ebook img

Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders PDF

33 Pages·2014·25.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders

Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders RussellJ.Garwood1 andJasonDunlop2 1SchoolofEarth,AtmosphericandEnvironmentalSciencesandTheManchesterX-rayImaging Facility,SchoolofMaterials,TheUniversityofManchester,Manchester,UK 2Museumfu¨rNaturkunde,LeibnizInstituteforResearchonEvolutionandBiodiversityatthe HumboldtUniversityBerlin,Berlin,Germany ABSTRACT Arachnidsareanimportantgroupofarthropods.Theyare:diverseandabundant;a majorconstituentofmanyterrestrialecosystems;andpossessadeepandextensive fossilrecord.Inrecentyearsanumberofexceptionallypreservedarachnidfossils havebeeninvestigatedusingtomographyandassociatedtechniques,providingvalu- ableinsightsintotheirmorphology.HereweuseX-raymicrotomographytorecon- structmembersoftwoextinctarachnidorders.IntheHaptopoda,wedemonstrate thepresenceof‘clasp-knife’chelicerae,andournovelredescriptionofamemberof thePhalangiotarbidahighlightslegdetails,butfailstoresolvecheliceraeinthegroup duetotheirsmallsize.Asaresultofthesereconstructions,tomographicstudiesof three-dimensionallypreservedfossilsnowexistforthreeofthefourextinctorders, andforfossilrepresentativesofseveralextantones.Suchstudiesconstituteavaluable sourceofhighfidelitydataforconstructingphylogenies.Toillustratethis,herewe presentacladisticanalysisofthecheliceratestoaccompanythesereconstructions. Thisisbasedonapreviouslypublishedmatrix,expandedtoincludefossiltaxaand relevantcharacters,andallowsusto:cladisticallyplacetheextinctarachnidorders; explicitlytestsomeearlierhypothesesfromtheliterature;anddemonstratethatthe additionoffossilstophylogeneticanalysescanhavebroadimplications.Phylogenies Submitted8August2014 basedoncheliceratemorphology—incontrasttomolecularstudies—haveachieved Accepted 8October2014 elementsofconsensusinrecentyears.Ourworksuggeststhattheseresultsarenot Published 13November2014 robusttotheadditionofnovelcharactersorfossiltaxa.Hypothesessurrounding Correspondingauthor cheliceratephylogenyremaininastateofflux. RussellJ.Garwood, [email protected] Academiceditor Subjects EvolutionaryStudies,Paleontology,Taxonomy,Zoology KennethDeBaets Keywords Arachnida,Tomography,Chelicerata,Phylogeny,Palaeozoic,Fossil,Phalangiotarbida, AdditionalInformationand Haptopoda Declarationscanbefoundon page26 INTRODUCTION DOI10.7717/peerj.641 Arachnidsandtheirrelatives(Chelicerata)formamajorbranchofthearthropods,with Copyright 2014 GarwoodandDunlop around112,000livingspecies(Zhang,2011).Theyalsohaveanextensivepalaeontological record,includingmorethan2,200fossilspeciesatthetimeofwriting(Dunlop,Penney Distributedunder CreativeCommonsCC-BY4.0 &Jekel,2014).CheliceratescanbefoundbackintotheCambrian(Waloszek&Dunlop, 2002;Dunlop,Anderson&Braddy,2004),althoughtheirrecordthroughdeeptimeispatchy OPENACCESS HowtocitethisarticleGarwoodandDunlop(2014),Three-dimensionalreconstructionandthephylogenyofextinctchelicerateorders. PeerJ2:e641;DOI10.7717/peerj.641 andtendstobeconcentratedintowindowsofexceptionalpreservationsuchasthelate CarboniferousCoalMeasuresandvariousCretaceousandCenozoicambers.Currently, sixteenarachnidorderscanberecognised.Twelvehavelivingrepresentatives:scorpions (Scorpiones), harvestmen (Opiliones), pseudoscorpions (Pseudoscorpiones), camel spiders(Solifugae),palpigrades(Palipgradi),mites(AcariformesandParasitiformes), ricinuleids(Ricinulei),spiders(Araneae),whipspiders(Amblypygi),whipscorpions (Thelyphonida)andschizomids(Schizomida).Fourarachnidordersareextinct:trigono- tarbids(Trigonotarbida),phalangiotarbids(Phalangiotarbida),haptopodids(Haptopoda) andthespider-likeuraraneids(Uraraneida).Tothiscanbeaddedtwomarinegroupswith livingrepresentatives,theseaspiders(Pycnogonida)andhorseshoecrabs(Xiphosura), aswellastwoextinctgroupswhichwerelikelytohavebeenprimarilyaquatic,thesea scorpions(Eurypterida)andtherarechasmataspidids(Chasmataspidida). Resolvingrelationshipsbetweenthearachnidand/orcheliceratelineagesremainsa challenge.Importantcladisticstudiesincludethecomprehensivemorphologicalanalyses ofWeygoldt&Paulus(1979),Shultz(1990)andShultz(2007),aswellasnumerousapplica- tionsofmoleculardata—sometimeswithmorphologycombined(e.g.,Wheeler&Hayashi, 1998;Giribetetal.,2002;Pepato,daRocha&Dunlop,2010;Rehmetal.,2011).Fewofthese includefossilterminals(butseeGiribetetal.,2002;Shultz,2007)—despitethefactthat extinctspeciesprovideavaluablesourceofdata(Edgecombe,2010).Severalarthropod- wideanalyses—bothmolecularandmorphological—alsoincludechelicerates(Regieret al.,2010;Legg,Sutton&Edgecombe,2013;Rota-Stabelli,Daley&Pisani,2013).Yet,asnoted inarecentreview(Dunlop,Borner&Burmester,2014),thereisstillnosingleaccepted phylogenyforarachnidsandtheirrelatives,andthereareevidentdiscrepanciesbetween treesderivedfrommorphologicalandmoleculardata.Dunlop,Borner&Burmester(2014) thusrecognisedaminimumconsensustree,i.e.,supportedbyvariousmethodologies, oftheform(Pycnogonida(Xiphosura(Scorpiones(Araneae(Amblypygi(Thelyphonida +Schizomida)))))).Thisratherextensivelyprunedphylogenystillexcludesdiverseand importantgroupslikemites,harvestmenandpseudoscorpions,anddoesnotplaceany ofthefossiltaxa.Xiphosurawasrecentlyinterpretedasparaphyletic(Lamsdell,2013),at leastwithrespecttoPalaeozoic‘synziphosurines’whichmayincludelineageseventually evolvingintobothcrown-grouphorseshoecrabsand,separately,intoarachnids. Fossilshavesometimesprovedcontroversialinphylogeneticreconstruction,andfor arachnidssomeauthorssimplyexcludedthemcompletely(e.g.,Wheeler&Hayashi,1998). Extincttaxaofferdirectevidenceofearly—andpossiblyquitedifferent—bodyplans,but oftenhavelargeamountsofmissingdatawhencomparedtolivingtaxa.Furthermore, scoringmorphologicalcharacterstatesinfossilsinvolvesadegreeofinterpretation,and objectiveinferenceshavetobemade.Despitethechallengesinherentinusingfossilsin suchanalyses,recentstudieshavedemonstratedtheutilityandimportanceofdoingsoin arangeofdifferentanalyses(Legg,Sutton&Edgecombe,2013;Sharma&Giribet,2014). Furthermore,inrecentyearsthelevelofinterpretationrequiredhasbeenreducedthrough anumberofimprovementsinourunderstandingoffossilarachnid(andarthropod)data. Forexample,theapplicationofvarioustechniquessuchasX-raycomputedtomography— GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 2/33 especiallymicrotomography(µCT,e.g.,Garwood,Dunlop&Sutton,2009)—hasallowed theanatomyofsomefossilstobereconstructedinunparallelledthree-dimensionaldetail. ForareviewofsuchmethodologiesseeSutton,Rahman&Garwood(2014). Theprincipalaimofthisstudyistodrawtogetherrecentlypublishedexamplesofwell- preservedand(wherepossible)three-dimensionallyreconstructedfossilsinaphylogenetic analysis,andtoaugmentthesewithnoveldatafortwoextinctarachnidorders:Phalangio- tarbidaandHaptopoda.Ourintentionisnottopresentafullyresolvedphylogenetictree, andwedonotconsiderthetopologyrecoveredthesolesolutiontoarachnidphylogeny. Rather,weuseittoidentifycommontrendsandexploretheimpactoffossildataontree topologieswhenscoredintoanmodifiedversionofapreviouslypublisheddataset.In additiontotwenty-sevennewlyaddedfossiltaxa,thematrix—whichisamendedfromthat ofPepato,daRocha&Dunlop(2010)—hassixteennewcharacterstocapturethefullest possiblerangeoffossilmorphology.Thisexerciseallowsustoassesshowrobusttheplace- mentofextincttaxais,howtheseimpactontherelationshipsrecoveredbetweenextant groups,andtoexplicitlytestsomeearlierhypothesesfromtheliterature.Wealsohope thatourmatrixwillconstituteastartingpointforfurtherstudies,andprovideauseful contributionintowhichnewfossildiscoveriescanbeintegrated.Followingmaterialsand methodsinformation,wepresentfirsttheresultsofourtomographicreconstructions,and thenresultsanddiscussionforourcladisticanalysis.Wesubsequentlydiscusstheimpactof fossils.CharacterdescriptionsareincludedasSupplementalInformation. MATERIALS AND METHODS Material and tomography Alltomographicreconstructionspresentedinthecurrentstudyarebasedonmaterialfrom theCoseleyLagersta¨tte,nearDudley,Staffordshire,UK.TheyarethusLateCarboniferous, from the similis–pulchra zone of the British Middle Coal Measures; Duckmantian in age (ca. 315 Ma; Pointon et al., 2012), or Westphalian B using more traditional terminology.Theirpreservationisasthree-dimensionalvoids—somepartiallyinfilled withkaolinite—withinsideritenodules.ScanswereconductedattheNaturalHistory Museum,LondononaNikonHMX-ST225scannerwithatungstenreflectiontarget. Two specimens of Plesiosiromadeleyi (NHM I. 15899, NHM I. 7923) from the (monotypic)extinctorderHaptopodawerescanned.Theywereselectedasthemost three-dimensionalrepresentativesofalltheNHMspecimensofthisspecies,andNHM I.7923waschosenforsubsequentprocessingasthemostcompleteexample.Thiswas scannedat180kV/175µA,witha0.25mmcopperfilter,and3,142projectionsofexposure 354ms,toprovideareconstructeddatasetwitha19.5µmvoxelsize. Materialfromtwospeciesofanotherextinctorder,Phalangiotarbida,werescanned. One was not well-preserved enough to justify further reconstruction: Goniotarbus tuberculatas (BU 696, Lapworth Museum Birmingham, also Coseley). However, the NHMspecimenIn22,838,theholotypeofGoniotarbusangulatus,wasbetterresolved, andrevealedimportantlimbmorphology.ItwaslastdescribedbyPetrunkevitch(1953) whoseworkhas,inthepast,necessitatedsignificantrevision(e.g.,Dunlop,1996a;Garwood GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 3/33 &Dunlop,2011).Accordinglythisphalangiotarbidspecimenwasselectedforfurther processing.Thescanwasconductedat225kV/190µA,andwithoutaddedfiltration.3,142 projectionsofexposure180mswerecollected,andareconstructeddatasetwitha16.0µm voxelsizecreated. Digital visualisation Bothscanswereusedtocreatethree-dimensional,virtualfossilsusingthecustomSPIERS softwaresuite(Suttonetal.,2012)followingthemethodsofGarwoodetal.(2012).The distallimbsofPlesiosiromadeleyiwerenotrecoveredbythescanwheretheyweretruncated bytheedgeofthenodule.SeveralofthewalkinglegsofGoniotarbusangulatuswereabsent. Bothmodelswerescaled,andthenexportedtobepresentedhereasVAXMLmodels (FileS1).SPIERS-generatedisosurfaceswerethenray-tracedinBlenderforfiguresand videos (Garwood & Dunlop, 2014)—for Goniotarbusangulatus enough of the limbs werepreservedtoallowmissingelementstobemanuallymodelledfromthosepresent. ThiswasachievedinBlender,andtheaddedelementsarerenderedsemi-transparentfor clarity(Fig.1). Microscopy HandspecimenphotographsofPlesiosiromadeleyiareavailableintheredescriptionof Dunlop(1999).NocomparablemodernphotographsofGoniotarbusangulatusexist.Ac- cordinglyaplateofhandspecimenphotographsispublishedhereinshowingtheholotype, andonlyknownspecimen(NHMIn22838:Fig.2).Thiswasstudiedandphotographed usingaLeicaMZ16Astereomicroscopeandincidentlight.Photographstakenatmultiple focaldepthswerecombinedusingthesoftwareCombineZM(seeBercovici,Hadley& Villanueva-Amadoz,2009).Photographsofthewholefossil—whichwastoolargeforthe fieldofview—werecreatedbymanuallystitchingsectionsusingtheopensourceraster graphicseditorGIMP2.8,andfigureswereassembledinInkscape0.48.Forcomparative purposesspecimensofarelatedspecies(Petrunkevitch,1949),Goniotarbustuberculatus (NHMIn31249,NHMIn18340,andNHMIn22840),werealsostudied. Character coding Thecurrentanalysisof86taxaand192charactersisamodifiedversionof‘MatrixA’ createdbyPepato,daRocha&Dunlop(2010).Aparticularfocusofthepreviousstudywas toclarifythepositionof,andrelationshipswithin,themites.Consequentlytheanalysis hadalargenumberofmite-specificcharacters.Thecurrentstudyhasdifferentgoals,and foreaseofanalysisandclarityweexcludenumerouscharacterswhichareonlyhelpful forresolvingingrouprelationshipswithinoneorbothofthetwomajormitelineages (i.e.,acariformsandparasitiforms).Weremovetwofurthercharactersbaseduponthe reviewsofthecurrentmanuscript,whichareavailablewiththispaper.Inadditiontothese changes,weadded16charactersrelevantforfossiltaxa,andmodifiedotherstomakethem applicabletonewlyintroducedfossilterminals.Examplesofnovelcharactersinclude:a prosomalshieldwithameso-andmetapeltidiumdemarcated;thepresenceofgenalspines; theprosomaandopisthosomaformingasinglefunctionaltagma;‘elbowed’cheliceraein GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 4/33 Figure 1 Digital visualisations of the haptopod Plesiosiro madeleyi (NHM I7923; (A)–(D)), and phalangiotarbid Goniotarbus angulatus (NHM In 22838; (E)–(I)). (A) Dorsal view of P. madeleyi, showingopisthosomalsegmentationandprosomalshieldarchitecture.(B)Lateralviewoftheanterior ventral prosoma, nearest limbs and lateral prosoma removed, showing the nature of haptopod che- licerae.(C)Ventralview,showingventralsegmentation,anddividedsternum.(D)Haptopodwalking leg. (E) First left walking leg of G. angulatus, showing typical segmentation. (F) Lateral view of the anteriorventralprosoma,showingthesmallpedipalps,medianridge,andpossiblechelicerae—below theresolutionofthescan.(G)Fourthrightwalkingleg.(H)Dorsalviewshowingmedianeyesanddorsal opisthosomal segmentation. (I) Ventral view showing opisthosomal segmentation and coxo-sternal region.Abbreviations:1–10,opisthosomalsegmentnumber;as,anteriorsclerite;ch,chelicerae;cx,coxa; fa,fang;fe,femur;L1–L4,walkinglegs1–4;me,mediaeyes;mt,metatarsus;pa,paturon;pp,pedipalps; ps, pofsterior sclerite; pt, patella; ta, tarsus; ti, tibia; tr, trochanter. Scale bars: (A, C, F–I) = 3 mm; (B,D,E)=1mm. GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 5/33 Figure2 HolotypeandonlyknownspecimenofphalangiotarbidGoniotarbusangulatus(NHMIn 22838).(A)Dorsalview,showingprosomaandopisthosoma,andlegs4Land2L.Proximalportionsof Leg1Larevisibleattheanteriorofthefossil,asarethetrochantersofseveralofthelegsontheright. (B)Ventralviewshowingcoxo-sternalarrangementandventralopisthosomalsegmentation.Proximal portions of Leg 1L, then 2L 3L and 4L are visible. (C) A close up of the sternum, anterior to the left showing five constituent plates. (D) Detail of the anterior opisthosomal segmentation, including the posterior median bulge of the prosomal shield, and associated accommodation in the anterior opisthosomal segments. (E) The posteriormost segments (7–10) fused to create a single dorsal plate, withaterminalanaloperculum.Scalebars:(A,B)=2mm;(C–E)=1mm. GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 6/33 thosetaxawiththree-segmentedchelicerae;asixthlimbmodifiedasapaddle(orpusher); ashortenedfirstopisthosomaltergite;sixabbreviatedopisthosomaltergites;theabsence ofasterniteforopisthosomalsegmentone;fusionofopisthosomaltergites7–10;amedian abdominal(genital)appendage;ventralsacs;adorsalanaloperculum;eurypteridgill tracts;anddevelopmentwithanymphalstage.Fullcharacterdescriptionsfortheupdated matrixareincludedinSupplementalInformation.Wehavealsomodifiedacharacter toexplicitlycodeingestingsolidmaterial,ratherthanextra-oraldigestion.Theformer iseasiertocodeforfossils,oftenbeingapparentfromthemorphologyofmouthparts, whereasthelatterismorecloselybasedonbehaviour,somethingwhichisnottypically preservedinfossils.Similarlythepresenceofopisthosomalvenomglandshasbeenaltered tocodeforatelsonwithanaculeusandvesicle(the‘sting’),thelatterbeingverifiablein fossilscorpions.Finally,thecharacterrecordingthenumberofcheliceralarticlesnowhas morethanthreearticlesasanoptiontoreflectthestateobservedinoutgroups(Haug, Briggs&Haug,2012;Haugetal.,2012;Briggs&Collins,1999),andsomefossilhorseshoe crabs(Suttonetal.,2002;Briggsetal.,2012). Taxon selection Asnotedabove,thefocusonmitesinPepato,daRocha&Dunlop’s(2010)MatrixAdiffered fromthepresentstudy.Accordinglytherewerealargenumberofacaridterminals,which weprunedforthisstudy.Weconcurrentlyadded27fossiltaxatothematrix.Thesehad on average 59% missing data in comparison to 4% for extant taxa—however we do notconsiderthisproblematiconthebasisofmultiplepublicationsinrecentdecades demonstratingthatthisneednotresultinlackofresolution,andthatexcludingtaxaon thebasisofmissingdataisinadvisable(Kearney&Clark,2003;Cobbett,Wilkinson&Wills, 2007;Wiens&Morrill,2011;Wiens&Tiu,2012).Onthebasisofthereviewsofthecurrent manuscript,theartiopodanEmeraldellabrocki,fromthedescriptionbyStein&Selden (2012)wasincludedasanoutgroup.Thishasbeenrecoveredinthemandibulatestem lineage(Stein&Selden,2012;Ortega-Herna´ndez,Legg&Braddy,2013),oralternativelyas morecloselyrelatedtothechelicerates(Legg,Sutton&Edgecombe,2013).TwoCambrian arthropodsbelongingtoanassemblagevariouslyreferredtoastheMegacheira,orthe greatappendagearthropods,wereaddedtoreflectincreasingevidencethatthesefossils maybecloselyrelatedtochelicerates(e.g.,Dunlop,2006;Edgecombe,Garc´ıa-Bellido& Paterson,2011;Haug,Briggs&Haug,2012;Haugetal.,2012;butseealsoLegg,2013).The megacheirangenusAlalcomenaeuswascodedonthebasisofacomprehensivedescription ofA.cambricusbyBriggs&Collins(1999),andrecentlyreportedneuralanatomyreported byTanakaetal.(2013)forAlalcomenaeussp.,whichminimisedthedegreeofmissingdata. Toassessmegacheiranmonophylyweaddedafurtherfossil,Leanchoiliasuperlata,which wasrecentlyredescribedindetailbyHaug,Briggs&Haug(2012). Foranalysesofextanttaxaonlyaseaspider(Pycnogonida)wasselectedastheoutgroup asjustifiedinPepato,daRocha&Dunlop(2010).Tothepreviouslycodedpycnogonids weaddedtwowell-resolvedPalaeozoicfossilexamples—theSilurianspeciesHaliestes dasos described by Siveter et al. (2004) and the Devonian Palaeoisopusproblematicus GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 7/33 redescribed by Bergstro¨m, Stu¨rmer & Winter (1980). The recently discovered species Pentapantopusvogteli (Ku¨hl, Poschmann & Rust, 2013) resembles H.dasos and also somemodernpycnogonids—butashighlightedintheoriginalpublication—incomplete preservationandalimitedunderstandingofthespecies’ontogenyprecludeditsplacement. Accordinglywehaveoptedtoomitthespeciesfromthisanalysis,aswiththefossilof Rudkinetal.(2013),whichweconsidertobecontroversialasitisincompleteanddoes not reveal a number of important sea spider features. As previously noted, Lamsdell (2013)recentlychallengedthemonophylyofthehorseshoecrabs(Xiphosura)whichhave traditionallybeeninterpretedashavingastemlineage(thesynziphosurines)leadingupto acrown-groupXiphosurida.Totestthissuggestionweincludedthreeofthebestpreserved putativesynziphosurinetaxa.FromtheSilurianwescoredOffacoluskingibasedonthe descriptionofSuttonetal.(2002)andDibasteriumdurgaebasedonBriggsetal.(2012),as wellastheDevonianfossilWeinberginaopitziredescribedbyStu¨rmer&Bergstro¨m(1981) andMoore,Briggs&Bartels(2005). ThreeSilurianrepresentativesoftheextinctEurypteridawerescored:Parastylonurus ornatus based on Waterston (1979), Mixopteruskiaeri based on Størmer (1934) and Eurypterus(formerlyBaltoeurypterus)tetragonophthalmusbasedonSelden(1981).Thisal- lowedustoassesstheissueofwhetherseascorpionsarecloselyrelatedtoscorpions;which impactsonthemonophylyofarachnidsandthelikelynumberofindependentterrestrial- isationevents(Garwood&Edgecombe,2011;Dunlop,Scholtz&Selden,2013).Fromtheex- tinctChasmataspididaweincludedtheOrdovicianfossilChamataspislaurenciifollowing Dunlop,Anderson&Braddy(2004)andtheDevonianOctoberaspisushakoviafterDunlop (2002).Eurypteridshavebeenrecoveredasparaphyleticwithrespecttochasmataspidsin somestudies(Shultz,2007),aspositedbyTetlie&Braddy(2004).Wealsowantedtotestthe impactoffossilsonShultz’s(2000)Stomothecatahypothesis(i.e.,Scorpiones+Opiliones) andtothisendwecodedfivePalaeozoicscorpions:theSilurianProscorpiusosbornibased onDunlop,Tetlie&Prendini(2008);theDevonianPalaeoscorpiusdevonicusbasedon Ku¨hletal.(2012);theLowerDevoniangenusWaeringoscorpio,basedontheredescription ofW.hefterianddescriptionofW.westerwaldensisbyPoschmannetal.(2008);Lower CarboniferousspeciesPulmonoscorpiuskirktonensis,codedfromJeram(1993)withlung detailsfromJeram(1990);andtheCarboniferousCompsoscorpiusbuthiformisbasedon Legg et al. (2012a). Adding the recently described Carboniferous stem mite harvest- manHastocularisargusfromGarwoodetal.(2014)andcloselyrelatedEophalangium sheari(Dunlopetal.,2003)allowedmorerobustassessmentoftheextenttowhichfossils impactontheproposedsistergrouprelationshipbetweenscorpionsandharvestmen. The extinct arachnid order Trigonotarbida has been recovered as sister group to the Tetrapulmonata (i.e., spiders and their closest relatives), but relationships with the rare order Ricinulei have also been suggested in the literature (Dunlop, Kamenz &Talarico,2009,andreferencestherein).FortrigonotarbidswescoredtheDevonian genusPalaeocharinusspp.fromspecimensassignedtoPalaeocharinusrhyniensis(Hirst, 1923)andPalaeocharinushornei(Hirst,1923)butwhichweconsidertobesynonymous. CodingwasbasedonDunlop(1994a)andGarwood&Dunlop(2014).Wealsoincluded GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 8/33 twoCarboniferousspecieswehavepreviouslyreconstructedusingCTscans,namely AnthracomartushindibasedonGarwood&Dunlop(2011)andEophrynusprestviciibased onDunlop&Garwood(2014).Anotherextinct(Devonian—Permian)arachnidorder, theprobablyspider-likeUraraneida,wascodedonthebasisofSelden,Shear&Sutton (2008)andSelden,Shear&Bonamo(1991).Finally,thetworemainingextinctarachnid orderswerecodedbasedonthedigitalvisualisationspresentedherein.Charactersforthe CarboniferousHaptopodaderivefromthemodelofPlesiosiromadeleyiandthepreviously publishedaccountofDunlop(1999).Phalangiotarbidacodingwasagainbasedonthe modelpresentedhereinforGoniotarbustuberculatus,plusdatafromPollitt,Braddy& Dunlop(2004)forBornatarbusmayasii(bothCarboniferous). Cladistic analysis ThematrixwasanalysedwithTNTv.1.1.(Goloboff,Farris&Nixon,2008;madeavailable withthesponsorshipoftheWilliHennigSociety),usingunorderedmultistatecharacters, andtraditionalsearchoptions.Searchescomprisingtreebisection-reconnection[TBR] with 1,000 replicates, saving 100 trees per cycle were conducted on the full matrix (FileS2),andaprunedversionofthematrixexcludingfossiltaxa(FileS3).Thedata matrixisalsoavailableinthepublicdatabaseMorphobank(http://www.morphobank. org;Project1274).Forequallyweightedanalyses(EW)withfossils,TNTwasusedto createstrictconsensustreeswhichwereexportedasSVGsintoInkscape,andnumerous analyses were run to explore the data with differing taxa and characters excluded to exploretheirimpact.Resultsforequallyweightedanalyseslackingfossilswereexported as .tre files of the strict consensus, and trees collapsed in Figtree 1.4.1 before being exportedtoInkscape.Analyseswerealsorunusingimpliedweighting(IW)toassess theimpactofhomoplasyontheresults.Goloboff(1993)andGoloboffetal.(2008)provide anoverviewofthisweightingscheme,whilstLegg,Sutton&Edgecombe(2013),Legg& Caron(2014)andOrtega-Herna´ndez,Legg&Braddy(2013)providejustificationofits useinapalaeontologicalcontext.Wenote,however,thecommentsofreviewer#1ofthe currentmanuscript—availablewiththepaper—criticizingthisweightingscheme;no peer-reviewedcontributiondiscussingtheseissuesiscurrentlyavailableintheliterature. Duetoanumberofdifficult-to-placegroups(Phalangiotarbida,Ricinulei,Parasitiformes) and resulting instability, when run with a variety of concavity constants (k = 0.25, 1.0, 3.0, and 10.0) tree topology changed. Here we present a strict consensus of the mostparsimonioustreesforeachconcavityconstant.Fortheanalysesincludingfossils, resamplingwascarriedoutinTNT:weprovidejackknife(Farrisetal.,1996;33%removal probability,1,000replicates),bootstrap(Felsenstein,1985;1,000replicates)andBremer support(Bremer,1994)valuesfortheequalweightstree.Nodalsupportvaluesofthe firsttwooftheseareshownasabsolutefrequencies.Forimpliedweightstreesweshow supportthroughsymmetricresampling—chosenbecauseitisunaffectedbycharacter weighting(Goloboffetal.,2003)—usingachangeprobabilityof33%,and1000replicates, andreportingabsolutefrequencies. GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 9/33 TOMOGRAPHY RESULTS Reconstruction of Plesiosiro madeleyi ThedigitalvisualisationofhaptopodidPlesiosiromadeleyi(NHMI.7923;Figs.1A–1D) presented herein largely corroborates previous work on this species (Pocock, 1911; Petrunkevitch,1949;Dunlop,1999).Someelements—suchasdistallimbarticles—are not resolved in the CT scan as they run along the crack in the nodule. The most complete leg is shown in Fig. 1D. Accordingly we refer the reader to Dunlop (1999) forthesedetails—whichincludeafulldescriptionandmeasurementsofthescanned specimen—andfocushereonclearlyresolvedand/ornovelanatomicalelements.Notethat thescannedspecimenshowsasmallamountofdistortionduetolateralcompression. Aspreviouslyreported,theposteriormarginoftheprosomalshieldterminateswith aposteriorlydirectedridge,obscuringsomeoftergiteone(Dunlop,1999;seeFileS1, animationinFileS4).Clippingthedigitalvisualisationprovidesnoclearevidenceforany kindoflockingstructurebetweentheprosomalshieldandthefirsttergites,suchasisseen intheextincttrigonotarbidsforexample.Insteadtheprosoma-opisthosomajunctionin Plesiosiromadeleyiformsasimple‘z’-shapedarrangementinlateralsection.Medianeyes areresolvedasdepressionseithersideofadorsalmedianridgeontheprosomalshield (Fig. 1A), reflecting the same observation in hand specimens. This is unusual for arachnids—in which the median eyes are normally raised structures—and may be a taphonomicartefactcausedbytheeyesinvertingpriortofossilisation(seealsoremarks in Dunlop, 1999). The lateral prosomal shield tubercles are shown in this specimen to be broader than the rounded structures previously described, being 0.8 mm long latero-posteriorlydirectedridges,whosedorsalsurfaceprojectsanteriorlyattheanterior prosomalshieldmargininparasagittalsection.Theyhavebeeninterpretedaspossible lateraleyetubercles,butevidenceofexplicitlensesislacking.Ithasalsobeenspeculated thatPlesiosiromadeleyiwasaharvestman(seebelow),buttheselateraltuberclesalso showed no obvious openings for repugnatorial glands; as would be expected if these structureswereraisedozophoressimilartotheconditionincyphophthalmidharvestmen. Overall, the results of the phylogeny presented herein support Dunlop (1999) in the suggestionthattheseprojectionsprobablyrepresentlateraleyetubercles.Immediately posteriortothetuberclesaresmalldepressions. Theventralprosomaiswell-resolved,andconfirmsthepresenceofanteriorandposte- riorscleritesinthesternum(Fig.1C),theformerbearingananteriorpairofprotrusions. Significantly,thescanunequivocallydemonstratescheliceraeofa‘clasp-knife’type,com- prisingaproximal(minimumof0.7mminlength)anddistal(0.9mm)article(Fig.1B). ThereisnoevidenceofathirdcheliceralarticleasreportedbyPetrunkevitch(1949).The cheliceraeareventraltothemediananteriorprojection,theirattachmentbeingaligned essentiallylevelwiththemedianeyes.Palpalcoxaecannotberesolvedduetothecrackin thenodule,butthemodelsuggeststhatthecheliceraewereprobablytuckedbetweenthe basesofthepedipalpsinlife.Thecheliceraearepreservedwiththeproximalarticledorsally oriented,withageniculatejoint,andthedistalarticleventrallydirected.Thustheyprob- ablyhadsomethingapproachingan‘orthognath’bite(i.e.,hingedsocheliceralmovement GarwoodandDunlop(2014),PeerJ,DOI10.7717/peerj.641 10/33

Description:
1 School of Earth, Atmospheric and Environmental Sciences and The relevant characters, and allows us to: cladistically place the extinct arachnid orders; . Both models were scaled, and then exported to be presented here as fundamental conflict relating to chasmataspidids: in addition to the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.