ebook img

Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages PDF

18 Pages·2015·2.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages

fungal biology 119 (2015) 1075e1092 journal homepage: www.elsevier.com/locate/funbio Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia Chase G. MAYERSa, Douglas L. MCNEWa, Thomas C. HARRINGTONa,*, RichardA.ROEPERb,StephenW.FRAEDRICHc,PeterH.W.BIEDERMANNd, Louela A. CASTRILLOe, Sharon E. REEDf aDepartmentofPlantPathologyandMicrobiology,IowaStateUniversity,351BesseyHall,Ames,IA50011,USA bDepartmentofBiology,AlmaCollege,Alma,MI48801,USA cSouthernResearchStation,USDAForestService,Athens,GA30602,USA dResearchGroupInsectSymbiosis,MaxPlanckInstituteforChemicalEcology,BeutenbergCampus,Hans-Kn€oll-Str. 8,07745Jena,Germany eDepartmentofEntomology,CornellUniversity,R.W.HolleyCenterforAgricultureandHealth,Ithaca,NY14853, USA fDivisionofPlantSciences,UniversityofMissouri,52AgricultureLab,Columbia,MO65211,USA a r t i c l e i n f o a b s t r a c t Articlehistory: ThegenusAmbrosiellaaccommodatesspeciesofCeratocystidaceae(Microascales)thatareob- Received23May2015 ligate,mutualisticsymbiontsofambrosiabeetles,butthegenusappearstobepolyphyletic Receivedinrevisedform andmorediversethanpreviouslyrecognized.InadditiontoAmbrosiellaxylebori,Ambrosiella 28July2015 hartigii,Ambrosiellabeaveri,andAmbrosiellaroeperi,threenewspeciesofAmbrosiellaarede- Accepted3August2015 scribedfromtheambrosiabeetletribeXyleborini:Ambrosiellanakashimaesp.nov.fromXy- Availableonline19August2015 losandrus amputatus, Ambrosiella batrae sp. nov. from Anisandrus sayi, and Ambrosiella CorrespondingEditor: grosmanniaesp.nov.fromXylosandrusgermanus.ThegenusMeredithiellagen.nov.iscreated StephenW.Peterson forsymbiontsofthetribeCorthylini,basedonMeredithiellanorrisiisp.nov.fromCorthylus punctatissimus.ThegenusPhialophoropsisisresurrectedtoaccommodateassociatesofthe Keywords: Xyloterini,includingPhialophoropsistrypodendrifromTrypodendronscabricollisandPhialophor- Ambrosiafungi opsisferrugineacomb.nov.fromTrypodendronlineatum.Eachofthetennamedspecieswas Scolytinae distinguishedbyITSrDNAbarcodingandmorphology,andtheITSrDNAsequencesoffour Symbiosis otherputativespecieswereobtainedwithCeratocystidaceae-specificprimersandtemplate DNA extractedfrom beetlesor galleries. These results support the hypothesis that each ambrosiabeetlespecieswithlarge,complexmycangiacarriesitsownfungalsymbiont.Co- nidiophoremorphologyandphylogeneticanalysesusing18S(SSU)rDNAandTEF1aDNA sequences suggest that these three fungal genera within the Ceratocystidaceae indepen- dentlyadaptedtosymbiosiswiththethreerespectivebeetletribes.Inturn,thebeetlegen- era with large, complex mycangia appear to have evolved from other genera in their * Correspondingauthor.Tel.:þ15152940582. E-mailaddress:[email protected](T.C. Harrington). http://dx.doi.org/10.1016/j.funbio.2015.08.002 1878-6146/ª2015TheBritishMycologicalSociety.PublishedbyElsevierLtd.Allrightsreserved. 1076 C.G.Mayersetal. respectivetribesthathavesmaller,lessselectivemycangiaandareassociatedwithRaffae- leaspp.(Ophiostomatales). ª2015TheBritishMycologicalSociety.PublishedbyElsevierLtd.Allrightsreserved. Introduction Ambrosiella spp. have so far been recovered or reported from five beetle genera (Harrington et al. 2014), and each of ThesixrecognizedspeciesofAmbrosiellaBraderexArx&Hen- these genera appear to have relatively large and complex nebert1965(Sordariomycetes:Microascales:Ceratocystidaceae)are mycangiawithsecretionsdirectlythroughreticulatedmycan- obligate,mutualisticsymbiontsofambrosiabeetles.Ambrosia gialwalls.WithinthetribeXyleborini,speciesofXylosandrus, beetlesareanecologicalgroupofmorethan3400speciesofmy- Anisandrus, and Cnestus have large, internal mesonotal cophagoussapwood-boringbeetlesinthesubfamiliesPlatypo- mycangia in female adults (Francke-Grosmann 1956, 1967; dinae and Scolytinae (Coleoptera: Curculionidae). Whereas Beaver1989;Kinuura1995;Hulcretal.2007;Stoneetal.2007; theirbarkbeetlerelativesgenerallyfeedonthenutritiousinner Hulcr&Cognato2010;Cognatoetal.2011a).IntheCorthylini, bark(secondaryphloem)oftrees,ambrosiabeetlestunnelinthe Corthylusspp.havelong,foldedtubesthatopenintothepro- nutrient-poor sapwood and depend on mutualistic fungi for coxaeofadultmales(Finnegan1963;Giese1967).IntheXylo- theirnutrition(Harrington2005).Thebeetlesgenerallydonot terini, female Trypodendron spp. have large, tubular, pleural- eat wood while boring (Beaver 1989), though the larvae of prothoracic mycangia (Francke-Grosmann 1956, 1967; someambrosiabeetlesingestfungus-colonizedwood(xylomy- Schneider&Rudinsky1969b). cetophagy)(Roeper1995;DeFineLicht&Biedermann2012).The Ambrosiella initially included ambrosia beetle symbionts major food of both larvae and adults is ambrosial growth of withpercurrentproliferationofconidiogenouscellsvs.sympo- fungiwithinthesapwoodtunnels.Adiversefungalfloragrows dial proliferation by Raffaelea spp. (Brader 1964; von Arx & inambrosiabeetlegalleries,butthedominantfungiareobligate Hennebert 1965; Batra 1967). Gebhardt et al. (2005) demon- symbiontsofambrosiabeetlesandhavenotbeenfoundasfree- stratedthatsomeRaffaeleaspp.havepercurrentandsympodial livingspecies(Harringtonetal.2010). proliferation,butAmbrosiellaxyleboriBraderexArx&Henne- Thefungalsymbiontsrelyonthebeetlesfordispersaland bert1965,AmbrosiellahartigiiL.R.Batra1968,andAmbrosiellafer- are primarily carried by adult beetles in special sacs called ruginea (Math.-Ka€a€rik) L.R. Batra 1968 produced conidia from mycangia,inwhichthefungigrowinabuddingyeast-likeor phialides. Harrington et al. (2010) limited Ambrosiella spp. to arthrospore-likephase(Fraedrichetal.2008;Harringtonetal. the phialidic ambrosia fungi within the Ceratocystidaceae and 2014).Inthestudiedcasesofambrosiabeetlemycangia,gland Raffaelea spp. to symbionts within the Ophiostomatales. All cellssecretematerialintoornearthemycangiumtosupport known Ambrosiella spp. produce a fruity aroma (Harrington growth of the fungal symbionts (Schneider & Rudinsky 2009),andthesevolatilesmayplayaroleinattractingambrosia 1969a,1969b),andtheoverflowofsporesfromthemycangium beetleswithinthegalleries(Hulcretal.2011). inoculatesthegalleriesduringconstruction.Ofthetwoweevil As now recognized, most Ambrosiella spp. produce large, subfamilies,thePlatypodinaeconsistentirelyofambrosiabee- thick-walled,ovoid,terminalaleurioconidiawithinconspicu- tles and have relatively small and simple mycangia ouscollarettesand/orbasipetalchainsofcylindricaltobarrel- (Nakashima1975;Cassieretal.1996;Marvaldietal.2002).In shapedphialoconidiaviaring-wallbuilding(Minteretal.1983; contrast, ambrosia beetles arose at least 10 separate times NagRaj&Kendrick1993;Riggs&Mims2000).Thepresenceof from bark beetle lineages within the Scolytinae (Farrell et al. deep-seatedphialidesinthesymbiontofTrypodendronscabri- 2001;Jordal&Cognato2012;Kirkendalletal.2015),eachevent collis (tribe Xyloterini), Ambrosiella trypodendri (L.R. Batra) apparently marked by the development of novel mycangia. T.C.Harr.2010,wasusedtoerectthemonotypicgenusPhialo- Generally, the Scolytinae mycangia are relatively small and phoropsis L.R. Batra 1968, but Harrington et al. (2010) placed harbor one or more species of Raffaelea Arx & Hennebert PhialophoropsisinsynonomywithAmbrosiella.However,phy- 1965 (Ophiostomatales) (Cassar & Blackwell 1996; Harrington logeneticanalyseshavegenerallysuggestedthatthetwogen- & Fraedrich 2010; Harrington et al. 2010, 2014). These small eraaredistinct(Alamoutietal.2009;Harrington2009;Sixetal. mycangiaincludeoralpouches,pronotalpits,elytralpouches, 2009;Harringtonetal.2010;deBeeretal.2014). andcoxalenlargements,eachofwhicharesimplemodifica- Atpresent,therearesixnamedspeciesofAmbrosiella:A. tions of the adult beetle’s exoskeleton, with secreting gland trypodendrifromT.scabricollis(Batra1967);A.ferrugineafrom cells near the opening of the mycangium (Francke- Trypodendron lineatum (Batra 1967); Ambrosiella xylebori from Grosmann 1967; Beaver 1989). In contrast, certain genera of Xylosandruscompactus(Brader1964);A.hartigiifromAnisandrus Scolytinaeexhibitmarkedlylargerandmoreelaboratemycan- dispar (Batra 1967); Ambrosiella beaveri Six, de Beer & W.D. giathataresetentirelywithinthebodyandarecomposedof StonefromCnestusmutilatus(Sixetal.2009);andAmbrosiella a reticular structure punctuated by gland cells secreting di- roeperi T.C. Harr. & McNew from Xylosandrus crassiusculus rectly into the mycangium (Francke-Grosmann 1956; (Harringtonetal.2014).InadditiontoX.compactus,A.xylebori Finnegan 1963; Schneider & Rudinsky 1969b; Stone et al. has been reported from Corthylus columbianus (Batra 1967; 2007).Theselarger,complexmycangiahavespecializedchan- Nord1972)andCorthyluspunctatissimus(Roeper1995).Besides nelsortubesthatdirecttheoverflowoffungalgrowthtothe An. dispar,A.hartigiihasbeenreportedfromAnisandrus sayi outsideofthebeetlefortunnelinoculation. and Anisandrus obesus (Hazen & Roeper 1980; Roeper & ThreeambrosialgeneraintheCeratocystidaceae 1077 French 1981), as well as Xylosandrus germanus (Weber & ofCottonblueonaslideandcoveredwithacoverslipformi- McPherson1984;Roeper1996).A.ferrugineahasbeenreported croscopicexamination,orthesporemassseparatedandused from several Trypodendron spp., including T. lineatum, Trypo- forisolationofthefungalsymbiontorforDNAextractionwith dendrondomesticum,Trypodendronretusum,Trypodendronrufitar- PrepMan(cid:2)Ultra(AppliedBiosystems,FosterCity,CA). sis,andTrypodendronbetulae(Batra1967;French&Roeper1972; RoeperandFrench,1981;Roeper1996),andNakashimaetal. DNAextractionandsequencing (1992) illustrated a fungus from Trypodendron signatum with similarconidiophoremorphology. IsolatesweregrownatroomtemperatureonMYEA,andDNA MostoftheaboveidentificationsofAmbrosiellaspp.were wasextractedusingoneoftwomethods:eitherthecultures based on morphological characters only, and more detailed weregrown2e7dandDNAwasextractedusingPrepMan(cid:2)Ul- phylogeneticanalysesmayrevealcrypticspeciesandgenera tra, or isolates were grown 4e14 d and extracted using the among the fungal symbionts. Preliminary DNA sequence ProMega Wizard(cid:2) Genomic DNA Purification Kit (Promega, analysesandobservationsofculturesfrombeetleswithlarge Madison,WI). (cid:2) mycangia suggested that there was more species diversity PrepMan UltrawasusedtoextractDNAfromscrapedfun- withinAmbrosiellathanpreviouslyrecognized,andeachstud- gal material in beetle galleries or beetle mycangia. In some (cid:2) iedambrosiabeetlewithlarge,complexmycangiaappearedto cases, the extracted DNA was concentrated using Amicon be associated with a single, unique species, either within Ultra-0.5 Centrifugal Filter Devices (EMD Millipore, Billerica, AmbrosiellaoracloselyrelatedgenusintheCeratocystidaceae. CA). Whole beetles preserved in ethanol were ground with We studied fungal isolates, beetle galleries, and insect a tissue grinder and Prepman(cid:2) Ultra extraction buffer, and specimensof14ambrosiabeetlespecieswithlarge,complex the resulting mix was transferred to a microcentrifuge tube mycangiatodeterminetheidentityoftheirfungalsymbionts forDNAextraction. andinferanevolutionaryhistoryofthefungi.Ourhypothesis wasthateachbeetlewouldyieldauniquefungalspecies,and ITSbarcoding that all species recovered from beetles with large, complex mycangia would form a monophyletic genus (Ambrosiella) Sequencingoftheinternaltranscribedspacer(ITS)regionof within the Ceratocystidaceae, stemming from a single evolu- theribosomalDNAforinitialidentificationofunknowncul- tionaryjumptoambrosiabeetlesymbiosis. tures utilized the general fungal primer ITS1-F (Gardes & Bruns1993)andITS4(Whiteetal.1990)andthePCRconditions of Paulin-Mahady et al. (2002) and Harrington et al. (2000). Materials and methods WhenusingextractedDNAfromgallerymaterial,mycangial masses,orgroundbeetles,Ceratocystis-specificprimerswere Beetlecollectionandfungalisolation usedtoamplifytheITSregionintwoparts:primerpairsCera- to1F (50 GCGGAGGGATCATTACTGAG 30) and ITSCer3.7R (50 MostoftheadultbeetleswerecaughtinflightusingLindgren GTGAAATGACGCTCGGACAG 30) for ITS1 and primer pair traps with water or polyethylene glycol in collection cups, ITSCer3.1 (50 CAACGGATCTCTTGGCTCTA 30) and ITS4 (50 whilethecupsofothertrapsweredryandhadNoPestinsec- TCCTCCGCTTATTGATATGC 30) for ITS2 (Harrington et al. ticide strips (Vapona, Spectrum Brands, Middleton, Wiscon- 2014). sin). The traps were baited with either ethanol lures or All ITS sequences generated from cultures, beetles, and lineatinflexlure(ContechEnterprises,Victoria,BritishColum- gallerieswerecomparedwiththeITSsequencesofrepresen- bia)inthecaseofTrypodendronlineatumandTrypodendronscab- tativeCeratocystidaceaeinamanuallyalignedITSrDNAdata- ricollis. Some adult beetles were caught in-flight with rotary set.Therewereregionsofambiguouslyalignedcharactersin nettraps.Othermatureadultsweretakendirectlyfromfresh bothITS1andITS2duetonumerousareasofinsertionsand galleriesbysplittinginfestedwoodsections. deletions (indels), and the indel regions had limited reliable Mostfungalisolateswereobtainedbygrindingbeetlesand phylogeneticsignal.Nonetheless,thealigneddatasetwasan- dilutionplating(Harringon&Fraedrich2010;Harringtonetal. alyzedbyUPGMAinPAUP4.0b10(Swofford2002)usinguncor- 2011)orbyplacingwholebeetlesorpartsofbeetlescontaining rected(“p”)distance,andgapsweretreatedasmissingdata. mycangiaonplatesofSMA(1%maltextract,Difco;1.5%agar, SigmaeAldrich;and100ppmstreptomycinsulfateaddedafter Phylogeneticanalysis autoclaving).Isolationswerealsoattempteddirectlyfromam- brosiagrowthinbeetlegalleriesbyscrapingwithasterilenee- Sequences of the small subunit rDNA (SSU, 18S rDNA) and dleandtransferringtoSMAorMYEA(2%maltextract,0.2% translation elongation factor 1-alpha (TEF1a) were used for Difcoyeastextract,1.5%agar). phylogenetic placement of the ambrosia beetle symbionts. For mycangial examination, adult female Xyleborini were Taxaselected(Table1)includedarepresentativeofeachsym- dissectedin20%lacticacidonadeepwellslideusingfinefor- biontandotherrepresentativesofthenewlyrecognizedgen- cepsandascalpel.Anincisionwasmadejustposteriortothe eraintheCeratocystidaceae,whichwerepreviouslytreatedas scutellumtoexposetheinteriorofthebeetlewithoutdamag- Ceratocystisspp.orThielaviopsisspp.(deBeeretal.2014).The ingthemycangium,whichsitsdirectlybeneaththemesono- representativetaxaarewellcharacterized,exceptforthefor- tum and is attached to the scutellum. Fine forceps were mer members of the Ceratocystis moniliformis complex, now thenusedtogentlyteaseoutthemycangiumandscutellum. treated as Huntiella. Our Huntiella moniliformis isolate C792 The mycangium/scutellum was either transferred to a drop from a Populus sp. in Minnesota is probably an undescribed 1078 C.G.Mayersetal. Table1eCultures,specimens,andGenBankaccessionsforrepresentativespecies. Cultureorspecimen Associated GenBankaccessionno identificationnumbers ambrosiabeetle ITS SSU TEF1a Ambrosiella A.batrae C3130(CBS139735) Anisandrussayi KR611322 KR673881 KT290320 A.beaveri C2749(CBS121750) Cnestusmutilatus KF669875 KR673882 KT318380 A.grosmanniae C3151(CBS137359) Xylosandrusgermanus KR611324 KR673884 KT318382 A.hartigii C1573(CBS404.82) Anisandrusdispar KF669873 KR673885 KT318383 A.nakashimae C3445(CBS139739) Xylosandrusamputatus KR611323 KR673883 KT318381 A.roeperi C2448(CBS135864) Xylosandruscrassiusculus KF669871 KR673886 KT318384 A.xylebori C3051(CBS110.61) Xylosandruscompactus KF669874 KR673887 KT318385 Ambrosiellasp. M257 Eccoptopterusspinosus KR611325 Meredithiella M.norrisii C3152(CBS139737) Corthyluspunctatissimus KR611326 KR673888 KT318386 Meredithiellasp. M260 Corthylusconsimilis KR611327 Phialophoropsis P.ferruginea M243(BPI893129) Trypodendronlineatum KR611328 KR673889 KT318387 Phialophoropsissp. C2230(CBS460.82) Trypodendrondomesticum KC305146 KR673890 KT318388 Phialophoropsissp. CBS408.68 Trypodendronretusem KC305145 P.trypodendri SUTT Trypodendronscabricollis KR611329 CeratocystisandotherCeratocystidaceae C.adiposa C999(CBS183.86) ¼JN604448 KR673891 HM569644 C.fagacearum C927(CBS129242) ¼KC305152 KR673892 KT318389 C.fimbriata C1099(ICMP8579) AY157957 KR673893 HM569615 C.norvegica C3124(UAMH9778) DQ318194 KR673894 KT318390 Endoconidiophoracoerulescens C301(CBS100.198) KC305116 KR673895 HM569653 Huntiellamoniliformis C1007(CBS204.90) ¼DQ074739 KR673896 KT318391 Huntiellasp. C792 KR611330 KR673897 KT318392 H.moniliformopsis C1934(DAR74609) ¼NR119507 KR673898 HM569638 Thielaviopsisethacetica C1107 ¼KJ881375 KR673899 HM569632 species,whileH.moniliformisisolateC1007(CBS204.90,CMW geneshowedtheGTRþIþGmodeltobemostappropriate. 11046)fromIndiahastheITSsequenceofHuntiellaomanensis MrBayes 3.2.1 (Ronquist & Huelsenbeck 2003) was used for (DQ074739).OthertaxaintheMicroascalesincludedPseudalle- Bayesian analysis with this GTR þ I þ G model. A single scheriaspp.(mixedspecies;Pseudallescheriaellipsoideafor18S MCMC runwith four chains(one cold,three heated)ranfor rDNA (U43911) and Pseudallescheria angusta for TEF1a) and 600000generations,whichwassufficienttobringtheconver- Gondwanamycescapensis(18SrDNA,FJ176834).Outgrouptaxa gencediagnosticsbelow0.01;aburn-inof25%wasappliedbe- were Plectosphaerella cucumerina (18S rDNA, AF176951) and forecreatingamajorityruleconsensustreewiththefunction Neurosporacrassa(18SrDNA,X04971). “sumt”.ThetreewasvisualizedwithFigTree. The SSU sequences were amplified and sequenced using A full heuristic, maximum parsimony (MP), 10000-repli- avarietyofprimers(Whiteetal.1990;Vilgalys2005),typically cate bootstrap analysis and 50 % majority rule consensus usingtheoverlappingsequencesfromNS-1/NS-6andSR-9R/ treewascreatedwithPAUPtoaddbootstrapsupportvalues NS-8, but sometimes overlapping sequences were obtained to the Bayesian inference tree. All characters had equal with NS-1/NS-4, NS-3/NS-6, and NS-5/NS-8. These overlap- weights,andtheheuristicsearchwasperformedwithsimple pingsequencesyieldedanalignedsequenceofapproximately stepwiseaddition.TheMPanalysisusedthesamecombined 1700bp. datasetbuttreatedgapsasanewstate(5thbase). Amplification of TEF1a used the forward amplification primer EFCF1a (50 AGTGCGGTGGTATCGACAAGCG 30) or Speciesdescriptions EFCF1.5 (50 GCYGAGCTCGGTAAGGGYTC 30) and the reverse primer EFCF6 (50 CATGTCACGGACGGCGAAAC 30) following Forgrowthratestudies,selectedisolatesweregrownonMYEA theprotocolofOliveiraetal.(2015).Sequencingwasgenerally plates.Plugsfromtheleadingedgeofgrowthtakenwithaster- performed with the PCR primers as well as the internal ile#1corkborerwereplacedupsidedownonthreenewMYEA primers EFCF2 (50 TGCTCAACGGGTCTGGCCAT 30) and EFCF3 platesperisolate,andtheplateswereincubatedat25(cid:2)Cfor (50 ATGGCCAGACCCGTGAGCA 30). The aligned sequences 4e6d.ColordescriptionsofculturesfollowedRayner(1970.). wereapproximately1200bp. AcombinedSSUandTEF1adataset(TreeBaseURL:http:// Results purl.org/phylo/treebase/phylows/study/TB2:S17680) of 2781 characterswasusedforphylogeneticanalysis.Modeltesting Using ITS rDNA sequences as a barcode to delineate puta- usingModelTest2.1.7v20141120(Darribaetal.2012)onboth tive species, we were able to associate an Ambrosiella sp. the combined dataset and the separate datasets for each with each of 14 studied species of ambrosia beetles with ThreeambrosialgeneraintheCeratocystidaceae 1079 Fig1eConidiophoresandconidiaofAmbrosiellaspp.(A,B).A.beaveriisolateC2749(CBS121750,expara-type).(A).phia- loconidiophore.(B).aleurioconidiophore.(CeF).A.nakashimae.(C,D).ingallery,specimenBPI893134(holotype).(E,F).Isolate C3445(CBS139739,ex-type).(GeI).AhartigiiisolateC3450(CBS139746).(G).phialoconidiophore.(H,I).aleurioconidiophore anddetachedaleurioconidia.(JeL).A.batraeisolateC3130(CBS139735)and(M,N).isolateC3045(CBS139736).(OeR).A. grosmanniae.(OeQ)ingallery,specimenBPI893133.(R).IsolateC3125(CBS137357).(S,T).A.roeperiisolateC2448(CBS 135864,ex-type).(UeW).A.xyleboriisolateC2455.AllphotosbyNomarskiinterferencemicroscopyofmaterialstainedwith cottonblue.Bar[10mm. large,complexmycangia:eightspeciesfromtribeXyleborini beetles,orfromsporulationinbeetlegalleries.Galleryspor- (Cnestusmutilatus,Xylosandrusamputatus,Xylosandrusgerma- ulation and isolates on MYEA showed fungi with macro- nus, Xylosandrus crassiusculus, Xylosandrus compactus, Ani- and microscopic characteristics expected of Ambrosiella sandrus dispar, Anisandrus sayi, and Eccoptopterus spinosus), spp. (Figs 1 and 2), including a fruity aroma when grown twofromtribeCorthylini(CorthyluspunctatissimusandCorthy- on MYEA. Each of the beetle species yielded a different lusconsimilis),andfourfromtribeXyloterini(Trypodendronlin- Ambrosiella sp. based on unique ITS sequences (Fig 3) and eatum, T. domesticum, T. scabricollis, and T. retusum.) The ITS morphology (conidiophores and/or culture characteristics). sequences were obtained from pure cultures or from DNA No species of ambrosia fungus was found associated with extracted from dissected mycangial spore masses, whole more than one beetle species. 1080 C.G.Mayersetal. Fig2eGrowthandsporulationofambrosiafungiingalleriesofambrosiabeetlesfromthreebeetletribes.(AeD).Ambrosiella nakashimaeingalleries(BPI893134)ofXylosandrusamputatus.(A).growthintunnels.(B,C).protoperitheciaandaleurioco- nidia.(D).chainedaleurioconidiaonaleurioconidiophore.(E,F).MeredithiellanorrisiiingalleriesofCorthyluspunctatissimus. (E).Growthingallery(BPI893135).(F).Branchedaleurioconidiophore(BPI893137).(GeJ).M.norrisiiinculture(C3152,CBS 139737,BPI893136,ex-type).(G).detachedsinglealeurioconidium.(H).detachedaleurioconidiumwithconidiophorecell attached.(I,J).Branchedaleurioconidiophores.(KeO).PhialophoropsisferrugineaingalleriesofTrypodendronlineatum.(KeN). SpecimenBPI893130.(K).Gallerygrowth.(LeN).Deep-seatedphialides.(O).Deep-seatedphialide(specimenBPI407710).All photosbyNomarskiinterferencemicroscopyofmaterialstainedwithCottonblue.Bar[10mm. Beetleassociations mycelium (Fig 2AeD). Isolations from the fungal growth in five beetlegalleriesyieldedan Ambrosiella sp. whose ITS se- Xyleborini quencedifferedfromthatofA.beaveribyhavinganextraT Two Cnestus mutilatus females caught in a trap in Barrow inastringofTsattheendofITS2(Fig3). County, Georgia in September 2013 were ground and plated Xylosandrus germanus adults collected in eight different on SMA, and the recovered isolates had both aleurioconidia USA states (Georgia, Iowa, Michigan, Missouri, New York, and phialoconidia typical of Ambrosiella beaveri (Six et al. Ohio, Tennessee, and Virginia) and Europe (Germany, the 2009.)TheITSsequenceoftheseisolateswasidenticaltoacul- Netherlands, and Switzerland) yielded a unique Ambrosiella ture(CBS121750)fromtheholotypeofA.beaverifromC.muti- sp.AfemalebeetletrappedinflightinMissouriwasdissected latusinMississippi(Sixetal.2009). toremoveandobservethemycangiumanditssporecontents, GalleriesofXylosandrusamputatusintwostemsofCinnamo- andacultureoftheAmbrosiellasp.wasrecoveredfromthere- mum camphora in Lowndes County, Georgia in August 2014 movedsporemass.Themycangiumsatjustbelowthemeso- werelinedwithathick,grey-whitemyceliumwithaleurioco- notumandwasattachedtothescutellum(Fig4A).Whenthe nidiophores, and protoperithecia were scattered in the mycangial contents were freed, the spore mass maintained ThreeambrosialgeneraintheCeratocystidaceae 1081 Fig3eUnrootedUPGMAdistancetreeofITSrDNAsequencesofAmbrosiellaspp.fromCnestus,Xylosandrus,andAnisandrus spp.;Meredithiellaspp.fromCorthylusspp.;Phialophoropsisspp.fromTrypodendronspp.;andseveralrepresentativesofthe Ceratocystidaceae.SingleasterisksindicatesequencesobtainedfromDNAextractedfromwholebeetlesormycangialspore masses;doubleasterisksindicatesequencesfromDNAextractedfromgallerygrowth.Sequenceswithoutasterisksarefrom DNAextractedfromcultures.CountryorUSAstate(twoletterabbreviation)oforiginofthebeetleisindicated. theshapeofthemycangium(Fig4B,C),andthesporemass ThreeXylosandruscompactusbeetlestrappedinGeorgiain didnotdisperseinwater,lacticacid,oroil(IsoparM).When 2007yieldedisolatesofAmbrosiellaxylebori,andeachhadan mountedandstained(Fig4DeF),contentsofthemycangium ITS sequence identical to a culture (CBS 110.61 ¼ C1650) wereobservedtobeahomogenousmassofarthrospore-like fromtheholotype,whichwasfromX.compactusintheIvory cells, similar to those reported by Harrington et al. (2014) Coast(Fig3). frommycangiaofXylosandruscrassiusculus.TheITSrDNAse- FreshAmbrosiellahartigiiisolateswereobtainedfromAni- quencesofallisolatesfromX.germanuswereidenticalexcept sandrus dispar collected in Austria and the Czech Republic. atonebasepositionneartheendofITS2,andtheseITSse- Theseisolates(includingCBS 139746¼ C3450, fromAustria) quences closely matched two GenBank accessions sporulatedheavily,unliketheisolatefromtheholotypespec- (HQ538467 and HQ670423) from Korean X. germanus speci- imen(CBS404.82¼C1573,fromGermany).TheITSsequences mens(Fig3). ofallA.hartigiiisolateswereidentical,exceptfortheAustrian Xylosandrus crassiusculus adult beetles from Georgia, Mis- isolate,whichhadonebasesubstitutionaswellasanaddi- souri,Ohio,andSouthCarolinayieldedisolateswithITSse- tionalTneartheendoftheITS2region(Fig3). quences matching that of Ambrosiella roeperi (Harrington AnAnisandrussayiadulttrappedinBooneCounty,Missouri et al. 2014). An additional adult X. crassiusculus was trapped in May 2013 yielded a novel Ambrosiella sp. with branching in Taiwan in July 2014 and yielded an isolate of A. roeperi aleurioconidiophores and disarticulating aleurioconidia withanITSsequencesimilartootherrecoveredA.roeperise- (Fig 1JeN). Additional An. sayi adults trapped with a rotary quences, but the sequence most closely matched that of nettrapinMontcalmCounty,MichiganinMay2014yielded aSouthCarolinaisolatefromX.crassiusculus(Fig3). the same fungal species. More specimens were trapped in 1082 C.G.Mayersetal. Fig4eMycangiumandexcisedsporemassofAmbrosiellagrossmaniaefromafemaleXylosandrusgermanus.(A).excised mycangium(myc)andattachedscutellum(sc).(BeF).mycangialsporemass.(B).ventralaspect.(C).dorsalaspect.(D,E). pressedwithcoverslip.(D).fullsporemass.(E).detailbetweenlobes.(F).edgeofsporemass.(B,C)bystereomicroscope, unstainedmaterial.AllotherphotosbyNomarskiinterferencemicroscopyofmaterialstainedwithcottonblue.For(A)and (D),bar[100mm;for(F),bar[10mm. ChattahoocheeNationalForest,GeorgiainJuneandJuly2014, Ceratocystissp.(“CspXapi1”)fromanambrosiabeetleinKorea, andfourbeetlesweregroundanddilutionplated,yieldingthe perhapsAnisandrusapicalis(formerlyXyleborusapicalis). same Ambrosiella sp. The ITS sequences of isolates from all threelocationswereidenticalandmostsimilartothatofA. Corthylini hartigii(Fig3). Isolation from the galleries of Corthylus punctatissimus in An Eccoptopterus spinosus adult was trapped in Taiwan in youngblackmaple(Acernigrum)saplingsinIowainAugust July 2014 and stored in ethanol. Although fungal isolation 2013yieldedafunguswithanITSsequenceclosetobutdis- was not possible, the mesonotal mycangium was dissected tinct fromall known Ambrosiella. The sporulation in galler- and yielded a dual-lobed spore mass similar in morphology ies and cultures formed terminal aleurioconidia on many to that recovered from the mycangia of X. germanus (Fig 4). short side branches (Fig 2EeJ). Surface-sterilized males DNAextractedfromthesporemassfromthemycangiumof taken from these Iowa galleries, as well as galleries and E. spinosus yielded a unique ITS sequence (GenBank beetles collected in Michigan from Acer saccharum in Octo- KR611325) somewhat close to that of A. xylebori but most ber 2013, yielded isolates with the identical ITS sequence closely matching a sequence (HQ670422) of an unidentified (Fig 3). ThreeambrosialgeneraintheCeratocystidaceae 1083 Fig5ePhylogenetictreefromBayesiananalysisofthecombinedTEF1aandSSU(18S)rDNAdatasetofambrosiabeetle symbiontsandrepresentativesoftheMicroascales.PosteriorprobabilitiesfromBayesiananalysisandbootstrapsupport values(>50%)frommaximumparsimonyanalysisareindicatedonbranchlabels.Thickenedbrancheswithasterisksin- dicateposteriorprobabilityof1.0and100%bootstrapsupport.Tribesandthetypeofmycangiumexhibitedbythehost beetlesinthegeneraassociatedwithCeratocystidaceaeareindicatedinthethreeshadedboxes.Diagramaticillustrationsof conidiophoresoftheambrosiabeetlesymbiontsareincluded;solidarrowsindicateconsistentobservationinaspecies,and thedashedarrowsindicaterareorambiguousobservations.ThetreeisrootedtoNeurosporacrassaandPlectosphaerella cucumerina. MaleCorthylusconsimilisbeetlesfrom La Esperanza,Mex- from female beetles from each location yielded an identical ico, collected in 2007, were stored in ethanol. DNA was ITS sequence (KR611329) using the Ceratocystidaceae-specific extracted from the prothorax of one of the specimens and primers,andthesequencewassimilartothatofthesymbi- yielded an ITS sequence (KR611327) similar to the symbiont ontsofotherTrypodendronspp.(Fig3). from C. punctatissimus but differing at 10 base positions TrypodendonlineatumbeetlesweretrappedinAlaskausing (Fig 3). A dissection of the prothorax revealed a long, coiled Lineatinlureandcollectioncupsthatweredryandcontained tube connected to the procoxal cavity and containing a ho- theinsecticideVapona(Reichetal.2014).Severalfemalespec- mogenoussporemassofcellssimilartothoseseeninmeso- imensweredriedandshippedtoIowaforisolations,butno notalmycangiaofXyleborinifemales(Harringtonetal.2014). Ambrosiellasp.wasisolated.GalleriesinaninfestedlogofPicea sp.collectedinColoradoin2014werealsoexamined.Thegal- Xyloterini leries (BPI 893129, 893130) were packed with conidiophores Trypodendronscabricollisbeetlestrappedin2013from10loca- withdeep-seatedphialidesbutnoaleurioconidia(Fig2KeN). tionsinMissouriwerestoredinethanol.TheDNAextractions Attempts to isolate the fungus from the galleries were not 1084 C.G.Mayersetal. successful, but DNA was extracted from the fungal growth. Trypodendronspp.,andassignmentoftheCorthyluspunctatissi- TheITSsequencesfromtheextractedDNAfromfemalebee- mussymbionttoanewgenus. tlestrappedinAlaskaandfromthegallerygrowthinColorado AMBROSIELLAArx&Hennebertemend.T.C.Harr.,Myco- wereidentical (KR611328) and similar to those ofthe fungal taxon111:354.2010. symbiontsfromotherTrypodendronspp.(Fig3). Typespecies:AmbrosiellaxyleboriBraderexArx&Hennebert. A culture deposited as Ambrosiella ferruginea (CBS 460.82) AmbrosiellabeaveriSix,DeBeerandW.D.Stone,Antonie was isolated in 1971 from Trypodendron domesticum in Ger- vanLeeuwenhoek96:23.2009. many. No conidiophores were seen in this culture, but its MycoBankMB504757. ITSsequencedifferedonlyslightlyfromthatoftheT.lineatum Comments e This species was probably introduced to the andT.scabricollissymbionts(Fig3). Southeastern USA with its beetle host, Cnestus mutilatus, TheITSsequence(KC305145)ofanotherA.ferrugineaisolate from Asia (Six et al. 2009). The culture from the holotype of fromTrypodendronretusuminWisconsin(CBS408.68¼MUCL Ambrosiellabeaveri(CBS 121750)and two isolates (C3180and 14520) was similar to, but distinct from, the ITS sequence C3181) from Cnestus mutilatus in Georgia produce chains of fromthethreeotherTrypodendronassociates(Fig3). phialoconidiafromdeep-seatedphialides(Fig1A)andtermi- nal aleurioconidia onbranchedconidiophores(Fig1B),asil- Phylogeneticanalysis lustratedbySixetal.(2009). Ambrosiella nakashimae McNew, C. Mayers, and T. C. A Bayesian consensus tree of the combined SSU and TEF1a Harr.,sp.nov.(Fig1CeF). datasetplacedthefungalsymbiontswithintheCeratocystida- MycoBankMB812571. ceae(Fig5).Therewasstrongsupportforgroupingtheambro- Etymology.NamedafterToshioNakashima,whocharacter- siabeetlesymbiontswithCeratocystisadiposa(Butler)Moreau izedfungisporulatinginthegalleriesofnumerousambrosia 1952, Ceratocystis fagacearum(Bretz) J. Hunt 1956, Ceratocystis beetlesinJapan. norvegica J. Reid & Hausner 2010, and Huntiella spp. There Typus: USA: Georgia: Lowndes Co., 30(cid:2) 490 06.600 N, 83(cid:2) 280 appeared to be three lineages of ambrosia symbionts, and 48.300 W, Xylosandrus amputatus gallery in Cinnamomum cam- these three lineages correlated with the three respective phora, Aug 2014, S. Cameron, holotype (BPI 893134); ex-type hostbeetletribes:Xyleborini,Corthylini,andXyloterini(Fig5). C3445(CBS139739). Therewasstrongsupport(1.0priorprobability,100%boot- Coloniesonmaltextractyeastagar7e32mmafter4dand strap) for the Xyleborini associates as a monophyletic clade, 25e50mmafter6dat25(cid:2)C,surfacemyceliumwhite,flat,be- andallofthesespeciesformedaleurioconidiaonbranching comingsmokegraytoolivegreenwithcreampatches,reverse conidiophores (Fig 5). The Xylosandrus amputatus associate cream white, becoming dark green to black, odor weak, hadsequencessimilartothoseofAmbrosiellabeaveri,theAni- slightlysweetat6e10d.Sporodochiawhitetograyonsurface, sandrus sayi associate had sequences similar to those of superficial.Aleurioconidiophores(Fig1E)hyalinetobrownwith Ambrosiella hartigii, and the Xylosandrus germanus associate age,simpletobranched,12e115(155)mmlong,composedof had sequences most similar to those of Ambrosiella roeperi one or more cells, producing a single terminal aleurioconi- andAmbrosiellaxylebori(Fig5).ThesinglespeciesfromtheCor- dium or a chain of aleurioconidia, conidiogenous cell with thyliniappearedtogroupseparatelyfromtheAmbrosiellaspp. acollarette.Aleurioconidia(Fig1F)globosetosubglobose,hya- fromtheXyleboriniandappearedtobemorecloselyrelatedto line to light brown with age, thick-walled, aseptate, 6e10 C.adiposaandC.norvegica,aswellastothegenusHuntiella(for- (14) (cid:4) 6e10 mm. Phialoconidiophores uncommon, with moder- merlytheCeratocystismoniliformiscomplex).Thesequencesof atelyseatedphialides,producingbasipetalchainsofconidia theTrypodendronsymbiontsweremostsimilartothoseofC. byring-wallbuilding.Phialoconidiaellipsoidaltoglobose,hya- fagacearum(Fig5). line to light olive brown with age, becoming thick-walled, Comparisonofmarginallikelihoodsfromtopologicaltest- aseptate6e10(12)(cid:4)5e9mm.Protoperithecia(Fig2B,C)superfi- inginMrBayesshowedthatitwasmorelikelythatthethree cial, spherical, tan to brown, 55e70 mm diam. Gallery growth lineages of ambrosia beetle symbionts were polyphyletic dense,flat,whitetogrey,becomingbrownwithage.Aleurioco- ((cid:3)10,793.39) rather than a single, monophyletic group nidiophores(Fig1C)similartothoseinculture,9e70mmlong, ((cid:3)10,803.71). Phialophoropsis (Xyloterini associates) was more endinginaphialidethatmayhaveadistinctcollarette.Aleur- likelytobeaseparatecladedistinctfromtheXyleboriniassoci- ioconidiaingalleries(Fig1D)largerthaninculture,terminalor ates(i.e.,Ambrosiella)((cid:3)10,793.91),ratherthanformingasingle in chains, globose to suboblate, thick walled, aseptate, hya- monophyleticgroupwithit((cid:3)10,795.35).TheCorthyluspuncta- line,maybecomelightbrownwithage,(8)9e12.5(15)(cid:4)(7.5) tissimus associate was clearly outside of Ambrosiella sensu 8.5e11.5(16)mm. stricto(Fig5),buttheC.punctatissimusassociatewasfoundto Otherculturesexamined:USA:Georgia:LowndesCo.,30(cid:2) 490 bemorelikelygroupedwiththeXyleboriniassociatesasasister 06.600 N, 83(cid:2) 280 48.300 W, Xylosandrus amputatus gallery in C. group((cid:3)10,789.59)thannot((cid:3)10,794.99)inthemarginallikeli- camphora,Aug2014,S.Cameron,CBS139740(C3443). hoodtesting. Notes.ThesymbiontofX.amputatusissimilartoA.beaveri bothinDNAsequencesandmorphology,especiallythealeur- Taxonomy ioconidiophores, but differs in growth rate (7e32 mm vs. 28e36 mm diam after 4 d at 25C), rarity of phialoconidio- Phylogenetic analysis and morphological characters sup- phores,andtheproductionofprotoperithecia.Thisisthefirst portedrecognitionofthreenewspeciesofAmbrosiella,resur- reportofprotoperitheciainambrosiabeetlesymbionts,which rection of the genus Phialophoropsis for the symbionts of arethoughttobeasexual(Harringtonetal.2010).Noperithecia

Description:
Received 23 May 2015 .. Male Corthylus consimilis beetles from La Esperanza, Mex- .. light gray brown, underside olivaceous, becoming dark.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.