The Pennsylvania State University The Graduate School Department of Aerospace Engineering TIME DEPENDENT ACTUATOR DISK MODEL FOR A HELICOPTER ROTOR IN HOVER A Thesis in Aerospace Engineering by Jeswanth Mentey 2012 Jeswanth Mentey Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2012 The thesis of Jeswanth Mentey was reviewed and approved* by the following: Kenneth S. Brentner Professor of Aerospace Engineering Thesis Advisor Philip J. Morris Boeing/A.D. Welliver Professor of Aerospace Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The current work is an effort towards developing a fast, reasonably accurate low fidelity Computational Fluid Dynamics (CFD) solver to compute the unsteady aerodynamic loading on the helicopter blades for the purpose of noise prediction. The loading at a radial station of a rotor blade can be computed using Blade Element Theory (BET). In this thesis, a new time-dependent actuator disk method is proposed where the loading from the BET is converted to an equivalent unsteady pressure jump which is converted into body force and introduced into the flow governing equations for the cell centers overlapped by the rotor blade. Unlike an actuator disk model, the pressure jump is not spread in the entire rotor disk but only in the region enclosed by the rotor blade boundaries. Moreover, the unsteady pressure jump is updated using BET at every CFD time step and it moves in the azimuthal direction along with the blade. A parallel Unstructured Finite Volume Compressible Euler Solver (UFVS) CFD code is developed and it is coupled with the time-dependent actuator disk model to compute the flow field of a helicopter rotor. The interface fluxes are computed using a 3rd order accurate Roe’s Approximate Riemann Solver and the time integration is done using 4th order Runge- Kutta scheme. A uniformly loaded actuator disk model is implemented in UFVS for validation purpose and the results are found to be in good comparison with the momentum theory as well as the axisymmetric version of the same test problem implemented in ANSYS FLUENT with the same grid resolution. An actuator line model was initially implemented in UFVS to model the individual rotor blades. In this method, the loading at a radial station is computed using BET. This loading value is converted to equivalent body force terms using a Gaussian regularization kernel and then introduced into the flow governing equations. As an improvement to this method, the time- dependent actuator disk model is proposed. Since the loading at a blade element is a function of inflow velocity and the inflow angle, the interpolation of the inflow velocity is a crucial aspect in computing the correct loading value. Inconsistencies in the inflow interpolation method give rise to oscillations in the loading values, which are purely numerical in nature. For the purpose of noise prediction, it is very important that the numerical oscillations are minimized as much as possible. Various interpolation methods are analyzed in this thesis and their limitations are discussed. iv TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................. vi LIST OF TABLES ................................................................................................................... x LIST OF SYMBOLS ............................................................................................................... xi ACKNOWLEDGEMENTS ..................................................................................................... xv Chapter 1 .................................................................................................................................. 1 Introduction ...................................................................................................................... 1 1.1 Problem Description ........................................................................................... 1 1.2 Literature Review ............................................................................................... 5 1.2.1 Singularity Methods ................................................................................ 5 1.2.2 CFD Methods .......................................................................................... 7 1.2.3 Hybrid Methods ....................................................................................... 12 1.3 Present Approach ............................................................................................... 15 1.3.1 Rotor Loading Model .............................................................................. 16 1.3.2 Rotor/Fuselage Flowfield Model ............................................................. 18 Chapter 2 .................................................................................................................................. 21 Rotor Loading Model ....................................................................................................... 21 2.1 Blade Element Analysis ..................................................................................... 21 2.1.1 Blade Element Analysis for hover and axial flight .................................. 24 Chapter 3 .................................................................................................................................. 27 Finite Volume Flow Solver .............................................................................................. 27 3.1 Overview ............................................................................................................ 27 3.2 Grid Structure ..................................................................................................... 28 3.3 Centerline Treatment .......................................................................................... 31 3.4 Flow Governing Equations ................................................................................. 32 3.5 Finite Volume Discretization ............................................................................. 34 3.5.1 Roe Scheme ............................................................................................. 35 3.5.2 First Order Accuracy ............................................................................... 37 3.5.3 Higher Order Accuracy ........................................................................... 38 3.6 Source Term ....................................................................................................... 38 3.7 Time Stepping Scheme ....................................................................................... 39 3.7.1 Fourth Order Runge-Kutta Time Integration Scheme ............................. 39 3.8 Boundary Conditions .......................................................................................... 40 3.8.1 Concept of Characteristic Variables ........................................................ 42 3.8.2 Subsonic Inflow ....................................................................................... 43 3.8.3 Subsonic Outflow .................................................................................... 44 3.9 Parallelization of the solver ................................................................................ 46 v Chapter 4 .................................................................................................................................. 49 Validation of Flow Solver ................................................................................................ 49 4.1 Uniformly Loaded Actuator Disk....................................................................... 49 4.2 Validation Results .............................................................................................. 51 4.2.1 Test Case ................................................................................................. 51 4.2.2 Analytical result from momentum theory ............................................... 51 4.2.3 Comparison with ANSYS FLUENT ....................................................... 54 Chapter 5 .................................................................................................................................. 65 Actuator Line Method ...................................................................................................... 65 5.1 Unsteady Source Terms ..................................................................................... 66 5.1.1 Interpolation of Inflow ............................................................................ 67 5.2 Results ................................................................................................................ 72 5.2.1 Blade Loading Convergence ................................................................... 74 5.2.2 Disadvantages of actuator line method .................................................... 78 5.3 Summary ............................................................................................................ 80 Chapter 6 .................................................................................................................................. 81 Time-Dependent Actuator Disk Model ............................................................................ 81 6.1 Understanding inflow ......................................................................................... 82 6.2 Unsteady Source Terms ..................................................................................... 85 6.3 Velocity Interpolation Schemes ......................................................................... 88 6.3.1 Linear Interpolation ................................................................................. 89 6.3.2 Updating inflow velocity every cell center time period .......................... 98 6.3.3 Spatial Averaging .................................................................................... 101 6.3.4 Nonlinear Least Squares Curve Fitting ................................................... 106 Chapter 7 .................................................................................................................................. 118 Summary and Future Work .............................................................................................. 118 7.1 Summary and Conclusions ................................................................................. 118 7.2 Future work and possible improvements............................................................ 121 Appendix ................................................................................................................................. 123 Transformation from Blade Fixed Coordinate System to Cartesian Coordinate System ...................................................................................................................... 123 BIBLIOGRAPHY .................................................................................................................... 125 vi LIST OF FIGURES Figure 1.1 Classification of numerical methods with respect to problem complexity and computational cost [5]. ........................................................... 4 Figure 1.2 The hybrid model proposed in the present thesis.. ..................................... 20 Figure 2.1 Aerodynamic loads and induced velocities at a typical blade element (a) top view (b) side view... ............................................................................. 23 Figure 3.1 Blue line represents the actuator line moving through the cylindrical (left) and Cartesian (right) meshes.. ................................................................. 30 Figure 3.2 Typical cylindrical mesh generated by UFVS grid generator.. .................. 30 Figure 3.3 Formation of polyhedral cells by combining the triangular prisms at the centerline of cylindrical mesh. Original configuration (left); Single polyhedron cell (right).. ................................................................................... 32 Figure 3.4 Left and right states at the cell interface i+1/2. The red dots represents the cell centroids.. ............................................................................................ 35 Figure 3.5 Schematic diagram showing the boundary treatment employed at various boundaries in UFVS.. .......................................................................... 42 Figure 3.6 Far field boundary situation for (a) inflow (b) outflow. Point a is outside, and point b is on the boundary while point d is inside the physical domain. The unit vector n points normally outwards of the boundary.. .......... 45 Figure 3.7 Data transfer between grid blocks for a parallel case using 3 processors.. ....................................................................................................... 48 Figure 4.1 Momentum analysis for an actuator disk.................................................... 52 Figure 4.2 Pressure profile generated by UFVS code at t = 3.5 sec.. .......................... 56 Figure 4.3 Pressure profile generated by ANSYS FLUENT at t = 14.69 sec.. ........... 57 Figure 4.4 Quantitative comparison of pressures along the dotted line in Fig. (4.2 & 4.3).. ............................................................................................................. 57 Figure 4.5 Axial velocity profile obtained using UFVS at t = 3.5 sec.. ....................... 59 vii Figure 4.6 Axial velocity distribution in ANSYS FLUENT at t = 14.69 sec.. ............ 59 Figure 4.7 Comparison of axial velocity distribution of UFVS and ANSYS FLUENT.. ........................................................................................................ 60 Figure 4.8 Mach number profile in UFVS at t = 3.5 s.. ............................................... 62 Figure 4.9 Schematic showing the location of axial stations A and B.. ...................... 63 Figure 4.10 Comparison of pressure predicted by UFVS and ANSYS FLUENT along an azimuthal grid line at axial station A (left) and station B (right) whose locations are shown in Figure 4.9. Radial distance varies from 0 (centerline) to 2.5R, where R=2.3241m.. ......................................................... 63 Figure 4.11 (a) Comparison of axial velocity predicted by UFVS and ANSYS FLUENT along Station A (left) and Station B (right). Radial distance varies from 0 (centerline) to 2.5R , where R=2.3241m.. .................................. 64 Figure 5.1 Schematic of actuator line rotating in the rotor plane by sweeping over cell centers.. ..................................................................................................... 68 Figure 5.2 Illustration of regularized force computation at point P. Blade element center points are represented by blue points and regularized force is the total contribution of all these blue points ( blade elements ) at P.. .................. 71 (cid:1)(cid:2) Figure 5.3 Blade layout showing the radial location of the pressure orifices numbered from 1 to 5 for the rotor used for experiments in Ref. [61]... ......... 73 Figure 5.4 Blade load convergence history for coarse mesh at specified radial locations.. ......................................................................................................... 75 Figure 5.5 Blade load convergence history for fine mesh at specified radial locations.. ......................................................................................................... 76 Figure. 5.6 Inflow velocity time history for a coarse mesh at the specified radial locations.. ......................................................................................................... 77 Figure 6.1 Schematic of lift on an airfoil represented by vortices along the chord.. ... 83 Figure 6.2 Weissinger’s approximation states that for a vortex strength placed at 1/4-chord, the effective inflow velocity is the value at 3/4-chord location.. .. 83 Γ Figure 6.3 Velocity profile of a blade element with the bound vortex located at the 1/4-chord.. ........................................................................................................ 85 Figure. 6.4 Smearing the effect of loading onto the grid cells encompassed in rotor blade boundaries...................................................................................... 86 viii Figure 6.5 (a) Top: Blade representation using time dependent actuator disk. (b) Bottom: Blade representation using actuator line method for (chapter 5).. ...................................................................................................... 88 (cid:5) = 1 Figure 6.6 Implementation of linear interpolation scheme for velocity prediction at 3/4 chord location (coarse mesh).. ............................................................... 91 Figure 6.7 Implementation of linear interpolation scheme for velocity prediction at 3/4 chord location (fine mesh).. ................................................................... 91 Figure 6.8 Inflow time history at various radial locations on (a) Coarse mesh (top) (b) Fine mesh (bottom).. .................................................................................. 92 Figure 6.9 Loading time history at various radial locations on (a) Coarse mesh (top) (b) Fine mesh (bottom)........................................................................... 93 Figure 6.10 Loading time history using moving time average at specified various radial locations on (a) Coarse mesh (top) (b) Fine mesh (bottom)... .............. 95 Figure 6.11 Effect of azimuthal grid discretization on loading values (moving time-average).. ................................................................................................. 97 Figure 6.12 Spanwise loading distribution for various azimuthal grid densities.. ...... 97 Figure 6.13 Concept of updating inflow only when the 3/4 chord line is at cell center.. .............................................................................................................. 98 Figure 6.14. Loading history obtained by inflow velocity update every cell center in UFVS on a coarse mesh with 60 azimuthal grid points (moving time averaged). ......................................................................................................... 100 Figure 6.15. Theoretical profile of the bound vortex.. ................................................. 101 Figure 6.16 Implementation of spatial average concept in UFVS.. ............................. 102 Figure 6.17 Loading time history at specified radial locations (up to t = 0.25s)... .... 103 Figure 6.18 Full Loading history at specified radial locations (no smoothing).. ........ 104 Figure 6.19 Spanwise loading distribution and comparison with experiment values.. ............................................................................................................. 104 Figure 6.20. Typical inflow distribution at a radial station of rotor.. .......................... 106 ix Figure 6.21 Fitting Rankine vortex profile for the velocity information at points 1 to n.. ................................................................................................................. 108 Figure 6.22 Curve fitting for for the test problem defined in Table 6.1 ....... 113 (cid:8) = (cid:9).(cid:11) Figure 6.23 Nonlinear least squares fit for a highly noisy sample CFD data .............. 113 Figure 6.24 Nonlinear least squares fit for a blade element at nondimensional radial location r = 0.87 (Intermediate time step).. ........................................... 116 Figure 6.25 Abrupt changes in loading observed by employing nonlinear least squares in UFVS solver (fine mesh) ................................................................ 117 Figure A.1 Schematic figure showing the blade location with blade fixed co- ordinates (X1, Y1, Z1) and Cartesian coordinate system (X2,Y2,Z2) ............ 123 x LIST OF TABLES Table 4.1 The analytical solution for the actuator disk problem with a pressure jump of 348.6 Pa.. ............................................................................................ 54 Table 5.1 Location of the pressure orifices on the instrumented rotor blade. ............. 73 Table 5.2 CFD grid discretization details for coarse and fine meshes......................... 74 Table 5.3 Properties of rotor used in UFVS-ALM. ..................................................... 74 Table 6.1. Parameters used to define mesh discretization and bound vortex sampling. .......................................................................................................... 111
Description: