ebook img

THREE DIMENSIONAL ANALYSIS OF THE GAS FLOW IN PISTON RING PACK By Ali Kharazmi A PDF

132 Pages·2017·13.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview THREE DIMENSIONAL ANALYSIS OF THE GAS FLOW IN PISTON RING PACK By Ali Kharazmi A

THREEDIMENSIONALANALYSISOFTHEGASFLOWINPISTONRINGPACK By AliKharazmi ADISSERTATION Submitted toMichiganStateUniversity inpartialfulfillmentoftherequirements forthedegreeof MechanicalEngineering–DoctorofPhilosophy 2017 ABSTRACT THREEDIMENSIONALANALYSISOFTHEGASFLOWINPISTONRINGPACK By AliKharazmi Cylinder-kit dynamics design in an internal combustion engine is highly relevant for the engine performance characteristics, durability and reliability. Since the middle of the 20th century, re- searchers have been using numerical models to describe the processes that occur in a ring pack. Because it is difficult and extremely costly to conduct experiments on every series of engines to checkfortheblow-byandoilconsumption,acomputationalanalysiscanbeperformedonthering packtostudytheblow-byandoil-consumptioncharacteristics. In this dissertation a 3D CFD simulation model is introduced to analyze the flow between the cylinderlinerandthepiston. Thismodelallowsforcalculationofthepistonassemblywithconsid- eration of the ring dynamics, transient boundary conditions for combustion chamber pressure and temperatureaswellasthermaldistortionofthepistonandliner. Thedeterminationofthecomplex geometry of the cylinder-kit is established in a STL (STereoLithography) format by considering the complicated geometrical details of the ring pack such as thermal distortion of piston and liner, ring twist and ring/groove conformability. The blow by and blow back is numerically calculated forasmallborecylinderoperatingat2000RPMandverifiedbytheresultsofcommerciallyavail- able1Dmodels. Thecalculatedvelocityfiledshowssubstantialcircumferentialflowinthepistonringpackthat isdominatedbytheringandgroovegeometryaswellastherelativepositionoftheringsendgap. It is found that the amount of gas that flows back to the combustion chamber increases when the in-cylinder pressure trace decreases from its peak value. The knowledge from this study can be usedasabasisforfurthermultiphasecalculationscontainingoilflowsuchasoilconsumption,oil evaporationandeventuallycylinder-kitwear. Copyrightby ALIKHARAZMI 2017 Thisthesisisdedicatedtomyparentsfortheirconstantsupportandunconditionalloveandtomy grandfatherwhotaughtmehowtolivelifetothefullest iv ACKNOWLEDGMENTS I would like to thank my committee members for their guidance and constructive advices. In par- ticular,IwouldliketothankmythesissupervisorDr. HaroldJ.Schock,whonotonlygavemethe opportunity to conduct my doctoral studies at Michigan State University, but also supported and guided me consistently through his insightful and broad knowledge. I enjoyed and will remem- ber every single discussion with him, which helped me to solve the problems I encountered and eventually leaded to the achievement of my thesis work. Besides being a respectable advisor, Dr. Schock has been the most instructive and supportive friend during my time at MSU. I would also like to express my gratitude to Professor Farhad Jaberi for the continuous help over the years, es- peciallyhisadvicesonComputationalfluiddynamics. MysincerelythankstoProfessorGuoming ZhuandProfessorCarlLiraforacceptingbeingpartofthecommitteeanddelightfulsuggestions. IwouldliketothankthepeoplefromCumminsincludingDr. DanRichardonandMr. William D.McNulty,whomIhavetheopportunitytoworkwith. AlsoIwouldliketotakethisopportunity to thank the passionate and gifted engineer Dr. Chao Cheng from Cummins for his supports and invaluablesuggestionsthroughouttheyearsaswellashisguidanceinunderstandingthemodeling techniquesinCASE. My deep appreciation goes out to my friends and colleagues: Ravi Vedula, Sedigheh Tolou, Tom Stuecken, Brian Rowley, Jenny Higel and Jeff Higel. They have made the lab a fun place to workandhavebeenalwaystheretosupportme. Last but not the least, I would like to thank my family: my parents and to my brothers for their encouragements trust and faith. This thesis would not have been completed without their unconditionalsupport. v TABLEOFCONTENTS LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Structureofthisdissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CHAPTER2 INTERNALCOMBUSTIONENGINES . . . . . . . . . . . . . . . . . . . 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Cylinderkitassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Pistonskirtandringgroove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Pistonringdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Gasflowthroughringpack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Blow-by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 Interringgasanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.8 Pistonringflutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.9 Pistonringcollapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.10 Pistonringtwist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11 Pistonringlubrications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.12 Threedimensionalgasflowanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.13 Previousefforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CHAPTER3 DEVELOPMENTOFALINKPROGRAM . . . . . . . . . . . . . . . . . 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 LINKprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 OverviewoftheGeometryinSTLformat . . . . . . . . . . . . . . . . . . 34 3.2.2 GeometryofCylinderKitAssemblyinSTLformat . . . . . . . . . . . . . 35 3.2.3 Modificationofsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Ringconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.5 Pistonconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.6 CylinderLinerconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.7 FinalAssemblyofthegeometry . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Simulationmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Geometryoftheproposedproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.1 In-cylinderpressure"Binning" . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Governingequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 Boundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.4 Gridgeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.4.1 2Dand3DGeometriesgrid . . . . . . . . . . . . . . . . . . . . 55 3.5 Simulationtimeofthe3Dgeometry . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 Parallelcomputing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 vi 3.6.1 Classificationofparallelcomputerarchitecture . . . . . . . . . . . . . . . 67 3.6.2 Issuesinparallelcomputing . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6.4 ParallelprocessinginCONVERGE . . . . . . . . . . . . . . . . . . . . . 70 CHAPTER4 RESULTSANDDISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Testrun1(Narrowchannel) . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.2 Testrun2(HollowCylinder) . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1.3 Testrun3(ChannelwithObstacle) . . . . . . . . . . . . . . . . . . . . . . 78 4.2 CylinderkitassemblyResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 2DResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.2 2DVelocityProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2.3 2DBlow-Bycalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.4 3D-Steadyresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.4.1 Convergenceoftheresults . . . . . . . . . . . . . . . . . . . . . 88 4.2.4.2 Pressuredistribution . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.4.3 Circumferentialflow . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.4.4 Blow-bycalculation . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.5 3D-Unsteadyresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.5.1 Blow-bycalculation . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.5.2 Blow-back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.1 Wallclocktime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.2 Flowstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.3 Blow-byandblow-backs . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 CHAPTER5 SUMMARY,CONCLUSIONSANDFUTUREWORK . . . . . . . . . . . 107 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2.1 Simplifyingthegeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2.2 Alternativemethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2.3 FluentastheCFDsolver . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 vii LISTOFTABLES Table3.1 Gridspecificationfor2Dcylinder-kitassembly . . . . . . . . . . . . . . . . . . 56 Table3.2 Gridspecificationfor3Dcylinder-kitassembly . . . . . . . . . . . . . . . . . . 61 Table3.3 Simulationtimefordifferentgridlevelsofbin#1inletpressure . . . . . . . . . 66 Table3.4 Flynn‘sTaxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table4.1 Gridsystemsusedfortestrun1-Narrowchannel . . . . . . . . . . . . . . . . . 75 Table4.2 Gridsystemsusedfortestrun2-Hollowcylinder . . . . . . . . . . . . . . . . . 77 Table4.3 Pressurebinsafterbinningprocess . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table4.4 Comparisonbetweenthe3D-steadyandCASEpressureresults(pressuresare inkPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table4.5 Calculatedmassflowrateforeachbinpressure . . . . . . . . . . . . . . . . . . 99 Table4.6 Calculateddischargedmassforeachbinpressure . . . . . . . . . . . . . . . . . 99 viii LISTOFFIGURES Figure2.1 Schematicviewofatypicalcylinderkitassembly . . . . . . . . . . . . . . . . 5 Figure2.2 Pistonterminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure2.3 Schematicviewofapistonandpistonringpackassembly . . . . . . . . . . . . 8 Figure2.4 Variouspistonringcrosssections . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure2.5 Ringendgapsandclearances . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure2.6 CompressionRingterminology . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure2.7 Pistonringfreeshape(camshape) . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure2.8 Detailedschematicviewofcrevicevolumesinringpacks . . . . . . . . . . . . 15 Figure2.9 Gasflowthroughcrevicesandlocationofblow-by . . . . . . . . . . . . . . . . 15 Figure2.10 Conceptualdiagramofthegasflowmodelinthepistonrigpack . . . . . . . . 17 Figure2.11 Forcesactingonapistonringinsidearinggroove . . . . . . . . . . . . . . . . 18 Figure2.12 RingFlutterScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure2.13 Gaspressureontheringwithpositiverelativeangleshowingcollapsescenario . 21 Figure2.14 Positivetwistofthetopring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure2.15 Negativetwistofthe2nd ring . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure2.16 Crosssectionoftheoilfilmbetweenthepistonringandcylinderliner . . . . . 24 Figure2.17 Flowofthegasthroughtheringendgapusingorifice-volumemethod . . . . . 27 Figure2.18 Calculatedgeometryofadeformed(twisted)Pistonring . . . . . . . . . . . . . 31 Figure3.1 Orientationofafacetanditsnormalvector . . . . . . . . . . . . . . . . . . . . 34 Figure3.2 Vertextovertexrule-theleftfigureistheviolationofthisrule . . . . . . . . . 35 Figure3.3 AcuberepresentedinSTLformat . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure3.4 Geometryofcylinder-kitassemblyinSTLformat . . . . . . . . . . . . . . . . 36 Figure3.5 Exampleofoverlapsurfacescondition . . . . . . . . . . . . . . . . . . . . . . 37 ix Figure3.6 Exampleofoverlappointscondition . . . . . . . . . . . . . . . . . . . . . . . 38 Figure3.7 Topviewofainstalledpistonringinabore . . . . . . . . . . . . . . . . . . . 38 Figure3.8 Topviewofasliceofapistonringinstalledinabore . . . . . . . . . . . . . . 39 Figure3.9 Anarbitrarynon-touchingringcrosssection . . . . . . . . . . . . . . . . . . . 39 Figure3.10 Anarbitrarytouchingringcrosssection . . . . . . . . . . . . . . . . . . . . . 39 Figure3.11 Pistonringelementtypes. Fromlefttoright1)TT2)TN3)NT4)NN . . . . . . 40 Figure3.12 Frontviewofasliceofapistonringconstructedbyringelementconcept . . . . 40 Figure3.13 Differentcrosssectionsoftheportionofapistonring . . . . . . . . . . . . . . 41 Figure3.14 Crosssectionofapiston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure3.15 ConstructedpistoninSTLformat . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure3.16 3Drepresentationofacompletedcylinderkitassembly . . . . . . . . . . . . . 43 Figure3.17 Crosssectionofthestudiedgeometry(unitsaremm) . . . . . . . . . . . . . . . 46 Figure3.18 2D-cutofthecylinder-kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure3.19 Complete3Dcylinder-kitgeometry(sectioned) . . . . . . . . . . . . . . . . . 47 Figure3.20 Pressuretracecurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure3.21 Binnedpressuretrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure3.22 Schematicviewoftheboundaryconditions . . . . . . . . . . . . . . . . . . . . 54 Figure3.23 Anexampleofgridembedding(a)beforeand(b)after . . . . . . . . . . . . . . 55 Figure3.24 Gridaroundring1-CaseNo. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure3.25 Gridaroundring1-CaseNo. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure3.26 Gridaroundring1-CaseNo. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure3.27 Gridaroundring1-CaseNo. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure3.28 Gridaroundring2-CaseNo. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure3.29 Gridaroundring2-CaseNo. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 59 x

Description:
Figure 2.18 Calculated geometry of a deformed (twisted) Piston ring . In this section, the flow field is briefly examined by exploring the velocity
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.