ebook img

Time Series Analysis Methods and Applications for Flight Data PDF

244 Pages·2017·8.776 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Time Series Analysis Methods and Applications for Flight Data

Jianye Zhang · Peng Zhang Time Series Analysis Methods and Applications for Flight Data Time Series Analysis Methods and Applications for Flight Data Jianye Zhang Peng Zhang (cid:129) Time Series Analysis Methods and Applications for Flight Data 123 Jianye Zhang PengZhang AirForce EngineeringUniversity AirForce EngineeringUniversity Xi’an,Shaanxi Xi’an,Shaanxi China China ISBN978-3-662-53428-1 ISBN978-3-662-53430-4 (eBook) DOI 10.1007/978-3-662-53430-4 TranslatedfromChinese JointlypublishedwithNationalDefenseIndustryPress,Beijing,China LibraryofCongressControlNumber:2016951706 ©NationalDefenseIndustryPressandSpringer-VerlagBerlinHeidelberg2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHGermany Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Preface Flight data automatically recorded and saved by FDRS in aircraft flight and maintenance is a typical type of time series. The flight data of this type is a recording of the operation states of the aircraft and its subsystems, as well as the change trends of aircraft performance. More importantly, the accumulation of the data along with time will produce massive data that can be used as a source of authenticonboardevidenceofaircraftperformanceandcondition.Understandably, itcanalsobeusedasapredicatorofoperationconditionofaircraftsystemsforthe early warning of a possible malfunction. Therefore, effective use of the flight data, anareathathasrecentlyattractedmuchresearcheffort,providesareliablebasisfor on-conditionmaintenance,qualitycontrol,flightsafetyassessment,andairaccident investigation as well. While the development of science and technology benefits the world in the information age, there is also an increasing conflict between data redundancy and lack of knowledge. Information mining out of massive data on the one hand, and transformation of the mined information into applicable knowledge on the other, poses a challenge to the research and application offlight data. As a result of this, researcheffortshavebeenmadetoanswertothechallenge,anddataminingisone of them. As part of the effort to explore the theory and practice of data mining in flightdataanalysis,andonthebasisoftheviewofflightdataastypicaltimeseries, thepresentstudyprovidesadetailedandsystematicaccountoftheaimofflightdata analysis,aswellasitsproceduresandimplementationtechnologies.Integratinginit the latest development in control theory, test technology, and information pro- cessing,thepresentstudyisalsoasummaryofthecontributionoftheresearchteam to the study and application offlight data in the past 10 years. The present volume is made up of six chapters. Chapter 1 is an introduction of the research background, recalling and summarizing the basic notions, devel- opments, and military application of the study offlight data. Chapter 2 deals with flight data preprocessing, providing a theoretical basis, as well as a reliable data source, for the discussion and practice of intelligent data mining in the following chapters.Chapter3isanintroductionofARMAmodelfortimeseriesanalysis,and its application and technological realization. In Chap. 4, methods of similarity v vi Preface search of time series are proposed together with a theoretical account of the methods. Chapter 5 focuses on elaborating flight-data-based second development andadvancedapplicationforthepurposeofconditionmonitoring,failurediagnosis, andtrendpredictionofaircraftanditssubsystemsbymeansofvariousdatamining methods. Chapter 6 introduces system design and application of intelligent flight data mining. Many people have contributed to the completion of this book; among them are Profs.LiXue-renandNiShi-hongfromAirForceEngineeringUniversity(AFEU), and Prof. Pan Quan from Northwestern Polytechnical University (NWPU). We gratefully acknowledge their help and guidance. It should also be acknowledged that Liang Jian-hai, in his a postdoctoral research at NWPU, has contributed to search and prediction algorithms. Our thanks also go to Song Ji-xue, Liu Bo-ning, Wang Zhan-lei, postgraduates at AFEU, who have helped with the writing and proofreading of some of the draft. Last but not least, we are grateful to all the authors who have been consulted and quoted in the process of writing. The authors hold themselves to be responsible for all the possible errors in the volume, and welcome suggestions for its improvement. ThebookhasbeenajointeffortofsixtranslatorswhoareallEnglishteachersat AFEU. They are Zhao Donglin (Chap. 4), Wu Subin (Chap. 1 and 2), Zhang Jing (Chap.5),WangNingwu(Chap.5),JiangFei(Chap.3),andJiangXuehong(Chap.6). The completion of the English version is also a result of constant consultation and discussion with the authors for appropriate comprehension and re-rendering of the original text. The whole translation has been reviewed and revised by the authors, ZhaoDonglinandWuSubin. Xi’an, China Jianye Zhang August, 2016 Peng Zhang Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Flight Data Recorder System .... .... .... .... .... ..... .... 1 1.1.1 Overview .... ..... .... .... .... .... .... ..... .... 1 1.1.2 Developments. ..... .... .... .... .... .... ..... .... 2 1.1.3 Military Applications .... .... .... .... .... ..... .... 10 1.2 Application Research for Flight Data.. .... .... .... ..... .... 11 1.2.1 Basic Concepts ..... .... .... .... .... .... ..... .... 11 1.2.2 Research Status..... .... .... .... .... .... ..... .... 12 1.3 Research Domain and Main Contents.. .... .... .... ..... .... 16 2 Preprocessing of Flight Data ... .... .... .... .... .... ..... .... 19 2.1 Support Degree-Based Amnesic Fusion Filtering Method for Flight Data .. .... ..... .... .... .... .... .... ..... .... 19 2.1.1 Unified Error Model of Flight Data.. .... .... ..... .... 19 2.1.2 Support Degree-Based Amnesic Fusion Filtering Algorithm .... ..... .... .... .... .... .... ..... .... 21 2.1.3 Application and Conclusion ... .... .... .... ..... .... 25 2.2 Missing Flight Data Filling Method Based on Comprehensive Weighting Optimization .... .... .... .... .... .... ..... .... 30 2.2.1 Modified Neural Network Model Based on Mixed Algorithm .... ..... .... .... .... .... .... ..... .... 30 2.2.2 Polynomial Fitting Model Based on Least Square Method.. .... ..... .... .... .... .... .... ..... .... 31 2.2.3 Comprehensive Weighting Method to Fill the Missing Values... .... ..... .... .... .... .... .... ..... .... 33 2.2.4 Simulated Analysis and Conclusion . .... .... ..... .... 34 vii viii Contents 2.3 Flight Data Extension Method Based on Virtual Sensor Technologies ... .... ..... .... .... .... .... .... ..... .... 35 2.3.1 Overview of Virtual Sensor Technologies. .... ..... .... 35 2.3.2 Virtual Flight Data Extension Based on Mathematical Model... .... ..... .... .... .... .... .... ..... .... 36 2.3.3 Virtual Flight Data Extension Based on BP Network. .... 37 2.4 Self-expanding Genetic Algorithm for Feature Selection in Monitoring Flight Data Capacity ... .... .... .... ..... .... 41 2.4.1 Feature Selection and Genetic Algorithm . .... ..... .... 42 2.4.2 Self-expanding Genetic Algorithm .. .... .... ..... .... 44 2.4.3 Case Verification and Assessment... .... .... ..... .... 47 2.5 Chaotic Property Analysis of Flight Data... .... .... ..... .... 49 2.5.1 Mathematical Description of Phase Space Reconstruction of the Chaotic Series. .... .... ..... .... 50 2.5.2 Analysis and Verification of Chaotic Property . ..... .... 56 3 Typical Time Series Analysis of Flight Data Based on ARMA Model .. ..... .... .... .... .... .... ..... .... 65 3.1 Theory of ARMA Model ... .... .... .... .... .... ..... .... 65 3.1.1 Mathematical Model. .... .... .... .... .... ..... .... 66 3.1.2 Modeling Process ... .... .... .... .... .... ..... .... 67 3.1.3 Estimation of Model Parameters.... .... .... ..... .... 70 3.1.4 Model Applicability Test.. .... .... .... .... ..... .... 73 3.1.5 Optimum Prediction . .... .... .... .... .... ..... .... 74 3.2 Trend of Parameter Monitoring Method Based on AR Model .... 75 3.2.1 Description for Steady State of Aircraft .. .... ..... .... 76 3.2.2 Extraction of Monitoring Parameters Based on Rule Reasoning Machine.. .... .... ..... .... 76 3.2.3 Monitoring Method of Mean-Value and Range Based on AR Model. .... .... .... .... .... ..... .... 80 3.2.4 Case Study and Effect Assessment .. .... .... ..... .... 81 4 Similarity Search for Flight Data.... .... .... .... .... ..... .... 87 4.1 The Method of Similarity Analysis of Time Series.... ..... .... 87 4.1.1 Overview .... ..... .... .... .... .... .... ..... .... 88 4.1.2 Time Series Dimension Reduction .. .... .... ..... .... 89 4.1.3 Similarity Measurement of Time Series .. .... ..... .... 100 4.2 Similarity Search Method in Time Series Based on Slope Distance ... .... .... ..... .... .... .... .... .... ..... .... 109 4.2.1 Slope Set Representation of Time Series.. .... ..... .... 109 4.2.2 Slope Distance Measurement for Time Series.. ..... .... 110 4.2.3 Verification on Clustering of Flight Data Based on Slope Distance.. .... .... .... .... ..... .... 111 Contents ix 4.3 Similarity Search Method in Time Series Based on Included Angle Distance.. .... ..... .... .... .... .... .... ..... .... 114 4.3.1 Representation of Included Angle Set for Time Series .... 114 4.3.2 Included Angle Distance Measurement for Time Series ... 116 4.3.3 Verification on Clustering of Time Series Based on Included Angle Distance.. .... .... ..... .... 118 4.4 Similarity Search Method in Time Series Based on Curvature Distance ... .... .... ..... .... .... .... .... .... ..... .... 121 4.4.1 Data Preprocessing .. .... .... .... .... .... ..... .... 121 4.4.2 Representation of Curvature Set for Time Series..... .... 123 4.4.3 Curvature Distance Measurement for Time Series.... .... 125 4.4.4 Verification on Clustering of Flight Data Based on Curvature.. .... .... .... .... .... ..... .... 127 4.5 Multivariable Flight Data Similarity Search Method Including Changing Step to Set Data in Different Bins .... .... ..... .... 132 4.5.1 Piecewise Linear Representation for Time Series .... .... 132 4.5.2 Indexing Tag Based on Changing Step to Set Data in Different Bins.... .... .... .... .... .... ..... .... 133 4.5.3 Similarity Search Method Including Changing Step to Set Data in Different Bins... .... .... .... ..... .... 135 4.5.4 Verification on Clustering of Multivariable Flight Data Based on Similarity Search Method Including Changing Step to Set Data in Different Bins... ..... .... 136 4.6 Multivariable Flight Data Similarity Search Method Based on QR decomposition of Correlation Coefficient Matrix ... 142 4.6.1 RepresentationofMatrixandPlotforMultivariableTime Series ... .... ..... .... .... .... .... .... ..... .... 142 4.6.2 Correlative Representation of Matrix for Multivariable Time Series... ..... .... .... .... .... .... ..... .... 143 4.6.3 QR Distance Measurement for Multivariable Time Series... ..... .... .... .... .... .... ..... .... 144 4.6.4 Verification on Clustering of Multivariable Flight Data Based on QR Distance ... .... .... .... .... ..... .... 147 5 Condition Monitoring and Trend Prediction Based on Flight Data. .... ..... .... .... .... .... .... ..... .... 153 5.1 Clustering Methods Based on Flexible-Size Grid for Airplane Equipment . .... .... ..... .... .... .... .... .... ..... .... 153 5.1.1 Clustering Methods of Multivariate Data . .... ..... .... 154 5.1.2 Clustering Method Based on Density Function. ..... .... 155 5.1.3 Shrinking Clustering Method Based on Flexible-Size Grid .... .... ..... .... .... .... .... .... ..... .... 157 5.1.4 Monitoring Examples of Flight Equipment Status Shrinking Clustering. .... .... .... .... .... ..... .... 165 x Contents 5.2 Mutability Fault Diagnosis Arithmetic Based on Expert System.... .... .... .... .... .... ..... .... 170 5.2.1 Theory of Expert System . .... .... .... .... ..... .... 171 5.2.2 Main Functions of the Aircraft Fault Diagnosing Expert System .. .... ..... .... .... .... .... .... ..... .... 175 5.2.3 Implementation and Evaluation. .... .... .... ..... .... 177 5.3 GradualFaultDiagnosisArithmeticBasedonDynamicPrinciple Component Analysis.. ..... .... .... .... .... .... ..... .... 179 5.3.1 Overview of Principle Component Analysis ... ..... .... 179 5.3.2 Dynamic Principle Component Analysis Method .... .... 181 5.3.3 Fault Diagnosis Arithmetic Based on Dynamic Principle Component Analysis. .... .... .... .... .... ..... .... 182 5.3.4 Simulation Evaluation of Fault Diagnosis. .... ..... .... 184 5.4 Engine Performance Parameter Prediction Based on WLS-SVM . ..... .... .... .... .... .... ..... .... 187 5.4.1 Basic Theory of SVM.... .... .... .... .... ..... .... 187 5.4.2 The Weighted Least Square Support Vector Machine Arithmetic (WLS-SVM) .. .... .... .... .... ..... .... 192 5.4.3 WLS-SVM Parametric Prediction Model . .... ..... .... 195 5.4.4 Application Example. .... .... .... .... .... ..... .... 198 5.5 Engine Performance Data Prediction on the Basis of Chaotic Sequence .. .... .... ..... .... .... .... .... .... ..... .... 206 5.5.1 Chaos and Chaotic Sequence .. .... .... .... ..... .... 207 5.5.2 Prediction Model.... .... .... .... .... .... ..... .... 208 5.5.3 Application of the Model . .... .... .... .... ..... .... 209 6 Design and Implementation of Flight Data Mining System .... .... 215 6.1 Data Mining System.. ..... .... .... .... .... .... ..... .... 215 6.2 Flight Data Warehouse Modeling. .... .... .... .... ..... .... 217 6.2.1 The Special Characteristics of Flight Data .... ..... .... 217 6.2.2 Mining Goals of Flight Data... .... .... .... ..... .... 218 6.2.3 Flight Data Warehouse Modeling ... .... .... ..... .... 219 6.3 Design and Development of Prototype System... .... ..... .... 220 6.3.1 General Design..... .... .... .... .... .... ..... .... 220 6.3.2 Data Flow.... ..... .... .... .... .... .... ..... .... 222 6.3.3 Working Process.... .... .... .... .... .... ..... .... 222 6.3.4 Main Functions..... .... .... .... .... .... ..... .... 224 6.4 Summary .. .... .... ..... .... .... .... .... .... ..... .... 230 References.... .... .... .... ..... .... .... .... .... .... ..... .... 233

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.