ebook img

Time Series Analysis and Its Application with R examples PDF

562 Pages·2015·7.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Time Series Analysis and Its Application with R examples

(cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page 1 — #1 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page 2 — #2 (cid:105) (cid:105) Robert H. Shumway David S. Stoffer Time Series Analysis and Its Applications With R Examples Third Edition BluePrinting2015.11.16 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page v — #3 (cid:105) (cid:105) Prof. Robert H. Shumway Prof. David S. Stoffer Department of Statistics Department of Statistics University of California University of Pittsburgh Davis, California Pittsburgh, Pennsylvania USA USA ISSN 1431 -875X ISBN 978-1-4419-7864-6 e-ISBN 978-1-4419-7865-3 DOI 10.1007/978-1-4419-7865-3 Springer New York Dordrecht Heidelberg London © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page vi — #4 (cid:105) (cid:105) Preface to the Blue Printing Considertheblueversionasanewprintingofthethirdeditionthatwillbeupdated periodically; the printing date is on the title page. No errata will be kept for this version.Ifyouseeatypo,sendme(DSS)anemailandI’llfixitatthenextupdate. Theblueeditionfollowstheoriginalyellowversionbutwithinternallinks,various fixes, additions, and updates. Hopefully you got this from the website for the text www.stat.pitt.edu/stoffer/tsa3andyoudidn’tpaymoneyforthisversion.Allthecode isincludedhereandprobablywon’tbepostedonthewebsite. Thechangessofarare: Chapter1: Minorchangestosomeexamples.Addeddefinitionoftrendstationarity. Changedafewgraphics.Addedtheconceptofprewhiteningwhenusing CCF.Explainednon-negativedefiniteoftheACFinmoredetail(usedto onlybeinaproblem). Chapter2: ChangedsmoothingexamplesfromlamemortalitydataexampletoSOI andfindingElNiño(someexamplesremoved).Expandedonthelagged regressionexampleandcarrieditontoChapter3. Chapter3: RemovediidnormalfromdefinitionofARMAmodels.Addedsectionon regression with ARMA errors and the corresponding problems (moved fromChapter5).Changed/addedsomeexamplesintheseasonalARMA section. Added an example on why you should not use auto.arima fromtheforecastpackage.Carriedlaggedregressionthroughtotheend (laggedregressionwithautocorrelatederrors). Chapter4: Minor changes to some examples. Added star magnitude example and discussed modulated series. Moved some of the filtering section for- wardforeasieraccesstoinformationwhenneeded.Removedrelianceon spec.pgram (from stats package) to mvspec (from astsa package) so we don’t have to spend pages explaining the quirks of stats. Removed sectiononwaveletsbecausetherearesomanyaccessibletextsavailable. (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page vii — #5 (cid:105) (cid:105) PrefacetotheBluePrinting vii Chapter5: MovedregressionwithARMAerrorstoChapter3.Someminorchanges toexamples. Chapter6: Same basic layout, but some sections have been moved. The Bayesian section (now §6.11) is completely rewritten and is on linear Gaussian statespacemodelsonly.Thenonlinearstuffisremovedbecauseit’sold andthenewerstuffisinDouc,Moulines,andStoffer(2014).Alsoadded a smoothing splines section (now §6.5). Polished and fixed some other examples. Chapter7: Nochange,it’sperfect. Problems: Moved regression with ARMA errors problems to Chapter 3. Removed Chapter4waveletproblems.Tweaked,rewrote,improved,revisedsome otherproblems,buttheoverallorderingandcoverageisroughlythesame. Appendices: Fixedsometypos,butotherwiseunchanged. (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page viii — #6 (cid:105) (cid:105) Preface to the Third Edition Thegoalsofthisbookaretodevelopanappreciationfortherichnessandversatility of modern time series analysis as a tool for analyzing data, and still maintain a commitmenttotheoreticalintegrity,asexemplifiedbytheseminalworksofBrillinger (1975)andHannan(1970)andthetextsbyBrockwellandDavis(1991)andFuller (1995). Theadvent of inexpensive powerfulcomputing has provided bothreal data and new software that can take one considerably beyond the fitting of simple time domainmodels,suchashavebeenelegantlydescribedinthelandmarkworkofBox andJenkins(1970).Thisbookisdesignedtobeusefulasatextforcoursesintime seriesonseveraldifferentlevelsandasareferenceworkforpractitionersfacingthe analysisoftime-correlateddatainthephysical,biological,andsocialsciences. Wehaveusedearlierversionsofthetextatboththeundergraduateandgraduate levelsoverthepastdecade.Thereisnowan“EZEdition”onthewebsitehttp://www. stat.pitt.edu/stoffer/tsa3/ that is more accessible to students with only basic skills.Ourexperienceisthatanundergraduatecoursecanbeaccessibletostudents withabackgroundinregressionanalysisandmayinclude§1.1–§1.6,§2.1–§2.3,the resultsandnumericalpartsof§3.1–§3.9,andbrieflytheresultsandnumericalparts of §4.1–§4.6. At the advanced undergraduate or master’s level, where the students have some mathematical statistics background, more detailed coverage of the same sections, with the inclusion of §2.4 and extra topics from Chapter 5 or Chapter 6 can be used as a one-semester course. Often, the extra topics are chosen by the students according to their interests. Finally, a two-semester upper-level graduate courseformathematics,statistics,andengineeringgraduatestudentscanbecrafted by adding selected theoretical appendices. For the upper-level graduate course, we shouldmentionthatwearestrivingforabroaderbutlessrigorouslevelofcoverage than that which is attained by Brockwell and Davis (1991), the classic entry at this level. Themajordifferencebetweenthisthirdeditionofthetextandthesecondedition is that we provide R code for almost all of the numerical examples. An R package calledastsaisprovidedforusewiththetext;see§R.2fordetails.Rcodeisprovided simplytoenhancetheexpositionbymakingthenumericalexamplesreproducible. (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page ix — #7 (cid:105) (cid:105) PrefacetotheThirdEdition ix We have tried, where possible, to keep the problem sets in order so that an instructormayhaveaneasytimemovingfromthesecondeditiontothethirdedition. However, some of the old problems have been revised and there are some new problems. Also, some of the data sets have been updated. We added one section in Chapter 5 on unit roots and enhanced some of the presentations throughout the text. The exposition on state-space modeling, ARMAX models, and (multivariate) regressionwithautocorrelatederrorsinChapter6havebeenexpanded.Inthisedition, weusestandardRfunctionsasmuchaspossible,butweuseourownscripts(included inastsa)whenwefeelitisnecessarytoavoidproblemswithaparticularRfunction; theseproblemsarediscussedindetailonthewebsiteforthetextunderRIssues. We thank John Kimmel, Executive Editor, Springer Statistics, for his guidance inthepreparationandproductionofthiseditionofthetext.WearegratefultoDon Percival,UniversityofWashington,fornumeroussuggestionsthatledtosubstantial improvement to the presentation in the second edition, and consequently in this edition. We thank Doug Wiens, University of Alberta, for help with some of the R code in Chapters 4 and 7, and for his many suggestions for improvement of the exposition. We are grateful for the continued help and advice of Pierre Duchesne, UniversityofMontreal,andAlexanderAue,UniversityofCalifornia,Davis.Wealso thankthemanystudentsandotherreaderswhotookthetimetomentiontypographical errorsandothercorrectionstothefirstandsecondeditions.Finally,workonthethis editionwassupportedbytheNationalScienceFoundationwhileoneofus(D.S.S.) wasworkingattheFoundationundertheIntergovernmentalPersonnelAct. Davis,CA RobertH.Shumway Pittsburgh,PA DavidS.Stoffer September2010 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page x — #8 (cid:105) (cid:105) Contents PrefacetotheBluePrinting ......................................... vi PrefacetotheThirdEdition ......................................... viii 1 CharacteristicsofTimeSeries ................................... 1 1.1 Introduction ............................................... 1 1.2 TheNatureofTimeSeriesData .............................. 3 1.3 TimeSeriesStatisticalModels................................ 10 1.4 MeasuresofDependence:Autocorrelationand Cross-Correlation .......................................... 16 1.5 StationaryTimeSeries ...................................... 20 1.6 EstimationofCorrelation.................................... 27 1.7 Vector-ValuedandMultidimensionalSeries..................... 33 Problems ...................................................... 38 2 TimeSeriesRegressionandExploratoryDataAnalysis............. 46 2.1 Introduction ............................................... 46 2.2 ClassicalRegressionintheTimeSeriesContext................. 47 2.3 ExploratoryDataAnalysis ................................... 56 2.4 SmoothingintheTimeSeriesContext ......................... 69 Problems ...................................................... 73 3 ARIMAModels................................................ 79 3.1 Introduction ............................................... 79 3.2 AutoregressiveMovingAverageModels ....................... 79 3.3 DifferenceEquations........................................ 93 3.4 AutocorrelationandPartialAutocorrelation..................... 98 3.5 Forecasting ............................................... 105 3.6 Estimation ................................................ 117 3.7 IntegratedModelsforNonstationaryData ...................... 136 3.8 BuildingARIMAModels ................................... 140 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page xi — #9 (cid:105) (cid:105) Contents xi 3.9 RegressionwithAutocorrelatedErrors ........................ 148 3.10 MultiplicativeSeasonalARIMAModels ....................... 151 Problems ...................................................... 161 4 SpectralAnalysisandFiltering .................................. 170 4.1 Introduction ............................................... 170 4.2 CyclicalBehaviorandPeriodicity............................. 172 4.3 TheSpectralDensity........................................ 178 4.4 PeriodogramandDiscreteFourierTransform ................... 185 4.5 NonparametricSpectralEstimation............................ 193 4.6 ParametricSpectralEstimation ............................... 208 4.7 MultipleSeriesandCross-Spectra ............................ 212 4.8 LinearFilters .............................................. 217 4.9 LaggedRegressionModels .................................. 223 4.10 SignalExtractionandOptimumFiltering....................... 227 4.11 SpectralAnalysisofMultidimensionalSeries ................... 232 Problems ...................................................... 235 5 AdditionalTimeDomainTopics ................................. 245 5.1 Introduction ............................................... 245 5.2 LongMemoryARMAandFractionalDifferencing .............. 245 5.3 UnitRootTesting........................................... 254 5.4 GARCHModels ........................................... 257 5.5 ThresholdModels .......................................... 265 5.6 LaggedRegression:TransferFunctionModeling ................ 269 5.7 MultivariateARMAXModels................................ 274 Problems ...................................................... 287 6 State-SpaceModels............................................. 290 6.1 Introduction ............................................... 290 6.2 Filtering,Smoothing,andForecasting ......................... 295 6.3 MaximumLikelihoodEstimation ............................. 305 6.4 MissingDataModifications ................................. 314 6.5 SmoothingSplinesandtheKalmanSmoother................... 319 6.6 StructuralModels:SignalExtractionandForecasting ............ 322 6.7 State-SpaceModelswithCorrelatedErrors ..................... 325 6.7.1 ARMAXModels .................................... 327 6.7.2 MultivariateRegressionwithAutocorrelatedErrors ....... 328 6.8 BootstrappingState-SpaceModels ............................ 331 6.9 DynamicLinearModelswithSwitching ....................... 337 6.10 StochasticVolatility ........................................ 349 6.11 BayesianAnalysisofStateSpaceModels ...................... 357 Problems ...................................................... 367 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “tsa3” — 2015/11/16 — 16:04 — page xii — #10 (cid:105) (cid:105) xii Contents 7 StatisticalMethodsintheFrequencyDomain ..................... 374 7.1 Introduction ............................................... 374 7.2 SpectralMatricesandLikelihoodFunctions .................... 378 7.3 RegressionforJointlyStationarySeries ....................... 379 7.4 RegressionwithDeterministicInputs ......................... 388 7.5 RandomCoefficientRegression .............................. 397 7.6 AnalysisofDesignedExperiments ............................ 402 7.7 DiscriminantandClusterAnalysis ............................ 416 7.8 PrincipalComponentsandFactorAnalysis ..................... 433 7.9 TheSpectralEnvelope ...................................... 448 Problems ...................................................... 463 AppendixA LargeSampleTheory ................................. 470 A.1 ConvergenceModes ........................................ 470 A.2 CentralLimitTheorems ..................................... 477 A.3 TheMeanandAutocorrelationFunctions ...................... 481 AppendixB TimeDomainTheory ................................. 490 B.1 HilbertSpacesandtheProjectionTheorem ..................... 490 B.2 CausalConditionsforARMAModels ......................... 494 B.3 LargeSampleDistributionoftheAR(p)ConditionalLeastSquares Estimators ................................................ 496 B.4 TheWoldDecomposition.................................... 499 AppendixC SpectralDomainTheory............................... 501 C.1 SpectralRepresentationTheorem ............................. 501 C.2 LargeSampleDistributionoftheDFTandSmoothedPeriodogram. 505 C.3 TheComplexMultivariateNormalDistribution ................. 515 AppendixR RSupplement ........................................ 521 R.1 FirstThingsFirst ........................................... 521 R.2 astsa ..................................................... 521 R.3 GettingStarted............................................. 522 R.3.1 BasicStatistics ...................................... 525 R.3.2 Packages ........................................... 526 R.3.3 Word .............................................. 527 R.4 TimeSeriesPrimer ......................................... 527 References......................................................... 535 Index ............................................................. 547 (cid:105) (cid:105) (cid:105) (cid:105)

Description:
David S. Stoffer. Time Series from Chapter 5). Changed/added some examples in the seasonal ARMA is that we provide R code for almost all of the numerical examples. An R (d) Compare and contrast (a)–(c); i.e., how does the moving average change each series. [1] 1+0i 2+0i 3+0i 4+0i.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.