ebook img

Time- and Angle-Resolved Photoemission Studies of Cuprate Superconductors PDF

163 Pages·2014·10.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Time- and Angle-Resolved Photoemission Studies of Cuprate Superconductors

Time- and Angle-Resolved Photoemission Studies of Cuprate Superconductors by Christopher Lee Smallwood A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Alessandra Lanzara, Chair Professor Joseph W. Orenstein ´ Professor Tanja Cuk Fall 2014 Time- and Angle-Resolved Photoemission Studies of Cuprate Superconductors Copyright (cid:13)c 2014 by Christopher Lee Smallwood Abstract Time- and Angle-Resolved Photoemission Studies of Cuprate Superconductors by Christopher Lee Smallwood Doctor of Philosophy in Physics University of California, Berkeley Professor Alessandra Lanzara, Chair The origin of high-temperature superconductivity in cuprate ceramics is one of the great outstanding mysteries in physics. Discovered by Bednorz and Mu¨ller in 1986, the phe- nomenon has continued to both fascinate and baffle scientists for almost 30 years. At the heart of the cuprate problem lies the microscopic mechanism responsible for binding together Cooper pairs, which are a superconductor’s lossless charge carriers. For most low-temperature superconductors, phonons are responsible, but Cooper pairs in the high- temperature superconductors may be bound together by magnetic interactions or even more exotic phenomena. Although this most fundamental question remains unresolved, important insights con- tinue to be gained in the field of high-temperature superconductivity, and many of them have originated from improved experimental methods and instrumentation. This thesis details progress in understanding the cuprate problem through the development and implementa- tion of a high-resolution apparatus for conducting time- and angle-resolved photoemission spectroscopy (time-resolved ARPES). The technique works by using a near-infrared optical pump pulse to drive an electronic system out of equilibrium, and using an ultraviolet probe pulse to measure the subsequent dynamics of the nonequilibrium state using photoemission. Sub-picosecond time resolution is obtained by varying the path length of the pump pulse, and the net result is a movie of the relaxation dynamics of the band structure. Experimental results on the bi-layered cuprate superconductor Bi Sr CaCu O (Bi2212) are presented 2 2 2 8+δ and discussed in detail. Content is organized into eight chapters. Chapter 1 gives an introduction and overview of superconductivity research. Chapter 2 summarizes basic theoretical underpinnings of the ARPES technique, and reviews analysis techniques that are relevant to ARPES and time- resolved ARPES as well as simple models of quasiparticle recombination. Chapter 3 contains a detailed overview of the time-resolved ARPES system constructed in the Lanzara research group. Chapters 4, 5, 6, and 7 present scientific results obtained using time-resolved ARPES to study Bi2212. Finally, conclusions and future directions are discussed in Chapter 8. 1 For Lindsey i Contents Abstract 1 Contents v List of Figures vi List of Tables ix Acknowledgments x Curriculum vitae xiii 1 Introduction 1 1.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 “The Gentleman of absolute zero” . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Early progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 The triumph of BCS theory: 1957–1985 . . . . . . . . . . . . . . . . . 5 1.1.4 Discovery of the High-T cuprates . . . . . . . . . . . . . . . . . . . . 6 c 1.2 Quantitative models of superconductivity . . . . . . . . . . . . . . . . . . . . 8 1.2.1 London theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 The BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2.1 Hamiltonian and ground state wavefunction . . . . . . . . . 10 1.2.2.2 Solution by canonical transformation . . . . . . . . . . . . . 11 1.2.2.3 Coupling interaction . . . . . . . . . . . . . . . . . . . . . . 12 1.2.3 Physical predictions of the BCS theory . . . . . . . . . . . . . . . . . 13 1.2.3.1 Energy gap and critical temperature . . . . . . . . . . . . . 13 ii 1.2.3.2 Quasiparticle excitations . . . . . . . . . . . . . . . . . . . . 14 1.2.3.3 Meissner effect . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Beyond BCS: survey of cuprate phenomenology . . . . . . . . . . . . . . . . 16 1.3.1 BCS-like characteristics in the cuprates . . . . . . . . . . . . . . . . . 16 1.3.2 Exotic properties of the cuprates . . . . . . . . . . . . . . . . . . . . 17 1.4 Opportunities for time-resolved probes . . . . . . . . . . . . . . . . . . . . . 25 2 Analysis techniques 26 2.1 Theory of ARPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.1 Theory of ARPES in the presence of interactions . . . . . . . . . . . 27 2.1.2 Experimental considerations . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.3 Field theory techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1.3.1 Green function approach to photoemission . . . . . . . . . . 31 2.1.3.2 Non-interacting Fermi gas (T = 0) . . . . . . . . . . . . . . 32 2.1.3.3 Green functions for an interacting system (T = 0) . . . . . . 32 2.1.3.4 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.3.5 Self-energy, and concrete electron interaction models . . . . 34 2.2 ARPES and time-resolved ARPES analysis . . . . . . . . . . . . . . . . . . . 37 2.2.1 EDCs, MDCs, and delay curves . . . . . . . . . . . . . . . . . . . . . 38 2.2.2 Superconducting gap characterization . . . . . . . . . . . . . . . . . . 39 2.2.2.1 EDC symmetrization . . . . . . . . . . . . . . . . . . . . . . 39 2.2.2.2 Division by the Fermi-Dirac distribution function . . . . . . 40 2.2.2.3 Gap fitting model . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.2.4 Other gap fitting characterization methods . . . . . . . . . . 41 2.3 Quasiparticle relaxation models . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Rothwarf-Taylor model . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.1.1 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.1.2 Probe penetration depth considerations . . . . . . . . . . . 47 2.3.1.3 Momentum-dependent recombination . . . . . . . . . . . . . 48 2.3.2 Alternatives to the Rothwarf-Taylor model . . . . . . . . . . . . . . . 49 2.3.2.1 Two-temperature model . . . . . . . . . . . . . . . . . . . . 49 2.3.2.2 Keldysh contour approach . . . . . . . . . . . . . . . . . . . 50 iii 3 Time-resolved ARPES 51 3.1 The time-resolved ARPES technique . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Classes of time-resolved ARPES systems . . . . . . . . . . . . . . . . . . . . 52 3.3 Ti:sapphire lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 Principles of operation . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Figures of merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4 Lanzara group experimental scheme . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.1 Light source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.2 Sample orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.3 Photoelectron detection . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Fluence considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5.1 Overall characterization . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5.2 Impact of spot size and alignment on fluence . . . . . . . . . . . . . . 60 3.5.3 Impact of geometry on fluence . . . . . . . . . . . . . . . . . . . . . . 62 3.5.4 Impact of reflectance on fluence . . . . . . . . . . . . . . . . . . . . . 62 3.6 Time and energy resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6.1 Overall characterization . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6.2 Impact of second- and fourth-harmonic generation . . . . . . . . . . . 65 3.6.3 Impact of the analyzer on energy resolution . . . . . . . . . . . . . . 67 3.6.4 Impact of space charge on energy resolution . . . . . . . . . . . . . . 68 3.7 Detector nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8 Contact potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.8.1 Modeling contact potential effects . . . . . . . . . . . . . . . . . . . . 72 3.8.2 Correcting contact potential effects . . . . . . . . . . . . . . . . . . . 75 3.9 Sample heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 Quasiparticle dynamics in Bi Sr CaCu O at low fluence 79 2 2 2 8+δ 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Dispersion effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Superconducting gap response . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4 Quasiparticle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Recombination model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 iv 5 Time- and momentum-resolved gap dynamics in Bi Sr CaCu O 87 2 2 2 8+δ 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Fermiology: Fermi-division analysis . . . . . . . . . . . . . . . . . . . . . . . 89 5.4 Fermiology: Symmetrized EDC analysis . . . . . . . . . . . . . . . . . . . . 93 5.5 Quantitative dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.5.1 Near-nodal gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.5.2 Momentum dependent gap . . . . . . . . . . . . . . . . . . . . . . . . 97 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 Quasiparticle dynamics in Bi Sr CaCu O at high fluence 101 2 2 2 8+δ 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Correlations between quasiparticles and the superconducting gap . . . . . . . 102 6.3 Momentum- and energy-dependent trends . . . . . . . . . . . . . . . . . . . 104 6.4 Doping dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7 Nonequilibrium cuprate phase diagram 110 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.3 Quasiparticle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4 Fluence and temperature dependence . . . . . . . . . . . . . . . . . . . . . . 113 7.5 Phase diagram and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Conclusions and future directions 121 Bibliography 126 v List of Figures 1.1 Heike Kamerlingh Onnes and the discovery of superconductivity . . . . . . . 3 1.2 Schematic illustration of the Meissner effect . . . . . . . . . . . . . . . . . . 4 1.3 Handwritten notes from Cooper in 1956 . . . . . . . . . . . . . . . . . . . . 5 1.4 Maximum known superconducting critical temperature as a function of time 7 1.5 BCS energy gap versus temperature . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 A (k,ω) for a linear bare band . . . . . . . . . . . . . . . . . . . . . . . . 15 BCS 1.7 Flux quantization measurement in YB Cu O . . . . . . . . . . . . . . . . 16 2 3 7−δ 1.8 ARPES verification of particle-hole mixing in Bi2212 . . . . . . . . . . . . . 17 1.9 Visualization of a d-wave superconducting order parameter . . . . . . . . . . 18 1.10 Early ARPES measurements of gap anisotropy in Bi2212 . . . . . . . . . . . 19 1.11 Phenomenology of the pseudogap . . . . . . . . . . . . . . . . . . . . . . . . 20 1.12 Nernst effect measurements of phase fluctuations in Bi2212 . . . . . . . . . . 21 1.13 Charge density wave Bragg peak in YBCO as measured by x-ray diffraction 22 1.14 Phase diagrams of unconventional superconductors . . . . . . . . . . . . . . 23 1.15 Evidence for electron-phonon coupling in cuprates . . . . . . . . . . . . . . . 24 2.1 Schematic cartoon of the ARPES technique . . . . . . . . . . . . . . . . . . 27 2.2 Typical measured ARPES dispersion spectra for Bi2212 . . . . . . . . . . . . 29 2.3 Simulated ARPES spectral functions . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Simulated real and imaginary parts of electronic self-energy . . . . . . . . . . 37 2.5 Energy distribution curve (EDC) and momentum distribution curve (MDC) definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 Fermi-function-divided equilibrium ARPES dispersions . . . . . . . . . . . . 40 2.7 Graph of a minimally broadened BCS spectral function. . . . . . . . . . . . . 42 vi 2.8 Comparison between leading-edge gap measurements and symmetrized EDC fitting methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.9 Rothwarf-Taylor simulated quasiparticle population recovery in the decoupled regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.10 Rothwarf-Taylorsimulatedquasiparticlepopulationrecoveryinthebottleneck regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Illustration of the time-resolved ARPES technique . . . . . . . . . . . . . . . 52 3.2 Energy level diagrams for a 4-level laser . . . . . . . . . . . . . . . . . . . . . 54 3.3 Kerr-lens modelocking in a Ti:sapphire laser . . . . . . . . . . . . . . . . . . 55 3.4 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Pump and probe beam transverse spatial profiles . . . . . . . . . . . . . . . 61 3.6 Reflectance of single-crystal Bi2212 . . . . . . . . . . . . . . . . . . . . . . . 63 3.7 Time and energy resolution calibration methodology . . . . . . . . . . . . . . 64 3.8 Second-harmonic pulse duration versus BBO crystal length . . . . . . . . . . 66 3.9 Schematic illustration of energy resolution in a hemispherical analyzer . . . . 67 3.10 Space charge effects on Bi2212 . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.11 Sample photocurrent versus incident probe power . . . . . . . . . . . . . . . 69 3.12 Detector nonlinearity calibration measurements . . . . . . . . . . . . . . . . 70 3.13 Effect of correcting detector nonlinearity on cuprate data . . . . . . . . . . . 71 3.14 Sample of Bi2212 mounted on a 1-inch copper puck . . . . . . . . . . . . . . 72 3.15 Electric potential plots resulting from work function differences between a sample and puck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.16 Simulations of contact potential effects on photoelectron trajectory . . . . . 74 3.17 Comparison between contact potential simulations and ARPES data . . . . . 75 3.18 Momentum-space maps of equilibrium ARPES intensity . . . . . . . . . . . . 76 3.19 Equilibrium low-temperature gap in Bi2212 . . . . . . . . . . . . . . . . . . 77 3.20 Dependence of spectral decay on laser repetition rate . . . . . . . . . . . . . 78 3.21 Pump-induced heating in Bi2212 . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1 ARPES dispersions before and after pumping for nodal and gapped regions of k-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 Evolution of the superconducting gap following pump excitation . . . . . . . 83 4.3 Quasiparticle recombination dynamics vs. pump fluence and crystal momentum 84 vii

Description:
3.3.1 Principles of operation 3.20 Dependence of spectral decay on laser repetition rate . 78 . He Wang, Sung-Kwan Mo, Ashvin Vishwanath, Lex Kemper, and Tanja Cuk. Additionally Irina Novikova (now at William & Mary) and David Phillips also deserve special thanks. Of course
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.