Time-Dependent Density Functional Theory Time-Dependent Density Functional Theory Nonadiabatic Molecular Dynamics edited by Chaoyuan Zhu August7,2022 15:8 JSPBook-9inx6in 00-Chaoyuan-Zhu–prelims Publishedby JennyStanfordPublishingPte.Ltd. 101ThomsonRoad #06-01,UnitedSquare Singapore307591 Email:[email protected] Web:www.jennystanford.com BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Time-DependentDensityFunctionalTheory:Nonadiabatic MolecularDynamics Copyright(cid:2)c 2023JennyStanfordPublishingPte.Ltd. Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinany form or by any means, electronic or mechanical, including photocopying, recordingoranyinformationstorageandretrievalsystemnowknownorto beinvented,withoutwrittenpermissionfromthepublisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not requiredfromthepublisher. ISBN978-981-4968-42-3(Hardcover) ISBN978-1-003-31921-4(eBook) August7,2022 15:8 JSPBook-9inx6in 00-Chaoyuan-Zhu–prelims Contents Preface xv 1 IntersystemCrossingReactionforFluorescent 10-Methyl-9(10H)-AcridoneviaDioxetanoneIntermediates: On-the-FlyNonadiabaticONIOMMolecularDynamicswith ParticleMeshEwaldMethodandThermodynamics Simulations 1 TatsuhiroMurakamiandShinkohNanbu 1.1 Introduction 2 1.2 Methodology 5 1.2.1 ElectrostaticPotentialfromQuantum Mechanics 6 1.2.2 SystemSetup 6 1.2.3 Equilibration 6 1.2.4 ONIOMPotentialEnergieswithParticleMesh EwaldMethodunderaPeriodicBoundary Condition 8 1.2.5 Spin–OrbitCouplingCalculation 10 1.2.6 TransitionProbabilityforIntersystem Crossing 11 1.2.7 AGlobalSwitchingAlgorithm 13 1.2.8 On-the-FlyPME-ONIOMMolecularDynamics 13 1.3 ResultsandDiscussion 14 1.3.1 TemperatureReplicaExchangeMolecular DynamicsSimulations 15 1.3.2 ElectronicStructureCalculationwith ElectrostaticEmbedding 17 August7,2022 15:8 JSPBook-9inx6in 00-Chaoyuan-Zhu–prelims vi Contents 1.3.3 On-the-FlyPME-ONIOMMolecularDynamics 22 1.4 Summary 27 2 On-the-FlyExcited-StateMolecularDynamicsStudyBased onSpin-FlipTime-DependentDensityFunctionalTheory Approach:Photo-BranchingReactionofStilbeneand StilbeneDerivatives 39 TetsuyaTaketsugu,TakuroTsutsumi,YuHarabuchi, andTakaoTsuneda 2.1 Introduction 40 2.2 Spin-FlipTime-DependentDensityFunctionalTheory ApproachforExcited-StateDynamicsSimulation 42 2.3 ApplicationstoPhotoreactionofcis-SB,cis-DMSB,and cis-MSBinππ*Excitation 48 2.3.1 PhotoreactionofStilbene 48 2.3.2 GeometriesandReactionPathwaysontheππ* ExcitedStateofSB,dmSB,andmSB 51 2.3.3 Excited-StateMDSimulationson Photo-BranchingReactionsforSB,dmSB,and mSB 55 2.4 ConcludingRemarks 63 3 NonadiabaticDynamicsSimulationsontheExcitedStatesof Carbon-RelatedMaterialswithTime-DependentDensity FunctionalTheory 75 ShunweiChen,NaeemUllah,andRuiqinZhang 3.1 Introduction 76 3.1.1 Graphene-BasedLuminescentNanomaterials 76 3.1.2 GraphiticCarbonNitridePhotocatalyst 78 3.1.3 ApplicationsofExcited-StateDynamics Simulations 80 3.2 Ground-StateStructuresandAbsorption 81 3.3 NonadiabaticExcited-StateSimulations 84 3.4 ConfirmationbyHigher-LevelTheoretical Method—CompleteActiveSpaceSelf-ConsistentField 91 3.5 Summary 93 August7,2022 15:8 JSPBook-9inx6in 00-Chaoyuan-Zhu–prelims Contents vii 4 Mixed-ReferenceSpin-FlipTime-DependentDensity FunctionalTheoryasaMethodofChoiceforNonadiabatic MolecularDynamics 101 SeunghoonLee,WoojinPark,HiroyaNakata,MichaelFilatov, andCheolHoChoi 4.1 Introduction 102 4.2 Mixed-ReferenceSpin-FlipTime-DependentDensity FunctionalTheory 105 4.2.1 EliminatingSpin-ContaminationofSF-TDDFT 105 4.2.2 CombiningResponseStatesfromIndividual References 109 4.3 PerformanceAnalysisofMRSF-TDDFT 109 4.3.1 DoublyExcitedConfigurations 109 4.3.2 NonadiabaticCouplingMatrixElements 111 4.3.3 ConicalIntersectionsbetweenS andS States 1 0 (CI1/0) 113 4.3.4 DiradicalsandSinget/TripletGap 119 4.3.5 Jahn–TellerDistortion 121 4.4 NonadiabaticMolecularDynamics 124 4.5 Conclusions 129 5 ConformationallyControlledPhotochemistryStudiedby TrajectorySurfaceHopping 141 EnricoTapavicza 5.1 Introduction 141 5.2 TheoreticalMethods 144 5.2.1 GeneratingBoltzmannEnsembles 144 5.2.2 CalculationofAbsorptionSpectra 147 5.2.3 LinearResponseTime-DependentDensity FunctionalSurfaceHopping 152 5.2.4 PredictionofProductQuantumYields 156 5.3 Applications 158 5.3.1 PhotochemistryofZ-HexatrieneDerivatives 158 5.3.2 VitaminDPhotochemistry 165 5.3.3 Wavelength-DependentProductQuantum YieldsinZ-HexatrieneDerivatives 175 5.4 ConclusionandOutlook 180 August7,2022 15:8 JSPBook-9inx6in 00-Chaoyuan-Zhu–prelims viii Contents 6 GeneralizedTrajectory-BasedSurface-HoppingNonadiabatic DynamicswithTime-DependentDensityFunctionalTheory: MethodologiesandApplications 199 Wen-KaiChen,Xiang-YangLiu,andGanglongCui 6.1 TheoreticalFoundationofNonadiabaticEffects 200 6.1.1 BreakingDownofBorn–Oppenheimer Approximation 200 6.1.2 NonadiabaticMolecularDynamics 202 6.2 GeneralizedTrajectorySurfaceHoppingMethod 203 6.2.1 Tully’sFewestSwitchesSurfaceHopping 203 6.2.2 GeneralizedTrajectorySurfaceHopping Method 205 6.2.3 GeneralizedTrajectorySurfaceHopping MethodatQM/MMLevel 208 6.2.4 AlgorithmandImplementationofthe GeneralizedTrajectorySurfaceHopping Method 209 6.3 GeneralizedTrajectorySurfaceHoppingMethodwith Frequency-DomainTime-DependentDensity FunctionalTheoryMethod 211 6.3.1 LinearResponseTime-DependentDensity FunctionalTheory 211 6.3.2 GeneralizedTrajectorySurfaceHopping MethodatLinearResponseTime-Dependent DensityFunctionalTheoryLevel 212 6.3.3 Applications 217 6.4 GeneralizedTrajectory-BasedSurface-Hopping MethodwithTime-DomainTime-DependentDensity FunctionalTheoryMethod 226 6.4.1 Time-DomainTime-DependentDensity FunctionalTheory 227 6.4.2 GeneralizedTrajectory-BasedSurface-Hopping atTime-DomainTime-DependentDensity FunctionalTheoryLevel 228 6.4.3 ApplicationswithCollinearandNoncollinear DFTMethods 230 6.5 ConclusionandPerspective 237 August7,2022 15:8 JSPBook-9inx6in 00-Chaoyuan-Zhu–prelims Contents ix 7 MultistateNonadiabaticMolecularDynamics:TheRoleof ConicalIntersectionbetweentheExcitedStates 251 PanwangZhouandKeliHan 7.1 Introduction 251 7.2 TheoryandMethods 253 7.3 ResultsandDiscussion 255 7.3.1 Wavelength-DependentPhotoisomerization QuantumYield 255 7.3.2 VibronicInteractionbetweentheClose-Lying ππ*andnπ*States 259 7.3.3 MinimalEnergyConicalIntersectionbetween LocallyExcitedandChargeTransferStates 263 7.4 SummaryandOutlook 267 8 ExcitedCarrierDynamicsinCondensedMatterSystems InvestigatedbyabinitioNonadiabaticMolecularDynamics 275 QijingZheng,WeibinChu,XiangJiang,LiliZhang,YunzheTian, HongliGuo,andJinZhao 8.1 Introduction 275 8.2 Time-DependentKohn–ShamEquationCombined withSurfaceHopping 278 8.3 InterfacialChargeTransferDynamics 280 8.3.1 ChargeTransferatMolecule/Semiconductor 280 8.3.1.1 Ultrafastphotoexcitedholetransferat CH OH/TiO interface 281 3 2 8.3.1.2 CO photoreductiononTiO drivenby 2 2 transientcaptureofphotoexcited electron 283 8.3.2 ChargeTransferatvanderWaals Heterostructure 285 8.3.2.1 Phonon-assistedultrafastcharge transferatMoS /WS 285 2 2 8.3.2.2 Phonon-coupledchargeoscillationat MoSe /WSe 287 2 2 8.3.2.3 Controlthechargetransferdynamics atMoS /WS byexternalstress 288 2 2 8.3.2.4 Comparingwithotherworks 290 8.4 Electron–HoleRecombinationinSemiconductors 290