ebook img

Time Series Analysis. Nonstationary and Noninvertible Distribution Theory PDF

886 Pages·2017·7.755 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Time Series Analysis. Nonstationary and Noninvertible Distribution Theory

Time Series Analysis NonstationaryandNoninvertibleDistributionTheory KatsutoTanaka ProfessorofStatisticsandEconometrics GakushuinUniversity,Tokyo SecondEdition Thiseditionfirstpublished2017 ©2017JohnWiley&Sons,Inc LibraryofCongressCataloging-in-PublicationData Names:Tanaka,Katsuto,1950- Title:Timeseriesanalysis:nonstationaryandnoninvertibledistribution theory/KatsutoTanaka,professorofstatisticsandeconometrics, GakushuinUniversity,Tokyo. Description:Secondedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,[2017] |Series:Wileyseriesinprobabilityandstatistics|Includes bibliographicalreferencesandindexes. Identifiers:LCCN2016052139(print)|LCCN2016052636(ebook)|ISBN 9781119132097(cloth)|ISBN9781119132110(pdf)|ISBN9781119132134 (epub) Subjects:LCSH:Time-seriesanalysis. Classification:LCCQA280.T352017(print)|LCCQA280(ebook)|DDC 519.5/5–dc23 LCrecordavailableathttps://lccn.loc.gov/2016052139 9781119132097 Setin10/12ptWarnockbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica (cid:2) Contents PrefacetotheSecondEdition xi PrefacetotheFirstEdition xiii PartI AnalysisofNonFractionalTimeSeries 1 1 ModelsforNonstationarityandNoninvertibility 3 1.1 StatisticsfromtheOne-DimensionalRandomWalk 3 1.1.1 EigenvalueApproach 4 (cid:2) (cid:2) 1.1.2 StochasticProcessApproach 11 1.1.3 TheFredholmApproach 12 1.1.4 AnOverviewoftheThreeApproaches 14 1.2 ATestStatisticfromaNoninvertibleMovingAverageModel 16 1.3 TheARUnitRootDistribution 23 1.4 VariousStatisticsfromtheTwo-DimensionalRandomWalk 29 1.5 StatisticsfromtheCointegratedProcess 41 1.6 PanelUnitRootTests 47 2 BrownianMotionandFunctionalCentralLimit Theorems 51 2.1 TheSpaceL ofStochasticProcesses 51 2 2.2 TheBrownianMotion 55 2.3 MeanSquareIntegration 58 2.3.1 TheMeanSquareRiemannIntegral 59 2.3.2 TheMeanSquareRiemann–StieltjesIntegral 62 2.3.3 TheMeanSquareItoIntegral 66 2.4 TheItoCalculus 72 2.5 WeakConvergenceofStochasticProcesses 77 2.6 TheFunctionalCentralLimitTheorem 81 2.7 FCLTforLinearProcesses 87 2.8 FCLTforMartingaleDifferences 91 2.9 WeakConvergencetotheIntegratedBrownianMotion 99 (cid:2) TrimSize:6.125inx9.25in SingleColumnTight (cid:2) Tanaka ftoc.tex V1-02/16/2017 12:50pm Pagevi vi Contents 2.10 WeakConvergencetotheOrnstein–UhlenbeckProcess 103 2.11 WeakConvergenceofVector-ValuedStochasticProcesses 109 2.11.1 SpaceCq 109 2.11.2 BasicFCLTforVectorProcesses 110 2.11.3 FCLTforMartingaleDifferences 112 2.11.4 FCLTfortheVector-ValuedIntegratedBrownianMotion 115 2.12 WeakConvergencetotheItoIntegral 118 3 TheStochasticProcessApproach 127 3.1 Girsanov’sTheorem:O-UProcesses 127 3.2 Girsanov’sTheorem:IntegratedBrownianMotion 137 3.3 Girsanov’sTheorem:Vector-ValuedBrownianMotion 142 3.4 TheCameron–MartinFormula 145 3.5 AdvantagesandDisadvantagesofthePresentApproach 147 4 TheFredholmApproach 149 4.1 MotivatingExamples 149 4.2 TheFredholmTheory:TheHomogeneousCase 155 4.3 Thec.f.oftheQuadraticBrownianFunctional 161 4.4 VariousFredholmDeterminants 171 4.5 TheFredholmTheory:TheNonhomogeneousCase 190 (cid:2) 4.5.1 ComputationoftheResolvent–Case1 192 (cid:2) 4.5.2 ComputationoftheResolvent–Case2 199 4.6 WeakConvergenceofQuadraticForms 203 5 NumericalIntegration 213 5.1 Introduction 213 5.2 NumericalIntegration:TheNonnegativeCase 214 5.3 NumericalIntegration:TheOscillatingCase 220 5.4 NumericalIntegration:TheGeneralCase 228 5.5 ComputationofPercentPoints 236 5.6 TheSaddlepointApproximation 240 6 EstimationProblemsinNonstationaryAutoregressive Models 245 6.1 NonstationaryAutoregressiveModels 245 6.2 ConvergenceinDistributionofLSEs 250 6.2.1 ModelA 251 6.2.2 ModelB 253 6.2.3 ModelC 255 6.2.4 ModelD 257 6.3 Thec.f.sfortheLimitingDistributionsofLSEs 260 6.3.1 TheFixedInitialValueCase 261 6.3.2 TheStationaryCase 265 (cid:2) TrimSize:6.125inx9.25in SingleColumnTight (cid:2) Tanaka ftoc.tex V1-02/16/2017 12:50pm Pagevii Contents vii 6.4 TablesandFiguresofLimitingDistributions 267 6.5 ApproximationstotheDistributionsoftheLSEs 276 6.6 NearlyNonstationarySeasonalARModels 281 6.7 ContinuousRecordAsymptotics 289 6.8 ComplexRootsontheUnitCircle 292 6.9 AutoregressiveModelswithMultipleUnitRoots 300 7 EstimationProblemsinNoninvertibleMovingAverage Models 311 7.1 NoninvertibleMovingAverageModels 311 7.2 TheLocalMLEintheStationaryCase 314 7.3 TheLocalMLEintheConditionalCase 325 7.4 NoninvertibleSeasonalModels 330 7.4.1 TheStationaryCase 331 7.4.2 TheConditionalCase 333 7.4.3 ContinuousRecordAsymptotics 335 7.5 ThePseudolocalMLE 337 7.5.1 TheStationaryCase 337 7.5.2 TheConditionalCase 339 7.6 ProbabilityoftheLocalMLEatUnity 341 7.7 TheRelationshipwiththeStateSpaceModel 343 (cid:2) (cid:2) 8 UnitRootTestsinAutoregressiveModels 349 8.1 Introduction 349 8.2 OptimalTests 350 8.2.1 TheLBITest 352 8.2.2 TheLBIUTest 353 8.3 EquivalenceoftheLMTestwiththeLBIorLBIUTest 356 8.3.1 EquivalencewiththeLBITest 356 8.3.2 EquivalencewiththeLBIUTest 358 8.4 VariousUnitRootTests 360 8.5 IntegralExpressionsfortheLimitingPowers 362 8.5.1 ModelA 363 8.5.2 ModelB 364 8.5.3 ModelC 365 8.5.4 ModelD 367 8.6 LimitingPowerEnvelopesandPointOptimalTests 369 8.7 ComputationoftheLimitingPowers 372 8.8 SeasonalUnitRootTests 382 8.9 UnitRootTestsintheDependentCase 389 8.10 TheUnitRootTestingProblemRevisited 395 8.11 UnitRootTestswithStructuralBreaks 398 8.12 StochasticTrendsVersusDeterministicTrends 402 8.12.1 CaseofIntegratedProcesses 403 (cid:2) TrimSize:6.125inx9.25in SingleColumnTight (cid:2) Tanaka ftoc.tex V1-02/16/2017 12:50pm Pageviii viii Contents 8.12.2 CaseofNear-IntegratedProcesses 406 8.12.3 SomeSimulations 409 9 UnitRootTestsinMovingAverageModels 415 9.1 Introduction 415 9.2 TheLBIandLBIUTests 416 9.2.1 TheConditionalCase 417 9.2.2 TheStationaryCase 419 9.3 TheRelationshipwiththeTestStatisticsinDifferencedForm 424 9.4 PerformanceoftheLBIandLBIUTests 427 9.4.1 TheConditionalCase 427 9.4.2 TheStationaryCase 430 9.5 SeasonalUnitRootTests 434 9.5.1 TheConditionalCase 434 9.5.2 TheStationaryCase 436 9.5.3 PowerProperties 438 9.6 UnitRootTestsintheDependentCase 444 9.6.1 TheConditionalCase 444 9.6.2 TheStationaryCase 446 9.7 TheRelationshipwithTestingintheStateSpaceModel 447 9.7.1 Case(I) 449 (cid:2) 9.7.2 Case(II) 450 (cid:2) 9.7.3 Case(III) 452 9.7.4 TheCaseoftheInitialValueKnown 454 10 AsymptoticPropertiesofNonstationaryPanelUnitRoot Tests 459 10.1 Introduction 459 10.2 PanelAutoregressiveModels 461 10.2.1 TestsBasedontheOLSE 463 10.2.2 TestsBasedontheGLSE 471 10.2.3 SomeOtherTests 475 10.2.4 LimitingPowerEnvelopes 480 10.2.5 GraphicalComparison 485 10.3 PanelMovingAverageModels 488 10.3.1 ConditionalCase 490 10.3.2 StationaryCase 494 10.3.3 PowerEnvelope 499 10.3.4 GraphicalComparison 502 10.4 PanelStationarityTests 507 10.4.1 LimitingLocalPowers 508 10.4.2 PowerEnvelope 512 10.4.3 GraphicalComparison 514 10.5 ConcludingRemarks 515 (cid:2) TrimSize:6.125inx9.25in SingleColumnTight (cid:2) Tanaka ftoc.tex V1-02/16/2017 12:50pm Pageix Contents ix 11 StatisticalAnalysisofCointegration 517 11.1 Introduction 517 11.2 CaseofNoCointegration 519 11.3 CointegrationDistributions:TheIndependentCase 524 11.4 CointegrationDistributions:TheDependentCase 532 11.5 TheSamplingBehaviorofCointegrationDistributions 537 11.6 TestingforCointegration 544 11.6.1 TestsfortheNullofNoCointegration 544 11.6.2 TestsfortheNullofCointegration 547 11.7 DeterminationoftheCointegrationRank 552 11.8 HigherOrderCointegration 556 11.8.1 CointegrationintheI(d)Case 556 11.8.2 SeasonalCointegration 559 PartII AnalysisofFractionalTimeSeries 567 12 ARFIMAModelsandtheFractionalBrownianMotion 569 12.1 NonstationaryFractionalTimeSeries 569 12.1.1 Caseofd= 1 570 (cid:2) (cid:2) 2 12.1.2 Caseofd> 1 572 2 12.2 TestingfortheFractionalIntegrationOrder 575 12.2.1 i.i.d.Case 575 12.2.2 DependentCase 581 12.3 EstimationfortheFractionalIntegrationOrder 584 12.3.1 i.i.d.Case 584 12.3.2 DependentCase 586 12.4 StationaryLong-MemoryProcesses 591 12.5 TheFractionalBrownianMotion 597 12.6 FCLTforLong-MemoryProcesses 603 12.7 FractionalCointegration 608 12.7.1 SpuriousRegressionintheFractionalCase 609 12.7.2 CointegratingRegressionintheFractionalCase 610 12.7.3 TestingforFractionalCointegration 614 12.8 TheWaveletMethodforARFIMAModelsandthefBm 614 12.8.1 BasicTheoryoftheWaveletTransform 615 12.8.2 SomeAdvantagesoftheWaveletTransform 618 12.8.3 SomeApplicationsoftheWaveletAnalysis 625 12.8.3.1 TestingfordinARFIMAModels 625 12.8.3.2 TestingfortheExistenceofNoise 626 12.8.3.3 TestingforFractionalCointegration 627 12.8.3.4 UnitRootTests 627 (cid:2) TrimSize:6.125inx9.25in SingleColumnTight (cid:2) Tanaka ftoc.tex V1-02/16/2017 12:50pm Pagex x Contents 13 StatisticalInferenceAssociatedwiththeFractionalBrownian Motion 629 13.1 Introduction 629 13.2 ASimpleContinuous-TimeModelDrivenbythefBm 632 13.3 QuadraticFunctionalsoftheBrownianMotion 641 13.4 Derivationofthec.f. 645 13.4.1 StochasticProcessApproachviaGirsanov’sTheorem 645 13.4.1.1 CaseofH =1∕2 645 13.4.1.2 CaseofH >1∕2 646 13.4.2 FredholmApproachviatheFredholmDeterminant 647 13.4.2.1 CaseofH =1∕2 649 13.4.2.2 CaseofH >1∕2 650 13.5 MartingaleApproximationtothefBm 651 13.6 TheFractionalUnitRootDistribution 659 13.6.1 TheFDAssociatedwiththeApproximateDistribution 659 13.6.2 AnInterestingMomentProperty 664 13.7 TheUnitRootTestUnderthefBmError 669 14 MaximumLikelihoodEstimationfortheFractional Ornstein–UhlenbeckProcess 673 14.1 Introduction 673 (cid:2) 14.2 EstimationoftheDrift:ErgodicCase 677 (cid:2) 14.2.1 AsymptoticPropertiesoftheOLSEs 677 14.2.2 TheMLEandMCE 679 14.3 EstimationoftheDrift:Non-ergodicCase 687 14.3.1 AsymptoticPropertiesoftheOLSE 687 14.3.2 TheMLE 687 14.4 EstimationoftheDrift:BoundaryCase 692 14.4.1 AsymptoticPropertiesoftheOLSEs 692 14.4.2 TheMLEandMCE 693 14.5 ComputationofDistributionsandMomentsoftheMLEand MCE 695 14.6 TheMLE-basedUnitRootTestUnderthefBmError 703 14.7 ConcludingRemarks 707 15 SolutionstoProblems 709 References 865 AuthorIndex 879 SubjectIndex 883 (cid:2) (cid:2) xi PrefacetotheSecondEdition Thefirsteditionofthisbookwaspublishedin1996.Thebookwaswrittenfrom atheoreticalviewpointoftimeserieseconometrics,wherethemainthemewas todescribenonstandardtheoryforlineartimeseriesmodelsthatarenonsta- tionaryand/ornoninvertible.Ialsoproposedmethodsforcomputingnumeri- callythedistributionsofnonstandardstatisticsarisingfromsuchprocesses. The main theme of the present edition remains the same and reflects the developments and new directions in the field since the publication of the first edition. In particular, the discussion on nonstationary panel data analysishasbeenaddedandnewchaptersonlong-memorydiscrete-timeand (cid:2) continuous-time processes have been created, whereas some chapters have (cid:2) beenmergedandsomesectionsdeleted. Thiseditionisdividedintotwoparts:PartI:AnalysisofNonFractionalTime SeriesandPartII:AnalysisofFractionalTimeSeries,wherePartIconsistsof Chapters 1 through 11 while Part II consists of Chapters 12 through 14. The distinctionbetweennonfractionalandfractionaltimeseriesisconcernedwith theintegrationorderofnonstationarytimeseries.PartIassumestheintegra- tionordertobeapositiveinteger,whereasPartIIrelaxesthatassumptionto allowtheintegrationordertobeanypositiverealnumber. Chapter1isessentiallythesameasthefirstedition,exceptfortheadditionof anintroductorydescriptiononnonstationarypanels,andisapreludetosub- sequentchapters.Thethreeapproaches,whichIcalltheeigenvalue,stochastic process,andFredholmapproaches,totheanalysisofnonfractionaltimeseries are introduced through simple examples. Chapter 2 merged Chapters 2 and 3ofthefirsteditionanddiscussestheBrownianmotion,theItointegral,the functionalcentrallimittheorem,andsoon. Chapters 3 and 4 discuss fully the stochastic process approach and the Fredholmapproach,respectively.Theseapproachesareusedtoderivelimiting characteristicfunctionsofnonstandardstatisticsthatarequadraticfunctionals of the Brownian motion or its ratio. Chapter 5 is concerned with numerical integrationforcomputingdistributionfunctionsviainversionofcharacteristic functions derived from the stochastic process approach or the Fredholm approach. Chapters 6 through 11 deal with unit root and cointegration (cid:2) (cid:2) xii PrefacetotheSecondEdition problems. Chapters 1 through 11 except Chapter 10 were main chapters of the first edition. New topics such as unit root tests under structural breaks, differences between stochastic and deterministic trends, have been added. Chapter10hasbeenaddedtodiscussnonstationarypaneldatamodels,where our main concern is to compute limiting local powers of various panel unit roottests.Forthatpurposethemovingaveragemodelsarealsoconsideredin additiontoautoregressivemodels. Chapters12through14havebeenwrittennewlyunderPartII:Analysisof FractionalTimeSeries.Chapter12discussesthebasictheoryoflong-memory processesbyintroducingARFIMAmodelsandthefractionalBrownianmotion (fBm). The wavelet method is also introduced to deal with ARFIMA models and the fBm. Chapter 13 is concerned with the computation of distributions ofquadraticfunctionalsofthefBmanditsratio,wherethecomputationofthe fractional unit root distribution remains to be done, whereas an approxima- tiontothetruedistributionisproposedandcomputed.Chapter14introduces thefractionalOrnstein–Uhlenbeckprocess,onwhichthestatisticalinferenceis discussed.Inparticular,themaximumlikelihoodestimatorofthedriftparame- terisconsidered,andasymptoticsasthesamplingspanincreasesarediscussed. Chapter 15, the last chapter, gives a complete set of solutions to problems posedattheendofmostsections. There are about 140 figures and 60 tables. Most of these are of limiting (cid:2) distributionsofnonstandardstatistics.Theyareallproducedbythemethods (cid:2) described in this edition and include many distributions, which have never appearedintheliterature. Thepresenteditionisdedicatedtomywife,Yoshiko,whodiedin1999. November2016 KatsutoTanaka Tokyo,Japan (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.