THREEDIMENSIONALANALYSISOFTHEGASFLOWINPISTONRINGPACK By AliKharazmi ADISSERTATION Submitted toMichiganStateUniversity inpartialfulfillmentoftherequirements forthedegreeof MechanicalEngineering–DoctorofPhilosophy 2017 ABSTRACT THREEDIMENSIONALANALYSISOFTHEGASFLOWINPISTONRINGPACK By AliKharazmi Cylinder-kit dynamics design in an internal combustion engine is highly relevant for the engine performance characteristics, durability and reliability. Since the middle of the 20th century, re- searchers have been using numerical models to describe the processes that occur in a ring pack. Because it is difficult and extremely costly to conduct experiments on every series of engines to checkfortheblow-byandoilconsumption,acomputationalanalysiscanbeperformedonthering packtostudytheblow-byandoil-consumptioncharacteristics. In this dissertation a 3D CFD simulation model is introduced to analyze the flow between the cylinderlinerandthepiston. Thismodelallowsforcalculationofthepistonassemblywithconsid- eration of the ring dynamics, transient boundary conditions for combustion chamber pressure and temperatureaswellasthermaldistortionofthepistonandliner. Thedeterminationofthecomplex geometry of the cylinder-kit is established in a STL (STereoLithography) format by considering the complicated geometrical details of the ring pack such as thermal distortion of piston and liner, ring twist and ring/groove conformability. The blow by and blow back is numerically calculated forasmallborecylinderoperatingat2000RPMandverifiedbytheresultsofcommerciallyavail- able1Dmodels. Thecalculatedvelocityfiledshowssubstantialcircumferentialflowinthepistonringpackthat isdominatedbytheringandgroovegeometryaswellastherelativepositionoftheringsendgap. It is found that the amount of gas that flows back to the combustion chamber increases when the in-cylinder pressure trace decreases from its peak value. The knowledge from this study can be usedasabasisforfurthermultiphasecalculationscontainingoilflowsuchasoilconsumption,oil evaporationandeventuallycylinder-kitwear. Copyrightby ALIKHARAZMI 2017 Thisthesisisdedicatedtomyparentsfortheirconstantsupportandunconditionalloveandtomy grandfatherwhotaughtmehowtolivelifetothefullest iv ACKNOWLEDGMENTS I would like to thank my committee members for their guidance and constructive advices. In par- ticular,IwouldliketothankmythesissupervisorDr. HaroldJ.Schock,whonotonlygavemethe opportunity to conduct my doctoral studies at Michigan State University, but also supported and guided me consistently through his insightful and broad knowledge. I enjoyed and will remem- ber every single discussion with him, which helped me to solve the problems I encountered and eventually leaded to the achievement of my thesis work. Besides being a respectable advisor, Dr. Schock has been the most instructive and supportive friend during my time at MSU. I would also like to express my gratitude to Professor Farhad Jaberi for the continuous help over the years, es- peciallyhisadvicesonComputationalfluiddynamics. MysincerelythankstoProfessorGuoming ZhuandProfessorCarlLiraforacceptingbeingpartofthecommitteeanddelightfulsuggestions. IwouldliketothankthepeoplefromCumminsincludingDr. DanRichardonandMr. William D.McNulty,whomIhavetheopportunitytoworkwith. AlsoIwouldliketotakethisopportunity to thank the passionate and gifted engineer Dr. Chao Cheng from Cummins for his supports and invaluablesuggestionsthroughouttheyearsaswellashisguidanceinunderstandingthemodeling techniquesinCASE. My deep appreciation goes out to my friends and colleagues: Ravi Vedula, Sedigheh Tolou, Tom Stuecken, Brian Rowley, Jenny Higel and Jeff Higel. They have made the lab a fun place to workandhavebeenalwaystheretosupportme. Last but not the least, I would like to thank my family: my parents and to my brothers for their encouragements trust and faith. This thesis would not have been completed without their unconditionalsupport. v TABLEOFCONTENTS LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Structureofthisdissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CHAPTER2 INTERNALCOMBUSTIONENGINES . . . . . . . . . . . . . . . . . . . 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Cylinderkitassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Pistonskirtandringgroove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Pistonringdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Gasflowthroughringpack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Blow-by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 Interringgasanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.8 Pistonringflutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.9 Pistonringcollapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.10 Pistonringtwist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11 Pistonringlubrications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.12 Threedimensionalgasflowanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.13 Previousefforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CHAPTER3 DEVELOPMENTOFALINKPROGRAM . . . . . . . . . . . . . . . . . 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 LINKprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 OverviewoftheGeometryinSTLformat . . . . . . . . . . . . . . . . . . 34 3.2.2 GeometryofCylinderKitAssemblyinSTLformat . . . . . . . . . . . . . 35 3.2.3 Modificationofsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Ringconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.5 Pistonconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.6 CylinderLinerconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.7 FinalAssemblyofthegeometry . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Simulationmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Geometryoftheproposedproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.1 In-cylinderpressure"Binning" . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Governingequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 Boundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.4 Gridgeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.4.1 2Dand3DGeometriesgrid . . . . . . . . . . . . . . . . . . . . 55 3.5 Simulationtimeofthe3Dgeometry . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 Parallelcomputing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 vi 3.6.1 Classificationofparallelcomputerarchitecture . . . . . . . . . . . . . . . 67 3.6.2 Issuesinparallelcomputing . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6.4 ParallelprocessinginCONVERGE . . . . . . . . . . . . . . . . . . . . . 70 CHAPTER4 RESULTSANDDISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Testrun1(Narrowchannel) . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.2 Testrun2(HollowCylinder) . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1.3 Testrun3(ChannelwithObstacle) . . . . . . . . . . . . . . . . . . . . . . 78 4.2 CylinderkitassemblyResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 2DResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.2 2DVelocityProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2.3 2DBlow-Bycalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.4 3D-Steadyresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.4.1 Convergenceoftheresults . . . . . . . . . . . . . . . . . . . . . 88 4.2.4.2 Pressuredistribution . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.4.3 Circumferentialflow . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.4.4 Blow-bycalculation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.5 3D-Unsteadyresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.5.1 Blow-bycalculation . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.5.2 Blow-back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.1 Wallclocktime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.2 Flowstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.3 Blow-byandblow-backs . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 CHAPTER5 SUMMARY,CONCLUSIONSANDFUTUREWORK . . . . . . . . . . . 107 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2.1 Simplifyingthegeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2.2 Alternativemethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2.3 FluentastheCFDsolver . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 vii LISTOFTABLES Table3.1 Gridspecificationfor2Dcylinder-kitassembly . . . . . . . . . . . . . . . . . . 56 Table3.2 Gridspecificationfor3Dcylinder-kitassembly . . . . . . . . . . . . . . . . . . 61 Table3.3 Simulationtimefordifferentgridlevelsofbin#1inletpressure . . . . . . . . . 66 Table3.4 Flynn‘sTaxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table4.1 Gridsystemsusedfortestrun1-Narrowchannel . . . . . . . . . . . . . . . . . 75 Table4.2 Gridsystemsusedfortestrun2-Hollowcylinder . . . . . . . . . . . . . . . . . 77 Table4.3 Pressurebinsafterbinningprocess . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table4.4 Comparisonbetweenthe3D-steadyandCASEpressureresults(pressuresare inkPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table4.5 Calculatedmassflowrateforeachbinpressure . . . . . . . . . . . . . . . . . . 99 Table4.6 Calculateddischargedmassforeachbinpressure . . . . . . . . . . . . . . . . . 99 viii LISTOFFIGURES Figure2.1 Schematicviewofatypicalcylinderkitassembly . . . . . . . . . . . . . . . . 5 Figure2.2 Pistonterminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure2.3 Schematicviewofapistonandpistonringpackassembly . . . . . . . . . . . . 8 Figure2.4 Variouspistonringcrosssections . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure2.5 Ringendgapsandclearances . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure2.6 CompressionRingterminology . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure2.7 Pistonringfreeshape(camshape) . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure2.8 Detailedschematicviewofcrevicevolumesinringpacks . . . . . . . . . . . . 15 Figure2.9 Gasflowthroughcrevicesandlocationofblow-by . . . . . . . . . . . . . . . . 15 Figure2.10 Conceptualdiagramofthegasflowmodelinthepistonrigpack . . . . . . . . 17 Figure2.11 Forcesactingonapistonringinsidearinggroove . . . . . . . . . . . . . . . . 18 Figure2.12 RingFlutterScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure2.13 Gaspressureontheringwithpositiverelativeangleshowingcollapsescenario . 21 Figure2.14 Positivetwistofthetopring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure2.15 Negativetwistofthe2nd ring . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure2.16 Crosssectionoftheoilfilmbetweenthepistonringandcylinderliner . . . . . 24 Figure2.17 Flowofthegasthroughtheringendgapusingorifice-volumemethod . . . . . 27 Figure2.18 Calculatedgeometryofadeformed(twisted)Pistonring . . . . . . . . . . . . . 31 Figure3.1 Orientationofafacetanditsnormalvector . . . . . . . . . . . . . . . . . . . . 34 Figure3.2 Vertextovertexrule-theleftfigureistheviolationofthisrule . . . . . . . . . 35 Figure3.3 AcuberepresentedinSTLformat . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure3.4 Geometryofcylinder-kitassemblyinSTLformat . . . . . . . . . . . . . . . . 36 Figure3.5 Exampleofoverlapsurfacescondition . . . . . . . . . . . . . . . . . . . . . . 37 ix Figure3.6 Exampleofoverlappointscondition . . . . . . . . . . . . . . . . . . . . . . . 38 Figure3.7 Topviewofainstalledpistonringinabore . . . . . . . . . . . . . . . . . . . 38 Figure3.8 Topviewofasliceofapistonringinstalledinabore . . . . . . . . . . . . . . 39 Figure3.9 Anarbitrarynon-touchingringcrosssection . . . . . . . . . . . . . . . . . . . 39 Figure3.10 Anarbitrarytouchingringcrosssection . . . . . . . . . . . . . . . . . . . . . 39 Figure3.11 Pistonringelementtypes. Fromlefttoright1)TT2)TN3)NT4)NN . . . . . . 40 Figure3.12 Frontviewofasliceofapistonringconstructedbyringelementconcept . . . . 40 Figure3.13 Differentcrosssectionsoftheportionofapistonring . . . . . . . . . . . . . . 41 Figure3.14 Crosssectionofapiston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure3.15 ConstructedpistoninSTLformat . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure3.16 3Drepresentationofacompletedcylinderkitassembly . . . . . . . . . . . . . 43 Figure3.17 Crosssectionofthestudiedgeometry(unitsaremm) . . . . . . . . . . . . . . . 46 Figure3.18 2D-cutofthecylinder-kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure3.19 Complete3Dcylinder-kitgeometry(sectioned) . . . . . . . . . . . . . . . . . 47 Figure3.20 Pressuretracecurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure3.21 Binnedpressuretrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure3.22 Schematicviewoftheboundaryconditions . . . . . . . . . . . . . . . . . . . . 54 Figure3.23 Anexampleofgridembedding(a)beforeand(b)after . . . . . . . . . . . . . . 55 Figure3.24 Gridaroundring1-CaseNo. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure3.25 Gridaroundring1-CaseNo. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure3.26 Gridaroundring1-CaseNo. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure3.27 Gridaroundring1-CaseNo. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure3.28 Gridaroundring2-CaseNo. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure3.29 Gridaroundring2-CaseNo. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 59 x
Description: