu,weremeasuredusingSatlanticHyperPro(SatlanticInc.). (Fig.2):1)fieldcampaignsforinsituradiometricandTSSdatacollection Theseopticalsensorsmeasurehyperspectralquantitiesintheinterval from396to800nmwith10nmresolution.Therawdatawerecalibrat- (box(a)inFig.2);2)atmosphericcorrectionofhistoricalLandsatimag- edtosensorspecification,correctedfortareconditionsandbinnedto erybasedonreferenceimagesthatwerevalidatedwithinsituradio- depthintervals.Inordertominimizethewavefocusing/defocusingef- metricdata(boxes(b),(c),and(d)inFig.2);and3)seasonaland decadalanalysisofρ (λ)andsuspendedsolids(TSS)intheTapajós fect(Hedleyetal.,2005),anduncertaintiesattributedtotheLusensor surf tilt,triplicatemeasurementsweretakenateachsamplepoint,andsig- RiverBasin(box(e)inFig.2). nals measured with a tilt higher than 15° were removed from the dataset.Afterbeingcorrectedandbinnedtodepthintervals,Luvalues 4.1.RadiometricandTSSdata werethenusedtocalculateupwardirradiance,E ,asfollows: u (cid:2) (cid:3) (cid:2) (cid:3) TwofieldcampaignswereconductedintheTapajósRiverBasinto E 0þ; λ ¼4:5 (cid:2) L ð0−; λÞ(cid:2) 1−ρðλ;θÞ=n2ðλÞ ð6Þ measureradiometricquantitiesandTSSconcentrations:March/April u u w Fig.2.Flow-chartofthemethodologyappliedinthisstudy.Fielddataoftwocampaigns(a)wasusedtocalibratetheatmosphericcorrection(b)thatwasappliedtoLandsat-5TMdatabase basedonforestreferencespectra(c).AfterincorporatingcorrectedMSSandOLIsurfacereflectanceintothedatabase(d),amulti-temporalanalysisofρsurf(λ)andofTSSinfoursub-basins andalongtheTapajósRiverwasperformed(e). 174 F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 whereρ(λ,θ)isFresnelreflectanceindexofthewater(0.021)and for evaluation were the determination coefficient (R2), regression n2(λ)isFresnelrefractiveindex(1.34)whichrelatestothefractionof slopes,andtheRMSE(rootmeansquareerror).Afteratmosphericcor- w theincidentirradianceofacollimatedbeamthatisreflectedbyalevel rection,glinteffectwasremovedaccordingtoEq.(6)andtheirstatisti- surface(Mobley,1994).Next,surfacereflectance,ρ (λ),valueswere calparameterswerealsocompared. surf calculatedforeachprofileaccordingto: ForthefieldworkperformedinMarch/April2011duringthehigh waterlevelseason,threeLandsat-5TMimages(row/orbit:227/63; (cid:2) (cid:3) (cid:2) (cid:3) ρ ðλÞ¼E 0þ; λ =E 0þ; λ : ð7Þ 228/63;and228/64)acquiredonMarch19,2011wereusedintheval- surf u s idationprocess.However,forthecampaignperformedinSeptember 2012,Landsat-5wasnolongeractive,whichpreventedfullseasonal analysisofLandsatdata.Alternatively,cloud-freeimagesacquiredby 4.2.Imageprocessing IRSLISS-IIIinthesameperiodofthecampaignwereusedasreference imagesforthelowwaterlevelseason. Theimageprocessingforatmosphericcorrectionandnormalization Theinputdataforthe6Smodelwereprovidedbyiterativelytesting ofallselectedLandsatdata(1973–2013)fromDNtoρ wasper- measured ranges of water vapor values and AOT from the closest surf formedinfoursteps:i)imageryselectionandcompilationintoadata- AERONET (AErosol RObotic NETwork) station (NASA/GSFC, 2013), base;ii)atmosphericcorrectionoftwoimagesets(fromhighwater nearBelterra(S3°06′,W55°03′,seeFig.1).Dataavailablefrom1999 levelandlowwaterlevelseasons—calledreferenceimages)coincident to 2005 shows water vapor values of 4.2 ± 0.6 cm, and AOT of withinsituradiometricmeasurements;iii)correctionofatmospheric 550nmvaryingfrom0.1upto0.5(dimensionless).ForLandsat-5TM effectsfromallLandsat-5TMimages(1984–2011)usingthereferences (March19,2011),awatervaporvalueof3.8cmandAOTequalto imagesandAERONETdatatooptimizethe6Sinputatmosphericparam- 0.22werechosen,minimizingtheaveragedifferencebetweeninsitu etersforeachimage;iv)correctionofMSSandOLIdatafromDNtoρ and image reflectance output. Using the same criteria,LISSimages TOA followedbynormalizationtoρ basedonforestspectraderivedfrom (September16,2012)wereatmosphericallycorrectedbyaphysical- surf referenceimages. basedmethodhavingwatervaporvalueandAOTequalto3.7cmand 0.19,respectively. 4.2.1.Imagerydatabase ThedetectablewaterbodiesintheTapajósRiverBasinextendover 4.2.3.AtmosphericcorrectionofhistoricalLandsat-5TMdata(1984–2011) sixLandsatTMscenes(Fig.1).LandsatMSSandTMimagesacquired Oncetheatmosphericcorrectionsofthereferenceimageswereval- from1973to2011weredownloadedfromDGI/INPE(2013)foranalysis idated,theywereusedtoiterativelydefinethesetofinputvaluesfor oftwospecificseasons:highwaterlevelseason(MarchtoMay)andlow runningtheatmosphericcorrectiononthe6Smodel.Thesetofwater waterlevelseason(AugusttoNovember).Recentcloudfreeimages vaporvaluesandAOTforeachTMimageweredefinedbyminimizing fromtheOLIsensor,onboardLandsat-8,acquiredinAprilandSeptem- thedifferencesbetweenforestspectrafromthereferenceimagesand ber2013,weredownloadedfromEarthExplorerwebsite(USGS,2013a). theimagesubjectedtoatmosphericcorrection. Atotalof77images(31fromhighseasonand46fromlowseason)were Theassumptionis that densely forested areaspresentinvariant incorporatedintothedatabase(Table1). spectraoverdecadesthatcanbeusedasreferencespectratooptimize atmospheric correction in individual scenes (Holben et al., 1998; 4.2.2.Atmosphericcorrectionvalidation Kaufmanetal.,1997;Liewetal.,2009).AlthoughAmazonianforest Inordertodefineimagesthatcanbeusedasreferencestocorrect spectraisverysteadyoverdecades,thereareslightdifferencesbetween historicalLandsatdata,twogroupsofsatelliteimagescorresponding spectra taken in rainy and dry seasons (Asner, 1998; Lu, Mausel, tothefieldworkperiodswerecorrectedforatmosphericeffects,and Brondízio,&Moran,2004;Luetal.,2002)thatmustbetakenintoac- validatedwithinsituradiometricdata.Thestatisticalparametersused countforproperimagerycorrection.Assuch,theimagesacquireddur- ingthehighwaterlevelseason(orrainyseason)wereoptimizedto Table1 forestspectrafromLandsat5-TMacquiredinMarch19,2011,whileim- Numberofsatelliteimagesofsixorbit/rowsacquiredinhighandlowwaterseasons agesacquiredduringthelowwaterlevelseason(ordryseason)were between1973and2013usedintheimageprocessing.Notethatonlymonthsthat representatleastoneimageareshown. optimized using LISS-III acquired in September 2012 as reference. Afteroptimizingtheatmosphericparameters(watervaporandvisibili- Highwaterlevel Lowwaterlevel ty)foreachTMimage,vegetationspectrawereextractedandaveraged Mar Apr May Aug Sep Oct Nov differencescomparedwiththereferenceimages.Imagesthatdidnotfall MSS 1973 4 withinanacceptablerange(upto50%differenceatredband,whichcor- 1975 2 respondstoadifferenceofupto1.5%inρ andhaveminimumimpact surf 1979 2 1 on TSS estimation) were re-corrected with new atmospheric 1980 1 1 parameters. 1981 3 TM 1984 1 1 1 2 1 1985 2 1 1986 1 4.2.4.CorrectionofMSSandOLIdata 1987 1 1 1 1 The6Sphysical-basedmodeldoesnothavethefunctionalitytocor- 1989 2 2 rectMSSandOLIimagery;assuch,analternativeprocedurehadtobe 1990 1 1 adoptedforatmosphericcorrectionoftheseimages.MSSimageswere 1993 5 1 4 firstconvertedfromDNtoL(λ)(Markham&Barker,1986),andsubse- 1995 1 1996 1 quentlycorrectedtoρTOA(λ)(seeEq.(3))accordingtotheradiometric 1997 3 2 1 specificationsandthedateofimageacquisition.OLIDNdatawerecon- 1998 1 vertedtoρ (λ)accordingtoUSGS'swebsite(USGS,2013b).Forboth TOA 1999 1 MSSandOLIρ (λ),theatmosphericeffectswereremovedfromVIS 2000 3 TOA 2001 1 1 bandsbyapplyinganoffsettomatchdenseforestspectrawiththose 2005 1 1 2 2 fromoptimizedsurfacereflectance(seeFig.4a)whichresultedinρ- 2011 3 1 1 (λ).Inthiscase,weassumedthatthedifferencesbetweenthesurface surf OLI 2013 2 5 reflectance forest spectra extracted from reference images and the F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 175 forestρ (λ)fromMSSandOLIdatacanbeattributedtoatmospheric 5.Results TOA effects. 5.1.Validationofatmosphericandglintcorrection 4.3.Multi-temporalanalysisofsurfacereflectanceandTSSconcentration Theevaluationoftheatmosphericandglintcorrectionrevealedthat thesatelliteρ withoutglintcorrectionwasincloseagreementwithin surf OncesurfacereflectanceatvisibleandNIRwerederivedfromthe situρ values,especiallyontheredandgreenwavebands(Fig.3). surf imagery database (Landsat-MSS, Landsat-TM, and OLI), a temporal HighR2(N0.78)andlowRMSE(b1.80inρ unit)wereobservedfor surf analysis was performed in four different sub-basins and along the bothseasonswhereregressioncoefficient(slope)valueswerearound TapajósRiver(seeFig.1),foratotalofeightdifferentsites.Thesites 0.85atthesebands(Table2showsthestatisticalresultsforthelinear werechoseninordertocoverthefourmaintributariesintermsof regressionsshowninFig.3).Attheblue(LandsatTMonly)andNIR waterdischargeandminingactivities(Crepori,Jamanxim,Tocantins, bands,thestatisticsshowrelativelypoorresults,withgenerallyhigher andNovorivers)andalsofourothersitesalongtheTapajósRiverthat ρ forsatellitecomparedwithinsitumeasurements(Fig.3aandb). surf represent the river's longitudinal variation from upstream to the Fig.3canddshowexamplesofinsituρ spectraunderdifferent surf mouth(Jacareacanga,Itaituba,Aveiro,andSantarém).Foreachsite,sev- TSSconcentrationsplottedwithglintcorrectedsatelliteρ (λ)forthe surf eralpixelsdistributedinthesampleareawereselectedandaveragedto twofieldcampaigns.Highaccordancebetweensatelliteandinsitu reducethevariabilitycausedbyadjacencyorbottomeffects,andalsoto ρ (red)isobserved.AccordingtoTable2,thecorrectionforglinteffect surf diminishthenaturalvariabilityofthewaterbody.Thisprocedurecan significantlyimprovedthestatisticalresults.Attheblueband,R2values alsominimizethedifferentspatialresolutionofMSS(80m)andTM increasedfrom0.44(noglintcorrection)to0.80(withglintcorrection), (30m)data.Furthermore,inordertoavoidadjacencyeffectonthese- andRMSEdecreasedfrom1.34to0.75(inρ unit).Improvements surf lectedpixels,theanalyseswererestrictedtoriverswithatleast3pixels werealsoobservedforthegreenandredbands,whereR2werehigher width.Forthatreason,MSSdatacouldnotbeextractedatriverswith than0.88andRMSEwerelowerthan1.0(inρ unit)forbothseasons. surf widthsupto200m(e.g.,Jamanxim,Novo,andTocantinsrivers),for BecausetheimagesacquiredinMarch2011(Landsat-5TM)present whichanalyseswererestrictedtoTMandOLIdata(1984–2013). highcloudcoveragedistributedunevenlyoverthescene,theSWIRsig- InordertoretrieveTSSconcentrationfromsurfacereflectanceinthe nalcanbeattributednotonlytoglinteffect,butalsotoatmosphericef- eightsamplesites,anon-linearregressionwasestablishedbetweenTSS fects that have not been removed by the 6S model, and therefore andρ (red)derivedfromreferenceimages(seeFig.6).Theapplica- minimizestheheterogeneitydistributionofatmosphericconditions surf tion of ρ (red)to estimate TSSin coastal and inlandwater using (Ruddick,Ovidio,&Rijkeboer,2000).ForLISS-IIIimages,theρ (SWIR) surf surf empirical regressions has been extensively reported for MSS valueswerealwayslowerthan1.0(inρ unit),indicatingthatglint surf (Harrington etal.,1992;Mertes etal.,1993)andTMdata (Dekker wasnotaffectingtheimagequality.Thestatisticalresultscorroborated etal.,2002;Maseketal.,2006).AveragedTSScollectedduringthe this,howeverwefollowedtheimageryanalysiswiththeglintcorrected twofieldworks(n=39)wereusedtoestablishtheempiricalregres- LISS-IIIimagegiventhattheobservedinterceptvaluesdecreasedwhen sioncurvethatallowsretrievingTSSwithassociatederrorestimation compared with no glint correction. All the linear regressions of (within95%levelofconfidence). deglintingdata(showninFig.3)weretestedfornormaldistribution Fig.3.ScatterplotsbetweenmeasuredρsurfandcorrectedsatelliteρsurfatVNIRchannelsfor(a)Landsat-5TM,(b)IRS-LISSIII.ρsurfbefore(emptycircles)andafter(filledcircles)glint removingisalsoshown.Linearregressionandstandarddeviationareplottedonlyfordeglinteddata(bestresults).SeeTable2forstatisticalparametersoflinearregressions.Notethe differentρsurfrangebetween(a)and(b).Examplesofmeasuredsurfacereflectancespectraplottedwithcorrespondentglintcorrectedsatellitedataforhighwaterlevel(c)andlow waterlevel(d)seasons. 176 F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 Table2 Statisticalparameters(intercept,slope,R2,RMSE)forlinearregressionsbeforeandafter deglintingbetweenmeasuredρsurf(λ)andρsurf(λ)derivedfromtwoimagerysets: Landsat-5(highwaterlevel)andLISS(lowwaterlevel). Landsat-5TM(Mar.19,2011)– IRSLISS-III(Sep.16,2012)– Highwaterlevel(n=23) Lowwaterlevel(n=16) Channel Intercept Slope R2 RMSE Intercept Slo R2 RMSE pe Blue 1.26 0.76 0.44⁎ 1.34 – – – – deglint −0.51 1.16 0.80 0.75 Green 2.1 0.82 0.78 1.56 1.57 0.87 0.88 1.77 deglint 0.5 0.96 0.93 0.85 1.31 0.87 0.88 1.79 Red 1.7 0.88 0.88 1.36 1.35 0.82 0.97 0.89 deglint 0.8 0.99 0.93 0.87 1.06 0.82 0.97 0.89 ⁎ NIR 2.8 1.4 0.27 1.36 1.77 1.41 0.75 1.46 deglint 1.38 1.84 0.82 0.79 1.47 1.41 0.76 1.42 ⁎Determinationcoefficientsnotsignificantat0.05level. ofresidualsata0.05levelofsignificance.Theresultsconfirmthathigh andlowwaterleveldataweredrawnfromanormallydistributedpop- ulation(testsnotshown),thusindicatingnooverorunderestimationof reflectancevalues. 5.2.AtmosphericcorrectionofhistoricalLandsat-5TMdata(1984–2011) Oncetheatmosphericcorrectionforthereferenceimageswasvali- datedwithinsitudata,theforestspectraextractedfromtheseimages (Fig.4a)wereusedasareferencetooptimizethe6Satmosphericinputs (AOT,watervapor)forcorrectionoftheother76historicalLandsat-5 TMimages(Table1).Forthisstep,theimagerydatabasewasseparated intotwogroupsaccordingtothetimeofimageryacquisition:highand lowwaterlevelseason.Therationalforthisdivisionwastheobserved slightlyhigherforestspectravaluesatlowwaterlevel(LISS-III)com- paredtoforestspectraathighwaterlevelseason(Landsat-5TM).For example,ρ (green)reachedvaluesashighas5.2%inthelowwater surf level,whereasfortheimagesacquiredduringhighwaterlevelseason, valuesof3.1%wereobserved(Fig.4a). Theforestρ extractedfromthehistoricalimages(Fig.4b)was surf comparedwiththeforestspectrafromthereferenceimages,again dividedintolowandhighwaterlevelseasons(Tables3and4).High accordancebetweenforestspectraextractedfromthecorrectedim- agesandthereferenceimagesforbothlow(n=30)andhighwater Fig.4.(a)Darkdenseforestspectraextractedfromhighwaterlevelseason(Landsat)and levels=(n=28)periodswasachieved.Thehighestdifferencesbe- lowwaterseason(LISS-III)usedasreferenceforoptimizingatmosphericparameterson tween reference and individual images were observed at the blue Landsathistoricaldata.ExamplesofuncorrectedMSSandOLITOAreflectance,and band,wheretheaveragedifferencewasabout33%.Fortheremaining denseforestfromtheBrazilianAmazonfoundinliterature(Luetal.,2002,2004)are bands, the differences were on average 9% for both low and high alsoshown.(b)Denseforestspectraforhighandlowwaterseasonsextractedfromhistor- icalLandsat-5TMimageshavingspectrashownin(a)asreference.SeeTables3and4for waterlevelseasons. differencesbetweenreferenceimagesandhistoricalTMdata. 5.3.MSSandOLIimagerycorrection fromsurroundingvegetationonthewaterreflectancefromthenarrow Intotal,14MSSand7OLIρ (λ)imageswereincorporatedinto rivers.Therefore,fortheserivers,timeseriesanalysisofρ (λ)startsin surf surf thedatabasebyapplyingoffsetsonuncorrectedρ (λ)basedonfor- 1984withTMdata. TOA estspectra.Becausetheatmosphericscatteringeffectsaremoreprom- Ingeneral,besidesthesignaldifferencesamongrivers,twomajor inentinthebluewavebands,thecorrectionoffsetwereconsistently temporalvariationsofwaterρ (λ)wereobserved:seasonal,between surf higherforbluebandwhencomparedtogreenandredbands.Fig.4a lowandhighwaterlevelseason,andannual(Fig.5).Althoughdiffer- depictsMSSandOLIρ (λ)correctedtoρ (λ).Forexample,MSS encesinmagnitudeamongtheriverswereobserved,ρ (VNIR)values TOA surf surf andOLIρ (green)werecorrectedfrom8.1and6.2%,respectively, fromthelowwaterseasonwereconsistentlyhigherthanthosefromthe TOA toρ (green)of4.6%. highwaterseason,especiallyatredandgreenbands.Intermsofinter- surf annualanalysis,aclearpeakofρ inallbandswasobservedbetween surf 5.4.Spatialandtemporalanalysisofsurfacereflectance 1985and1995fortheeightsitesanalyzed,withtheleasteffecton Jacareacanga,locatedupstreamofTapajósRiverbeforetheconfluence Oncethecorrectionforimagerydatabase(LandsatMSS,TM,and withtheheavilyminedCreporiRiver. OLI)wasvalidated,amulti-temporalanalysisofρ (λ),from1973to FortheJamanximRiver,locatedinasub-basinwithlowminingac- surf 2013,wasperformedforfourtributaries(Jamanxim,Tocantins,Crepori, tivity,theρ (red)valueswerelowerthan4.0%inbothseasons,buta surf andNovorivers)andalongtheTapajósRiver(seeFig.1).Giventhe significantdifference(pb0.05)wasobservedbetweenhigh(1.7%) coarse spatial resolution of the MSS data (80 m), the Jamanxim, andlow (3.0%) water level seasonsfrom 1984to 2013(Fig. 8).At Tocantins,andNovoriverswerenotsampledduetosignalinterferences theotherextreme,intheCreporisub-basin,characterizedbyintense F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 177 Table3 Differencesbetweendenseforestspectra(ρsurf(λ)),extractedfromhighwaterlevelseasonreferenceimages(L5TMMarch2011)andhistoricalimagesacquiredatthesameseason.SD– standarddeviation. Blue Green Red NIR Referenceimage(Landsat5Mar2011) 1.2±0.2 3.1±0.3 2.0±0.3 27.3±2.3 ρsurf±SD Orbit Row Date Season Percentagedifferencefromreferenceimage (xm−xi/xm).100 L5-TM 229 64 04/06/1984 High 59% 9% 0% −8% L5-TM 228 64 30/05/1985 High 27% 28% 27% 0% L5-TM 227 64 10/05/1986 High 79% 31% 31% −4% L5-TM 229 64 09/04/1987 High 63% 25% 28% −2% L5-TM 228 64 09/03/1990 High −24% 12% −14% 6% L5-TM 229 64 11/05/1993 High 77% 30% 17% 6% L5-TM 229 64 19/05/1996 High −6% −1% −25% 4% L5-TM 228 64 31/05/1997 High −4% −2% 3% −13% L5-TM 227 64 30/05/1999 High 44% 9% −2% 2% L5-TM 228 64 10/05/2001 High −27% 18% 28% 2% L5-TM 228 64 03/04/2005 High 68% 27% 29% −6% Historicalaverageρsurf±SD 1.0±0.4 2.8±0.5 1.9±0.4 27.2±1.8 miningactivity,theρ (red)valuesincreasedfrom4.0%in1973to 5.5.SpatialandtemporalanalysisofTSS surf 27.0%in1984,reachingitsmaximumvaluein1993(36.0%),during lowwaterlevelseason.Althoughvaluesdecreasedinthefollowing TSSconcentrationsweremeasuredat39samplepointsandcorre- decades, their magnitudes were still high (up to 20%) until 2013. latedwithreflectancederivedfromsatellitesensors(Landsat-5TM TheTocantinsandNovoriverspresentedsimilarresults,thehighest dataforhighwaterlevelandLISS-IIIdataforlowwaterlevelseason). of ρ (green) and ρ (red) in the early 1990s. However, for the MeasuredTSSconcentrationswerehigherinthoseriverswithintense surf surf TocantinsandNovorivers,arecent(2005–2013)increaseofreflec- gold mining activity, such as the Crepori River. During high water tancewasobservedforthesamebands,indicatingthatconsiderable level,TSS values of 35.3 mg/l wereobservedin this river,whereas miningactivityiscurrentlytakingplaceinthesesub-basins. inthelowwaterperiod,concentrationsupto115.2mg/lweremea- Theanalysisofρ (λ)alongtheTapajósRiver(Jacareacanga,Itaituba, sured.Minimumvaluesaresimilarforbothperiods(Table5). surf Aveiro,andSantarém)showedvaluesnothigherthan5%fromtheup- ThebestempiricalcorrelationbetweenTSSandρ (λ)wasgiven surf stream(Jacareacanga)tothemouth(Santarém)atthehighwaterperiod byapowerfunction(R2=0.94,RMSE=1.33%,seeFig.6)usingthe fortheentiretimeseries(1973–2013).Duringthelowwaterperiod, redband.Althoughthecurveisbasedonsatelliteρ (red)upto22%, surf however,significantly(pb0.05)highervalues(ρ (green)=5%onav- weassumedthatthisfunctioncanbeextendedtovaluesupto35%, surf erage)wereobservedcomparedtothehighwaterlevelseason(3%onav- whichcorrespondstoapproximately300mg/lofTSS.Itisworthnoting erage).Althoughlowρ (λ)wereobservedupstream(Jacareacanga)at theverysimilarcorrelationofTSSwithinsituρ (red)depictedbythe surf surf greenandredbands,aconsiderableincreaseofreflectancewasobserved dashedcurveinFig.6.TheTSSrangeavailableduringfieldworkwas inItaitubaand,lesspronounced,inAveiro(whichis200kmdownstream onlyupto110mg/l,whichcorrespondstoapproximately24%ofsatel- fromItaituba),mainlyintheperiodbetween1985and1995.Takinginto litesurfacereflectancedata.Above35%,theempiricalregressioncurve accounttheriver'snetworkanddischarge,theρ (λ)variationfromup- doesnotprovidereliableTSSestimationbecausetheregression'sconfi- surf streamTapajós(Jacareacanga)observedforbothseasonsisinaccordance dencerange(confidencelevel=95%)yieldserrorsupto50%(seecon- withthespatialvariationofthetributariesshowninFig.5a. fidenceintervalinFig.6). Table4 Differencesbetweendenseforestspectra(ρsurf(λ)),extractedfromlowwaterlevelseasonmasterimages(LISS-IIISeptember2012)andhistoricalimagesacquiredatthesameseason. LISS-IIIsensordoesnothaveablueband.SD,standarddeviation. Blue Green Red NIR Referenceimage(LISS-IIISept.2012) – 4.6±0.3 3.1±0.2 30.6±1.8 ρsurf±SD Orbit Row Date Season Percentagedifferencefromreferenceimage (xm−xi/xm)∙100 L5-TM 228 64 16/09/1984 Low – −8% −9% −11% L5-TM 227 64 14/10/1985 Low – −2% 8% −20% L5-TM 228 62 11/10/1987 Low – 1% −1% −8% L5-TM 229 64 21/09/1989 Low – 37% 37% 9% L5-TM 229 64 16/09/1993 Low – 17% 24% −4% L5-TM 229 64 05/08/1995 Low – −8% −18% −5% L5-TM 228 64 03/08/1997 Low – 12% 18% −4% L5-TM 227 64 31/08/1998 Low – 11% 7% −2% L5-TM 229 64 18/08/2000 Low – 26% 25% 3% L5-TM 229 64 19/10/2005 Low – −11% −28% 0% L5-TM 229 64 01/08/2011 Low – 35% 11% −6% Historicalaverageρsurf±SD 2.6±0.9 4.3±0.7 3.0±0.6 31.9±2.7 178 F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 Basedonthedefinedpower-lawfunction(equationinFig.6),TSS totheinabilityofthephysical-basedapproachtomodelaerosoland valuesfromthehistoricalLandsatimageryattheeightsitesanalyzed gasesconcentration(Bailey&Werdell,2006;Ruddicketal.,2000),or wereretrieved(Fig.7).Followingsimilarobservedρ (red)dynamic tounavailabilityofasuitableaerosolmodel(Guanteretal.,2010).The surf (Fig.4),TSSexhibitedhigherconcentrationsatlowwaterlevelthanat effectswillbemoreaccentuatedinmoderateconcentrationsofabsorb- high water level periods (Fig. 7). In the low water level season of ingaerosolsashigherconcentrationsareoftenidentifiedasclouds. 1989,forexample,TSSvaluesofabout301.0mg/lwereestimatedfor AttheNIRregionofthespectrum,thepoorcorrelationbetween theCreporiRiver.AftertheCreporidischargeintotheTapajósRiver, measuredandcorrectedsatelliteρ (NIR)islikelyduetothelowmag- surf thehighTSSismixedwiththerelativelylowTSSwatersoftheTapajós, nitude(upto5%)andtotheadjacencyeffectonthereflectancesignal. andatapproximately260kmdownstream,theTSSconcentrationde- Thelowmagnitudeandlowvariationofρ (NIR)ismostlydueto surf creasedtoabout33.5mg/latItaitubaCityanddownto6.6mg/latthe strong absorption of NIR radiation by water molecules (Mobley, Santarémarea.Similarvalueswereobservedforthehighwaterseason, 1994).Althoughconsiderableρ (NIR)hasbeenobservedinturbid surf butatlowerTSSconcentrations(Fig.7);theCreporiRiverexhibitedTSS waters,asreportedinliterature(Dekkeretal.,2001;Liewetal.,2009; valuesupto100.0mg/l,andaftertheconfluencewiththeTapajósRiver, Wang & Shi, 2007), the NIR spectrum from clear waters (TSS TSSvaluesdecreasedto4.4mg/linItaitubaandto2.5mg/linSantarém. b7.0mg/l)shouldbeclosetozero.Giventhesmallwidthofthetribu- ThespatialandseasonaldynamicisillustratedinFig.8,whichcorre- tariesinthisstudy,theoverestimatedsatelliteρ (NIR)intheclearwa- surf spondstotheseasonalρ (red)-basedTSSvariation(equationinFig.6) terscanthusbeattributedmostlytotheadjacencyeffect.Santerand surf intheCreporiRiverandTapajósRiver,fromLandsat-8imagesacquired Schmechtig(2000)investigatedthecontributionoftheadjacencyeffect onJune12th(highwater)andSeptember16th(lowwater)2013.An totheNIRwaterreflectanceinthemiddleofacircularlake.Foralake evidentincreaseofTSSconcentrationswasobservedfromJune2013 with5kmradius,thesupplementarycontributionofthesurrounding (TSS=38.0mg/l)toSeptember2013(96.0mg/l).Itisworthnoting reflectancetotheNIRwatersignalwasroughlyhalfofthewatersignal. thatthesedimentplumeinSeptemberreaches100kmdownstream The adjacency contribution can be even higher at lower distances, intheTapajósRiveraftertheconfluencewiththeCreporiRiver,atacon- whichisthecaseoftheTapajósRiverBasin,wheresometributaries centrationofapproximately45.0mg/l,decreasingtoabout15.0mg/lat arenolargerthan110minwidth(e.g.,TocantinsandNovorivers). theriver'sconfluence(indicatedintheFig.8). TherepresentationoftheadjacencyeffectisminimalonVISbands,be- causeforestspectrapresentlowρ (upto5%)asopposedtoNIR, surf 6.Discussion where values are as high as 40%.As such, caution should betaken whenusingNIRbandstoderiveturbidityfromnarrowrivers,given 6.1.Atmosphericissues thedifficultyindefiningthespatialcontributionoftheadjacencysignal totheρ (NIR)fromwaterbodies. surf Atmosphericcorrectionisakeycomponentpriortotheanalysisof Theglinteffectcorrectionapproachwassuccessful,asshownbythe satelliteimagerytime-series.However,difficultyrisesduetothelack improvedcorrelationsbetweenmeasuredandsatellitereflectancefor ofinformationaboutpastatmosphericconditionsatthetimeofimagery the whole spectral range. The improvement was more evident on acquisition,especiallyforremoteareassuchastheAmazon.Inorderto Landsat-5TM(March2011),whenconsiderablecloudcoverwasob- overcometheabsenceofinformationaboutatmosphericconditionsre- servedintheseimages.Wesuggestthat,besidestheinfluenceofapos- quiredasinputtophysical-basedatmosphericmodels,weappliedan sibleglintsignal,theSWIRband(usedinthedeglintingprocess)might approachthatreliesoninitialvalidationofasetof6Satmospheric- alsocontainatmosphericsignalthatwasnottotallyremovedintheat- correctedsatelliteimagesacquiredconcurrentlytoinsitureflectance mosphericcorrectionapproach.Becausethe6Scorrectionmethodcon- data. sidersAOTandwatervaportobehomogenousintheentirescene,this Theinsitureflectancepresentedcomparablevaluestothosereport- deglintingprocedurecancorrectnon-homogenousatmosphericeffects ed in literature for Amazonian waters (Barbosa, Novo, Melack, withinasatelliteimage,andassuchprovidesamoreaccurateestimate Gastil-Buhl,&Filho,2010;Lobo,Novo,Barbosa,&Galvão,2012;Rudorff, ofwaterρ (Kutser,Vahtmäe,Paavel,&Kauer,2013;Wang&Shi, surf Galvão,&Novo,2009)whereinsituspectradatausedforvalidationof 2007).Thisisparticularlyimportanttoremotesensingstudiesinthe thesatelliteimagespresentedhighvariabilityathighmagnitudevalues Amazon,wherehighhumidityandhighcloudcoverintroducesatmo- (seeFig.3).Thisislikelyduetosignal-to-noiseratioreductionrelatedto sphericvariabilitywithinthesamescene(Luetal.,2002). measuring under-water radiance in high TSS conditions (Reinart, Paavel,Pierson,&Strombeck,2004;Sunetal.,2009).Inhighturbidity 6.2.Multi-temporalanalysisofρ (λ)andTSSintheTapajósRiverBasin surf Amazonianwaterconditions,theunder-waterlightisintensivelyatten- uatedinthevisiblespectrum,reducingsignal-to-noiseratioandin- TheresultsofthecorrectionsperformedinhistoricalLandsatimag- creasingdatavariability.Costaetal.(2013),forinstance,haveshown ery (1973–2013) demonstrated that forest spectra from historical thatsediment-richwaters(TSS=138.8mg/l)presentadiffuseattenu- Landsat-5TM(1984–2011)behavedasaninvariantspectralfeature ationcoefficient(K )fivetimeshigher(15.3m−1)thaninaclear overdecades,consideringtheseasonality.Therefore,anyρ (λ)varia- d(blue) surf waterriver(TSS=4.1mg/l;K =3.0m−1). tioninspectraextractedfromwaterbodiescanbeattributedmostlyto d(blue) Despitethevariabilityofinsitureflectance,highcorrelationsbe- variationinopticalconstituentsinthewaterandnottoenvironmental tweeninsituandsatelliteρ atthegreenandredbandsindicate conditions,suchasatmosphericandglinteffects.Accordingtothevali- surf thattheatmosphericcorrectionapproachwassuccessful.Greenand dationprocedure(Section5.1),thecertaintyofcorrectedρ ishigher surf redbandsalsocorrespondtothespectrumwheresuspendedsolids fortheredandgreenbandscomparedtotheblueandNIR,wheresatel- presentahighscatteringproperty,whichincreasesthesignal-to-noise liteρ areovervalued. surf ratioofthesignaldetectedbyremotesensors.Ontheotherhand,for Themagnitudeandspectralshapeofρ (λ)derivedinthisstudyis surf blueandNIRbandstheatmosphericcorrectionresultedinageneral similartootherstudiesintheAmazonianwaters(Loboetal.,2012; overestimationofρ whencomparedtoinsituρ .Theweakcorre- Rudorffetal.,2009).Ingeneral,increasingTSSconcentrationupto surf surf lationbetweenmeasuredandsatelliteρ (blue)suggeststhattheat- 50.0mg/laffectsprimarilythegreenandredwavebands.Undervery surf mosphericmethoddidnotproperlymodeltheeffectsofaerosoland high turbidity conditions (TSS N100.0mg/l), the light scattered by gasesscattering(Guanteretal.,2010)andabsorptioneffectsbynitro- suspendedparticlesalsoconsiderablyaffectstheNIRspectrumregion. gen dioxide (Gao, Montes, Davis, & Goetz, 2009; O'Neill & Costa, Forinstance,spectraderivedfromsediment-richwatersinthisstudy 2013).Studiesthatvalidatedatmosphericcorrectionwithinsituradio- (TSSupto110.0mg/l)presentvalues(upto23.1%atredband)inac- metricmeasurementsattributedtheerrorsatbluewavelengthseither cordancewithotherstudiesintheAmazonRiverfloodplain(Barbosa F.L.Loboetal./RemoteSensingofEnvironment157(2015)170–184 179 etal.,2010;Mertesetal.,1993;Rudorffetal.,2009).Theobservedre- mattertothewaterisdeforestation(Neilletal.,2011).However,webe- flectancevaluesarelikelyassociatedwiththeoriginoftheinorganic lievethatthepossibleincreaseinTSScausedbydeforestationisnotat particles.TSSderivedfromminingactivitiesintheTapajósiscomposed thesamemagnitudeastheincreaseinTSScausedbyminingactivity. mostlyofsilt/clayparticles(Telmer&Stapper,2007),whichinturnare Forexample,theJamanximRiver,whichischaracterizedbyhighly more efficient at scattering light than organic and sand particles deforestedareasbutwithlowminingactivityinthesub-basinarea (Gordonetal.,2009).Arecentlaboratoryinvestigationonthescattering (seeFig.1),presentslowρ (λ)thataresimilartothosefromTapajós surf propertiesoftwosuspendedparticlesizeshasshownthatclay/siltpar- upstream(Jacareacanga),eveninthelowwaterlevelseasonwhenmin- ticlesare40%moreefficientinscatteringlightthanmedium-sizedsand ingactivitycanbemoreintense.Wewouldliketohighlightthatthenat- particlesat660nm(Bowers&Binding,2006;Loboetal.,2014).Asare- uralclearwaterconditionfacilitatesthedetectionofsedimentplume sult,ahighρ (red)isexpectedfromclay-richwaterthanfromsand- causedbygoldmining.Thesamerationaleislikelynotvalidforwhite surf richwaters,forexample. water(muddywater)rivers,suchastheMadeiraRiverintheAmazon. Theimagery-derived surface reflectancefrom theTapajós River BecausetheMadeiraRiverisnaturallyveryturbidasaconsequenceof Basinsuggeststhatitsvariabilityismainlyaffectedbythescattering itsdrainageintheAndes,detectionofgoldminingtailingsintothe propertiesofsuspendedsolidsthatvaryseasonallyandarealsoin- riveris likely amoredifficult task when comparing to theTapajós creasedduetominingactivities.Anotherpossiblesourceofinorganic clearwatersystem. Fig.5.Seasonalandinter-annualvariationofρsurf(VNIR)bandsinfoursub-basins:Jamanxim,Novo,Tocantins,andCreporirivers;andalongtheTapajósRiver:Jacareacanga,Itaituba, Aveiro,andSantarémcitiesusedforlocationreference(seeFig.1).Theρsurfvariesinthecolorpalettefrom0(blue)upto40%.Theverticaldashedlinesrepresenttheavailabledata usedforplotting.Yearswithnodataavailablearerepresentedbythedashedbar.
Description: