ebook img

Three Dimensional Aero-Structural Shape Optimization of Turbomachinery Blades PDF

135 Pages·2011·12.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Three Dimensional Aero-Structural Shape Optimization of Turbomachinery Blades

Three Dimensional Aero-Structural Shape Optimization of Turbomachinery Blades Vadivel Kumaran Sivashanmugam A Thesis in The Department of Mechanical and Industrial Engineering Presented in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science (Mechanical Engineering) at Concordia University Montr´eal, Qu´ebec, Canada January 2011 (cid:13)c Vadivel Kumaran Sivashanmugam, 2011 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Vadivel Kumaran Sivashanmugam Entitled: Three Dimensional Aero-Structural Shape Optimization of Turbomachinery Blades and submitted in partial fulfilment of the requirements for the degree of Master of Applied Science (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Dr. Gerard J. Gouw (Chair) Dr. Fariborz Haghighat (Ext. to Program) Dr. Ramin Sedaghati (Examiner) Dr. Wahid S. Ghaly (Supervisor) Approved by MIE Department Chair or Graduate Program Director 2011 Dean, Faculty of Engineering and Computer Science ABSTRACT Three Dimensional Aero-Structural Shape Optimization of Turbomachinery Blades Vadivel Kumaran Sivashanmugam Aero-structural optimization of gas turbine blades is a very challenging task, given e.g. three dimensional nature of the flow, stringent performance require- ments, structural and manufacturing considerations, etc. The current research work addresses this challenge by development and implementation of structural shape op- timization module and integrating it with an aerodynamic shape optimization mod- ule to form an automated aero-structural optimization procedure. The optimizer combines a Multi-Objective Genetic Algorithm (MOGA), with a Response Surface Approximation (RSA) of the Artificial Neural Network (ANN) type. During the optimization process, each objective function and constraint is approximated by an individual ANN, which is trained and tested using an aerodynamic as well as a struc- ture database composed of a few high fidelity flow simulations (CFD) and struc- ture analysis (CSD) that are obtained using ANSYS Workbench 11.0. Addition of this multiple ANN technique to the optimizer greatly improves the accuracy of the RSA, provides control over handling different design variables and disciplines. The described methodology is then applied to the aero-structural optimization of the E/TU-3 turbine blade row and stage at design conditions to improve the aerodynamic and structural performance of the turbomachinery blades by optimizing the stacking curve. The proposed methodology proved quite successful, flexible and practical with significant increase in stage efficiency and decrease in equivalent stress. iii ACKNOWLEDGEMENTS I am heartily thankful to my supervisor, Dr. Wahid Ghaly, whose encour- agement, guidance and excellent support from the initial to the final level enabled me to develop an understanding of the subject and given me an unforgettable journey. It is a pleasure to thank my parents who were backbone for me throughout the life and having faith on me. They were always a great moral support in number of ways during the hardest period of my life. I am thankful to Ms. Leslie Hosein and Ms. Charlene Wald for their timely administrative help, suggestion and kindness. I offer my regards and blessings to my colleagues Raja, Mohammad Arab- nia, Benedikt Roidl, Alfin and many others in the CFD lab who supported me in any respect during the completion of the project. IowemydeepestgratitudetomyfriendsinIndia,Dr. GaneshAnavardhan, Vasanth, Sriram, Jey, Rajesh, Kamalesh, Rajini, Senthil and many other well-wishers for their timely support, advice and having confidence on me. Finally, I would like to thank my wife Nithya for her continued enthusiasm, support and love. Without her support I may not followed my dream of pursuing a career in aerospace. She is the backbone of my success. iv TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Introduction 1 1.1 Turbomachinery optimization . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Previous investigations . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Current work . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Numerical Implementation 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Gradient Optimization . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Non-Gradient or Direct Optimization Methods . . . . . . . . . 14 2.3 Response Surface Approximations (RSA) . . . . . . . . . . . . . . . . 20 2.3.1 Design of Experiments (DOE) . . . . . . . . . . . . . . . . . . 20 2.3.2 Artificial Neural Networks (ANN) . . . . . . . . . . . . . . . . 21 2.3.3 ANN training . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.4 ANN testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Flow Field Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.1 Finite element analysis . . . . . . . . . . . . . . . . . . . . . . 32 2.5.2 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Optimization Methodology 40 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 v 3.2 Geometric representation . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Quadratic Rational Bezier Curve (QRBC) . . . . . . . . . . . 42 3.2.2 Design variables . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Present optimization cycle . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Redesign cases 57 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 E/TU-3 Turbine Stage Redesign . . . . . . . . . . . . . . . . . . . . . 58 4.3 Geometry preparation and boundary conditions . . . . . . . . . . . . 59 4.4 Effect of design variables on turbine blade stress . . . . . . . . . . . . 60 4.5 Objectives and Constraints . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5.1 Single objective structural optimization . . . . . . . . . . . . . 63 4.5.2 Multi objective aero-structural optimization . . . . . . . . . . 63 4.6 E/TU-3 turbine stage optimization . . . . . . . . . . . . . . . . . . . 65 4.6.1 Structural optimization of turbine blade with three design vari- ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6.2 Database enrichment and optimization . . . . . . . . . . . . . 69 4.6.3 Singlepointaero-structuralMultiobjectiveoptimizationofE/TU- 3 stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.7 E/TU-3 turbine blade row optimization . . . . . . . . . . . . . . . . . 76 4.7.1 Singlepointmultiobjectiveaero-structuraloptimizationofE/TU- 3 turbine blade row . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Conclusion 110 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 vi Bibliography 112 Appendix 119 A ANN Error Measures 120 A.1 Root mean squared Error (RMSE) . . . . . . . . . . . . . . . . . . . 120 A.2 Maximum Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A.3 R squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A.4 Relative Average Absolute Error (RAAE) . . . . . . . . . . . . . . . 122 A.5 Relative Maximum Absolute Error (RMAE) . . . . . . . . . . . . . . 122 A.6 Average Relative Error (ARE) . . . . . . . . . . . . . . . . . . . . . . 122 vii LIST OF FIGURES 2.1 Typical flow of GA operation . . . . . . . . . . . . . . . . . . . . . . 34 2.2 A sample bio-neuron [1] . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 A sample artificial neuron [2] . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 A sample artificial neuron [3] . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Typical training and testing trends with optimum stopping point . . 36 2.6 A typical example of over fitted and properly fitted curves [4] . . . . 37 2.7 Flow of controls: Back Propagation Neural Network . . . . . . . . . . 38 2.8 Sigmoid transfer function . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.9 Hyperbolic tangent transfer function . . . . . . . . . . . . . . . . . . 39 3.1 Aero-Structural Optimization Cycle. . . . . . . . . . . . . . . . . . . 50 3.2 Quadratic Rational Bezier Curve (QRBC) representation [5] . . . . . 51 3.3 Stacking curve parametrization using QRBC [5] . . . . . . . . . . . . 52 3.4 Aerodynamic sensitivity analysis of objective functions to design vari- ables [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 Structural sensitivity analysis of objective functions to design variables 54 3.6 Single ANN for all the outputs . . . . . . . . . . . . . . . . . . . . . . 55 3.7 Single ANN for each output (Concept of multiple ANNs) . . . . . . . 55 3.8 Optimization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1 Steps in getting the geometry for CFD and FEA . . . . . . . . . . . . 80 4.2 E/TU-3 Original geometry [6] . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Stress contours: E/TU-3 Original turbine blade . . . . . . . . . . . . 82 4.4 Suction side stress contours for different lean angles . . . . . . . . . . 83 4.5 Pressure side stress contours for different lean angles . . . . . . . . . 84 4.6 Suction side stress contours for different Sweep angles . . . . . . . . . 85 viii 4.7 Pressure side stress contours for different sweep angles . . . . . . . . 86 4.8 Suction side stress contours at different bowing intensity values . . . . 87 4.9 Pressure side stress contours at different bowing intensity values . . . 88 4.10 ANN training parameters and its performance variables (Errors) . . . 89 4.11 ANN training parameters and its performance variables (Updated er- rors with 100 sample points) . . . . . . . . . . . . . . . . . . . . . . . 89 4.12 ANN training error bands (100 sample points) . . . . . . . . . . . . . 90 4.13 Genetic algorithm convergence history . . . . . . . . . . . . . . . . . 91 4.14 Suction side stress contours at different bowing intensity values . . . . 92 4.15 ANNtrainingparametersanditsperformancevariables(Errors)(updated with 103 sample points) . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.16 ANN training error bands (103 sample points) . . . . . . . . . . . . . 93 4.17 Suction side stress contours at different bowing intensity values . . . . 94 4.18 Stacking of the optimum blade (Initial E/TU-3 shown by wire frame) 95 4.19 Original and optimized stacking line representations . . . . . . . . . . 96 4.20 Distribution of stator pressure coefficient at hub, mid-span and tip . . 97 4.21 Distribution of rotor pressure coefficient at hub, mid-span and tip . . 98 4.22 Exit flow angle comparison . . . . . . . . . . . . . . . . . . . . . . . . 99 4.23 Axial velocity comparison . . . . . . . . . . . . . . . . . . . . . . . . 99 4.24 SS flow separation and sonic surface for original & optimum stators [7] 100 4.25 Spanwise distribution of original and optimum incidence and mass flux [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.26 Spanwise distribution of stage loading [7] . . . . . . . . . . . . . . . . 101 4.27 Pressure side von Mises stress contour comparison . . . . . . . . . . . 102 4.28 Suction side von Mises stress contour comparison . . . . . . . . . . . 103 4.29 Hub von Mises stress contour comparison . . . . . . . . . . . . . . . . 104 4.30 Original and optimum blade shapes . . . . . . . . . . . . . . . . . . . 105 ix 4.31 Database enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.32 Comparison of stress contours on the hub surface . . . . . . . . . . . 107 4.33 Comparison of stress contours on the pressure surface . . . . . . . . . 108 4.34 Comparison of stress contours on the suction surface . . . . . . . . . 109 x

Description:
individual ANN, which is trained and tested using an aerodynamic as well as a struc- ture analysis (CSD) that are obtained using ANSYS Workbench 11.0. and structural performance of the turbomachinery blades by optimizing the 1 gives the introduction to the topic, motivation, previous work done
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.