Third post-Newtonian gravitational waveforms for compact binary systems in general orbits: Instantaneous terms Chandra Kant Mishra,1,2,3,∗ K. G. Arun,4,† and Bala R. Iyer1,‡ 1Raman Research Institute, Bangalore 560 080, India 2Indian Institute of Science, Bangalore 560 012, India 3International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India 4Chennai Mathematical Institute, Siruseri 603103, India (Dated: May 12, 2015) We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian (PN) order. We further extend these results for compact binaries in quasi-elliptical orbits using the 5 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric 1 orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and 0 current-typemultipole moments, we compute the spin-weighted spherical harmonic decomposition 2 of the instantaneous part of the gravitational waveform. These are terms which are functions of y the retarded time and do not depend on the history of the binary evolution. Together with the a hereditary part, which depends on the binary’s dynamical history, these waveforms form the basis M for construction of accurate templates for the detection of gravitational wave signals from binaries movingin quasi-elliptical orbits. 1 1 PACSnumbers: 04.30.-w,04.25.-g,04.25.dg,97.60.Jd ] c q - r I. INTRODUCTION g [ Compact binary systems composed of neutron stars and/or black holes are one of the most promising sources for 2 the second generation of earth-bound gravitational-wave(GW) detectors such as Advanced LIGO [1] and Advanced v Virgo[2]aswellasforthe proposedspace-baseddetectoreLISA[3]. DetectionofsuchsystemsinGWdetectorsrelies 6 ona data-analysistechnique knownas matched filtering whichinturn requiresveryaccuratemodeling ofGW signals 9 0 from these sources [4]. The compact binaries are known to have significant eccentricities when they are formed. 7 However, since the GW radiation reaction effects tend to circularize the binary’s orbit [5, 6], for most long-lived 0 binarysystems onecanexpectthattheir orbitswouldhavecircularizedby the time they enterthe sensitivitybandof 1. ground-based detectors. This has motivated the GW community to perform searches of GW signals from coalescing 0 compact binary systems (CCBs) using circular orbit templates. 5 1 Many astrophysical scenarios have been proposed which suggest the possible existence of close eccentric binary v: systems.1 Onesuchscenariomayexistinthecoresofdenseglobularclustersduetoamechanismknownasthe“Kozai i mechanism” [7]. This mechanism can also come into effect in scenarios involving formation of hierarchical triples X of supermassive black holes due to subsequent mergers of galaxies [8]. Another scenario might involve formation of r close eccentric compact binary systems in dense stellar systems like globular clusters [9]. Compact binaries involving a intermediate mass black holes in globular clusters might be seen in the eLISA band with residual eccentricities of 0.1<e<0.2 [10]. Other scenarios involve formation of close eccentric compact binary systems at centers of galaxies [11]∼and∼NS-BH binary systems which can become eccentric as a consequence of multi stage mass transfer from the NS to the BH [12]. In light of these possibilities it becomes necessary to compute accurate waveforms accounting for the eccentricity of the binary’s orbit. A number of investigations concerning the sensitivity of searches using circular orbit templates to detect eccentric binary systems have been performed in the past. The first such investigation was presented in Ref. [13] where the ∗Electronicaddress: [email protected] †Electronicaddress: [email protected] ‡Electronicaddress: [email protected] 1 Eccentricbinarysystems,withsmallorbitalseparations,formedthroughthecaptureprocess. Unlikethelong-livedCCBssuchsystems areexpected toenterthedetector withnonzeroeccentricities. 2 authors studied the loss of signal-to-noise ratio in detecting signals from binaries with residual eccentricities using template banks constructed with quasi-circular waveform models with leading order effects (both conservative and secular). Theyarguedthatevenifthesystemhasaresidualeccentricity(e <0.13forbinarysystemwithtwo1.4M 0 ⊙ neutron stars or e < 0.3 for a binary with two 6M black holes), use of c∼ircular orbit templates will be sufficient 0 ⊙ to detect signals from∼ such systems.2 However, this result has been subsequently weakened due to two independent investigations [14, 15]. Both of the investigations suggest that if the eccentricity of the binary when it enters the sensitivity band of detector is greater than 0.1, then it will not be possible to detect such systems using circular orbit templates. These investigations only dealt with sources that will be seen in ground-based detectors. However, the capabilities of circular waveforms to detect signals from the coalescence of supermassive black holes (visible in the eLISA frequency band) have been investigated in [16]. The results presented in Ref. [16] suggest that even to search signals from sources with initial eccentricities of the order 10−4 one would need waveforms which accurately account for the effects of eccentricities. In addition, in a recent work, Huerta and Brown [17] showed that searches for CCBs with eccentricity 0.05 would require eccentric template banks to avoid significant loss in the sensitivity ≥ of the search. Lastly, systematic errors due to the orbital eccentricity in measuring the source parameters of double NS systems was investigated recently by Favata [18] which again indicated the necessity to incorporate the effects of eccentricity to measure the parameters of a double NS system if it has non-negligible eccentricity when detected. Evolution of a compact binary system can be divided into three stages: the early inspiral, late inspiral and merger and the final ringdown. The early inspiral phase can be very well modeled using the approximation schemes such as multipolar post-Minkowskian (MPM) approximation matched to post-Newtonian(PN) [19] whereas the late inspiral, merger and ringdown phases can be modeled using numerical relativity (NR) [20] or effective one body approach [21]. In fact, it is now possible to perform numerical simulations to track the evolution of the BH binary systems over many inspiral orbits and the subsequent merger and ringdown phases. However, high computational cost of generating numerical waveforms covering the entire parameter space of coalescing binary black holes (BBHs) has led to the construction of hybrid waveforms (by combining PN and NR waveforms), which further are used to phenomenologically construct a waveform model which has sufficient overlap with the hybrid waveform [22–27]. In additiontothis, one needsto checkthe consistencybetweenthese twowaveforms(PN&NR) inaregimewhere both of them are valid. This would not only tell us about the compatibility of the two waveforms but also would indicate the limits up to which PN waveforms are reliable. There have been many such investigations involving nonspinning andnonprecessingBBHinquasi-circularorbits[28–38]andquasi-eccentricorbits[39]. Theneedforsuchcomparisons and matching of the two waveforms (PN and NR) has led to the high accuracy computations of spherical harmonic modes of the PN waveforms in case of CCBs moving in quasi-circular orbits [40–42]. Evidently, in order to perform similar comparisons for eccentric binaries, one would need high accuracy eccentric PN waveforms for such systems. The leading order (or Newtonian) expressions for the GW polarizations (h and h ) were obtained in the context + × of spacecraft Doppler detection of GWs from an isolated compact binary in an eccentric orbit [43]. This work was then extended to 1PNandthe next1.5PNorderin [44–48]. At the 2PNorder,the transverse-tracelessradiationfield (hTT) due to an isolated binary composed of two compact stars moving in eccentric orbits was computed in [49, 50]. ij Althoughthetwoworks,[49]and[50],followedtwodifferentapproaches,theirfinalfindingswereinperfectagreement with each other. Under the adiabatic approximation, associated 2PN GW polarizations (h ,h ) were obtained in + × [51] for the inspiral phase of binaries in quasi-eccentric orbits. Later in Refs. [52, 53], the method of variation of constants was used to compute post-adiabatic corrections (varying on the orbital time scale and 1/c5 times smaller) to the secular variation due to radiation reaction. Using the 3PN generalized quasi-Keplerian representation of the conservative dynamics of compact binary systems with arbitrary mass ratios moving in eccentric orbits presented in [54], Ref. [53] provides the evolution of the orbital phase with relative 1PN accuracy (absolute 3.5PN). The energy andangularmomentumfluxesaswellasevolutionoforbitalelementsupto3PNorderwascalculatedinRefs.[55–57]. Recently, computations of the frequency domain waveforms and the orbital dynamics (both at the 2PN order) were presented for eccentric binaries in harmonic coordinates [58]. On the NR front, the first simulations involving nonspinning equal mass BBHs in bound eccentric orbits were performed in [59, 60] and the effects of eccentricity on thefinalmassandspinwerestudied. Anotherrecentwork[39]presentsnumericalsimulationsforanonspinningequal massbinarysystemwithaninitialeccentricityofe 0.1andcomparestheNRwaveformswiththoseofthePNmodels. ∼ In this paper we present the computation of instantaneous part3 of various modes of the waveform (hℓm) for 2 Theychosealowercutoffforthefittingfactor(FF|min=90%)correspondingtoalossineventratesofaboutlessthan27%. 3 Thepartofthegravitational radiationwhichdepends onthestateofitssourceatagivenretardedtime. 3 general orbits using the basis of spherical harmonics of spin weight -2. In addition we also specialize to the case of compact binaries in quasi-elliptical orbits and provide 3PN instantaneous expressions for various modes using 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits [54, 56]. Note again that investigations presented here involve only the contributions from the instantaneous terms which must be complemented by computations accounting for the hereditary effects.4 Computations of hereditary parts to various modes of the waveform will form the basis for a companion paper [61]. Thispaperisorganizedinthefollowingmanner. InSec.IIwefirstintroducegeneralformulasforsphericalharmonic modes of the gravitational waveform, hℓm, in terms of the radiative mass and current multipole moments, Uℓm and Vℓm. Section IIIA recalls some of the important aspects of the MPM-PN formalism and lists various inputs that are needed for computing 3PN expressions for various modes. These inputs involve relations connecting radiative momentstosourcemoments,expressionsforvarioussourcemultipolemomentsforanisolatedcompactbinarysystem andequationsofmotion. InSec.IVweprovideourresultsrelatedtotheinstantaneouspartofthesphericalharmonic modesofthewaveformforanonspinningcompactbinarysystemintermsofvariablesthatdescribetheradiationfrom a generic compact binary. We find that these expressions are quite large and run over several pages. Keeping this in mindwechoosetolistonlythedominantmode(h )inthemaintextofthepaperandprovidealltherelevantmodes 22 contributingtothe3PNwaveforminaseparatefilereadableinMATHEMATICA(Hlm-GenOrb.m)thatwillbemade available on the journal web page as Supplemental Material [62] along with the paper. In Sec. V we specialize to the case of CCBs moving in quasi-ellipticalorbits and provide the corresponding expressionfor the dominant mode, h22, in terms of the time-eccentricity e , a PN parameter related to the orbital frequency x and the eccentric anomaly u. t Similar to the general orbit case, in the case of CCBs in quasi-elliptical orbits, expressions for all the relevant modes contributing to the 3PN waveform will be listed in a separate file (Hlm-EllOrb.m). Finally in Sec. VI we conclude the paper by providing a brief summary of our results and the future plans. II. SPHERICAL HARMONIC MODES OF THE GRAVITATIONAL WAVEFORM For an isolated source of GWs, the spherical harmonic modes of the waveform (hℓm), in terms of the radiative mass-type (Uℓm) and current-type multipole moments (Vℓm) [40–42, 63], are given as G i hℓm = Uℓm Vℓm , (2.1) −√2Rcℓ+2 − c (cid:20) (cid:21) whereRis thedistance ofthe sourceinradiativecoordinates,Gis Newton’sgravitationalconstantandc isthe speed ofthelight. Theradiativemultipolemoments,Uℓm andVℓm,appearingabovearerelatedtothesymmetrictrace-free (STF) radiative moments U and V as L L 4 (ℓ+1)(ℓ+2) Uℓm = αℓmU , (2.2a) ℓ!s 2ℓ(ℓ 1) L L − 8 ℓ(ℓ+2) Vℓm = αℓmV . (2.2b) −ℓ!s2(ℓ+1)(ℓ 1) L L − Here αℓm denote STF tensors which connect the usual basis of spherical harmonics Yℓm(Θ,Φ) to the set of STF L tensors N =N N as5 hLi hi1··· iℓi ℓ N (Θ,Φ)= αℓmYℓm(Θ,Φ), (2.3a) hLi L m=−ℓ X (2ℓ+1)!! Yℓm(Θ,Φ)= αℓmN (Θ,Φ). (2.3b) 4πℓ! L hLi 4 The part of the gravitational radiation which depends on the entire dynamical history of the source and is complementary to the instantaneous partoftheradiation. 5 Here L = i1i2···il represents a multi-index composed of l spatial indices and the angular brackets (hi) surrounding indices denote symmetrictrace-freeprojections. 4 In the above, N = X/R is a unit vector pointing towards the detector along the line joining the source to the detector. For instance, if the binary’s plane is the x-y plane then N, in terms of angles (Θ, Φ) giving the location of the binary, can be given as N=sinΘ cosΦeˆ +sinΘ sinΦeˆ +cosΘeˆ . (2.4) x y z The STF tensorial coefficients αℓm in terms of N N and Yℓm(Θ,Φ) can be written as 6 L hi1··· iℓi αℓm = dΩN Y ℓm, (2.5) L hLi Z where the usual basis of spherical harmonics is given as Yℓm(Θ,Φ)=( )m 1 2ℓ+1(ℓ−m)! 1/2eimΦ(sinΘ)m dℓ+m cos2Θ 1 ℓ. (2.6) − 2ℓℓ! 4π (ℓ+m)! d(cosΘ)ℓ+m − (cid:20) (cid:21) (cid:0) (cid:1) It is important to note that for nonspinning binaries, there exists a mode separation as pointed out in Ref. [41] and explicitly shown in Ref. [42]. The mode hℓm is completely determined by mass-type radiative multipole moment (Uℓm) when ℓ+m is even,and by current-type radiativemultipole moment(Vℓm) when ℓ+m is odd. This allowsus to write for various modes G hℓm = Uℓm ifℓ+m iseven, (2.7a) −√2Rcℓ+2 iG hℓm = Vℓm ifℓ+m isodd. (2.7b) √2Rcℓ+3 III. INPUTS FOR COMPUTING THE 3PN WAVEFORM A. Relations connecting the radiative moments to the source moments In the MPM-PN formalism [19, 64–68], the radiative multipole moments (U , V ) are first written in terms of L L two sets of canonical moments (M , S ), which in turn are expressed in terms of six sets of source moments (I , L L L J , W , Y , X , Z ). Relations connecting radiative moments to the canonical moments and those connecting the L L L L L canonicalmoments to the source moments, with the PN accuracydesiredfor the waveformcomputations atthe 3PN order,have been establishedand have been listed in Ref. [40] (see Eqs.(5.4)-(5.8)and Eqs.(5.9)-(5.11)there). Using these inputs we can parametrize the set of radiative moments (and, hence, the modes) in terms of source multipole moments. Below we list all the relevant radiative multipole moments in terms of the source multipole moments with PN accuracy desired for the present work. Further, these expressions can be decomposed into two parts namely the instantaneous contribution and the hereditary contribution. The only radiative moment requiredat the 3PNorder is the one related to the mass quadrupole (U ) and is given ij by U =Uinst+Uhered, (3.1) ij ij ij where the instantaneous and hereditary parts in terms of the source multipole moments read G 1 5 2 1 Uinst(U)=I(2)(U)+ I(5)I I(4)I(1) I(3)I(2) + ε I(4)J +4 W(4)I +W(3)I(1) ij ij c5 7 ahi jia− 7 ahi jia− 7 ahi jia 3 abhi jia b ij ij (cid:26) h 6 Thenotationusedin[40,42](whichwefollowhere)totheonein[41,63]isrelatedbyYℓm= (2ℓ+1)!!αℓm. L 4πℓ! L 5 1 W(2)I(2) W(1)I(3) + , (3.2a) − ij − ij O c7 io (cid:18) (cid:19) 2GM U U τ 11 G 2 U Uhered(U)= dτ ln − + I(4)(τ)+ dτI(3)(τ)I(3)(τ) ij c3 Z−∞ (cid:20) (cid:18) 2τ0 (cid:19) 12(cid:21) ij c5 (−7Z−∞ ahi jia ) GM 2 U U τ 57 U τ 124627 1 +2 dτ ln2 − + ln − + I(5)(τ)+ . (3.2b) c3 2τ 70 2τ 44100 ij O c7 (cid:18) (cid:19) Z−∞ (cid:20) (cid:18) 0 (cid:19) (cid:18) 0 (cid:19) (cid:21) (cid:18) (cid:19) In the above, the quantity M represents the mass monopole moment or the Arnowitt, Deser and Misner (ADM) mass of the source. The constant τ appearing in the above integrals is related to an arbitrary length scale r by 0 0 τ = r /c and was originally introduced in the MPM formalism. Note that, numbers in the parenthesis (appearing 0 0 as superscripts of the source moments) denote the pth time derivatives. The Levi-Civita tensor is denoted by ε , ijk such that ε =+1 and (1/c7) indicates that we ignore contributions of order 3.5PN and higher. 123 O As may be seen from the above, computing the instantaneous part requires source multipole moments given at a retardedtimeU. Ontheotherhand,thehereditarypartinvolvesintegralsovertimeandwouldrequiretheknowledge ofthe sourcemultipole momentsatanyinstantoftimebeforeU inthe pastdynamicalhistoryofthe source. Further, the hereditary terms are of two kinds: those with and without the logarithmic factors (see Eq. (3.2b) above). The first integral appearing in Eq. (3.2b) (the one with the logarithmic kernel inside) is called the “tail-integral” and the one in the last line is called the “tail-of-tail” integral whereas the integral without the logarithmic factor (in the first line) is known as the “memory” integral. This paper only focuses on computing the instantaneous contribution to various modes of gravitational waveforms and the computation of hereditary contributions shall be discussed elsewhere [61]. Moments required with 2.5PN accuracy are the mass octupole moment U and the current quadrupole moment ijk V . The mass octupole moment U is given as ij ijk U =Uinst+Uhered, (3.3) ijk ijk ijk where Uinst and Uhered in terms of source multipole moments read ij ijk G 4 9 1 3 1 1 Uinst(U)=I(3)(U)+ I(3)I(3) I(4)I(2) + I(2)I(4) I(5)I(1) + I(1)I(5) + I(6)I ijk ijk c5 −3 ahi jkia− 4 ahi jkia 4 ahi jkia− 4 ahi jkia 4 ahi jkia 12 ahi jkia (cid:26) 1 1 + I I(6) + ε 12J(2)I(3) 8I(2)J(3) 3J(1)I(4) 27I(1)J(4) J I(5) 9I J(5) 4 ahi jkia 5 abhi − ja kib− ja kib− ja kib− ja kib− ja kib− ja kib 9 12 h (3) 1 J I(5) + J J(4)+4 W(2)I W(1)I(1)+3I Y(1) + , (3.4a) −4 a jkib 5 hi jki ijk − ijk hij ki O c6 (cid:21) h i (cid:27) (cid:18) (cid:19) 2GM U U τ 97 G U 1 Uhered(U)= dτ ln − + I(5)(τ)+ dτ I(3)(τ)I(4) (τ) ijk c3 Z−∞ (cid:20) (cid:18) 2τ0 (cid:19) 60(cid:21) ijk c5 (Z−∞ (cid:20)−3 ahi jkia 4 1 ε I(3)(τ)J(3)(τ) + . (3.4b) −5 abhi ja kib O c6 (cid:21)(cid:27) (cid:18) (cid:19) The current quadrupole moment V is given as ij V =Vinst+Vhered, (3.5) ij ij ij where Vinst and Vhered in terms of source multipole moments read ij ij G Vinst(U)=J(2)(U)+ 4J(2)I(3) +8I(2)J(3)+17J(1)I(4) 3I(1)J(4)+9I I(5) 3I J(5) ij ij 7c5 ahi jia ahi jia ahi jia− ahi jia ahi jia− ahi jia 1 n 1 353 5 113 J I(5) 7ε J J(4)+ ε 3I(3)I(3) + I(2) I(4) I(2)I(4) + I(1) I(5) −4 a ija − abhi a jib 2 achi ab jibc 24 jibc ab − 12 ab jibc 8 jibc ab (cid:20) 6 3 15 3 I(1)I(5) + I I(6)+ I I(6) +14 ε I(3)W 2I Y(2)+I(1)Y(1) −8 ab jibc 4 jibc ab 8 ab jibc abhi − jib a− jib a jib a (cid:21) h (cid:16) (cid:17) (2) 1 +3J Y(1) 2J(1)W(1) + . (3.6a) hi ji − ij O c6 i (cid:27) (cid:18) (cid:19) 2GM U U τ 7 1 Vhered(U)= dτ ln − + J(4)(τ)+ . (3.6b) ij c3 2τ 6 ij O c6 Z−∞ (cid:20) (cid:18) 0 (cid:19) (cid:21) (cid:18) (cid:19) At the 2PN order the required moments are U and V . The moment U is given by ijkl ijk ijkl U =Uinst+Uhered, (3.7) ijkl ijkl ijkl where Uinst and Uhered are related to the source multipole moments by ijkl ijkl G 21 63 102 1 Uinst(U)=I(4) (U)+ I(5)I I(4)I(1) I(3)I(2) + , (3.8a) ijkl ijkl c3 − 5 hij kli− 5 hij kli − 5 hij kli O c5 (cid:26) (cid:27) (cid:18) (cid:19) G U U τ 59 2 U 1 Uhered(U)= 2M dτ ln − + I(6) (τ)+ dτI(3)(τ)I(3)(τ) + . (3.8b) ijkl c3 ( Z−∞ (cid:20) (cid:18) 2τ0 (cid:19) 30(cid:21) ijkl 5Z−∞ hij kli ) O(cid:18)c5(cid:19) The moment V is given by ijk V =Vinst+Vhered, (3.9) ijk ijk ijk where Vinst and Vhered are given in terms of the source multipole moments as ijk ijk G 1 1 1 Vinst(U)=J(3)(U)+ ε I(5)I ε I(4)I(1) 2J I(4) + , (3.10a) ijk ijk c3 10 abhi ja kib− 2 abhi ja kib− hi jki O c5 (cid:26) (cid:27) (cid:18) (cid:19) 2GM U U τ 5 1 Vhered(U)= dτ ln − + J(5)(τ)+ . (3.10b) ijk c3 2τ 3 ijk O c5 Z−∞ (cid:20) (cid:18) 0 (cid:19) (cid:21) (cid:18) (cid:19) The moments required at the 1.5PN order are U and V . The mass-type moment U is given as ijklm ijkl ijklm U =Uinst +Uhered, (3.11) ijklm ijklm ijklm where in terms of the source multipole moments, Uinst and Uhered read ijklm ijklm G 710 265 120 155 Uinst (U)=I(5) (U)+ I(3)I(3) I(2) I(4) I(2)I(4) I(1) I(5) ijklm ijklm c3 − 21 hij klmi− 7 hijk lmi− 7 hij klmi− 7 hijk lmi (cid:26) 41 34 15 1 I(1)I(5) I I(6) I I(6) + , (3.12a) − 7 hij klmi− 7 hijk lmi− 7 hij klmi O c4 (cid:27) (cid:18) (cid:19) G U U τ 232 20 U Uhered(U)= 2M dτ ln − + I(7) (τ)+ dτI(3)(τ)I(4) (τ) ijklm c3 2τ 105 ijklm 21 hij klmi ( Z−∞ (cid:20) (cid:18) 0 (cid:19) (cid:21) Z−∞ ) 1 + , (3.12b) O c4 (cid:18) (cid:19) The current-type moment V is given by ijkl V =Vinst+Vhered, (3.13) ijkl ijkl ijkl where Vinst and Vhered in terms of the source multipole moments read ijkl ijkl 7 G 35 25 65 25 19 Vinst(U)=J(4)(U)+ S(2)I(3) I(2)J(3) J(1)I(4) I(1)J(4) J I(5) ijkl ijkl c3 − 3 hij kli − 3 hij kli − 6 hij kli − 6 hij kli − 6 hij kli (cid:26) 11 11 1 11 5 1 I J(5) J I(5) + ε 5I(3)I(3) I(4)I(2) I(2)I(4) I(5)I(1) − 6 hij kli − 12 hi jkli 6 abhi − ja klib− 2 ja klib− 2 ja klib− 2 ja klib (cid:20) 37 3 1 1 (1) (5) (6) (6) + I I + I I + I I + , (3.14a) 10 ja klib 10 ja klib 2 ja klib O c4 (cid:21)(cid:27) (cid:18) (cid:19) 2GM U U τ 119 1 Vhered(U)= dτ ln − + J(6)(τ)+ . (3.14b) ijkl c3 2τ 60 ijkl O c4 Z−∞ (cid:20) (cid:18) 0 (cid:19) (cid:21) (cid:18) (cid:19) Other mass-type moments U contributing to 3PN waveformare given as L U =Uinst+Uhered, (3.15) L L L where Uinst and Uhered are related to the source multipole moments as L L 1 Uinst(U)=I(ℓ)(U)+ , (3.16a) L L O c3 (cid:18) (cid:19) 1 Uhered(U)= . (3.16b) L O c3 (cid:18) (cid:19) Other current-type moments V contributing to 3PN waveform are given as L V =Vinst+Vhered, (3.17) L L L where finally Vinst and Vhered in terms of source multipole moments read L L 1 Vinst(U)=J(ℓ)(U)+ , (3.18a) L L O c3 (cid:18) (cid:19) 1 Vhered(U)= . (3.18b) L O c3 (cid:18) (cid:19) B. Source multipole moments in general dynamical variables What we need next are expressions for various source multipole moments with the PN accuracy sufficient for the present computation. Expressions for various multipole moments presented here are generalizations of related circular orbit expressions presented in [40, 69] to the case of general orbits and have been computed using the methods presented in [65, 66]. We skip all the details of the computation and list the final expressions for the source multipole moments related to a source composed of two nonspinning compact objects moving in general orbits. The only moment required here with 3PN accuracy is the mass quadrupole, I , which for CCBs in general orbit ij wascomputed inRef. [66] andlistedin Ref. [56]in standardharmonic (SH) coordinates.7 As wasarguedinRef. [56], though the use of SH coordinate is useful in performing algebraic checks on PN computations, quantities when expressed in these coordinates involve some gauge-dependent logarithmic terms and are not suitable for numerical calculations. It was suggested in Ref. [56] that such logarithms can be transformed away by using some coordinate transformations. Theyshowedhowtheuseofamodifiedharmonic(MH)coordinatesystem(oralternativelyanADM coordinate system) removesthese logarithms. We skip the details relatedto those transformationsand directly write the expression for the mass quadrupole moment in MH coordinates. In MH coordinates, to 3PN accuracy, I reads ij 24 ν G2m2 rr˙ 48 ν G2m2 r2 1 I = νm A r˙ x x + A + x v +A v v + , (3.19) ij 1− 7 c5 r2 hi ji 2 c2 7 c5 r hi ji 3 c2 hi ji O c7 (cid:26)(cid:20) (cid:21) (cid:20) (cid:21) (cid:27) (cid:18) (cid:19) 7 Note that Ref. [56] lists explicit expressions for all the source multipole moments for binaries in general orbits needed for computing 3PNenergyflux. 8 where, 1 29 29ν Gm 5 8ν 1 Gm 2021 5947ν 4883ν2 A =1+ v2 + + + v2 1 c2 42 − 14 r −7 7 c4 r 756 − 756 − 756 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) (cid:20) (cid:18) (cid:19) Gm 131 907ν 1273ν2 G2m2 355 953ν 337ν2 253 1835ν + r˙2 + + + +v4 r −756 756 − 756 r2 −252 − 126 252 504 − 504 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) 3545ν2 1 4561 7993ν 117067ν2 328663ν3 G2m2 8539 + + v6 + + r˙2 504 c6 11088 − 1584 5544 − 11088 r2 −20790 (cid:19)(cid:21) (cid:20) (cid:18) (cid:19) (cid:18) 52153ν 4652ν2 54121ν3 Gm 2 1745ν 16319ν2 311ν3 Gm + + r˙4 + + v4 4158 − 231 − 5544 r 99 − 2772 5544 − 99 r × (cid:19) (cid:18) (cid:19) 307 94475ν 218411ν2 299857ν3 G2m2 187183 605419ν 434909ν2 + + +v2 + × 77 − 4158 8316 8316 r2 83160 − 16632 16632 (cid:18) (cid:19) (cid:18) (cid:18) 37369ν3 Gm 757 5545ν 98311ν2 153407ν3 G3m3 6285233 + r˙2 + + + − 2772 r −5544 8316 − 16632 8316 r3 207900 (cid:19) (cid:18) (cid:19)(cid:19) (cid:18) 15502ν 3632ν2 13289ν3 428 r + + log , (3.20a) 385 − 693 8316 − 105 r (cid:20) 0(cid:21)(cid:19)(cid:21) 4 12ν 1 26 202ν 418ν2 Gm 155 4057ν 209ν2 A = + + v2 + + + + 2 −7 7 c2 −63 63 − 63 r − 54 378 54 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) 1 Gm 2839 237893ν 188063ν2 58565ν3 Gm 305 3233ν + v2 + + r˙2 + c4 r − 693 8316 − 4158 − 2079 r 2772 2772 (cid:20) (cid:18) (cid:19) (cid:18) 8611ν2 895ν3 G2m2 12587 406333ν 2713ν2 4441ν3 457 + + + +v4 − 2772 − 77 r2 −20790 8316 − 198 1386 −1386 (cid:19) (cid:18) (cid:19) (cid:18) 6103ν 13693ν2 40687ν3 + + , (3.20b) 1386 − 693 1386 (cid:19)(cid:21) 11 11ν 1 Gm 106 335ν 985ν2 5 25ν 25ν2 41 A = + +r˙2 + +v2 3 21 − 7 c2 r 27 − 189 − 189 63 − 63 63 126 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) 337ν 733ν2 1 1369 19351ν 45421ν2 139999ν3 Gm 79 + + v4 + + r˙2 − 126 126 c4 5544 − 5544 2772 − 5544 r 77 (cid:19)(cid:21) (cid:20) (cid:18) (cid:19) (cid:18) 5807ν 515ν2 8245ν3 115 1135ν 1795ν2 3445ν3 Gm 587 + + +v2 r˙2 + + − 1386 1386 693 1386 − 1386 693 − 1386 r 154 (cid:19) (cid:18) (cid:18) (cid:19) (cid:18) 67933ν 25660ν2 129781ν3 G2m2 40716 10762ν 62576ν2 24314ν3 + + + + − 4158 2079 4158 r2 − 1925 − 2079 2079 − 2079 (cid:19)(cid:19) (cid:18) 428 r + log . (3.20c) 105 r (cid:20) 0(cid:21)(cid:19)(cid:21) Intheabove,x andv denotethebinary’srelativeseparationandrelativevelocity,respectively,whereasr˙ denotesthe i i radialvelocity. Aswesee,theaboveexpressionstillhasadependenceonsomelogarithms(log[r ]),wherethequantity 0 r isrelatedtothearbitraryconstantτ appearingintailintegralsbyτ =r /c. Ithasbeenarguedandshownthatit 0 0 0 0 disappearsfromallthephysicalquantitiesliketheradiationfieldatinfinityandthefar-zoneenergyflux[40,41,56,70]. The expression for mass octupole, I , at 2.5PN order reads ijk 56 ν G2m2 rr˙ νr 232G2m2 12Gm I = νm∆ B r˙ x + B + v2 x v ijk − 1− 9 c5 r2 hijki 2 c2 c5 15 r2 − 5 r hij ki (cid:26)(cid:20) (cid:21) (cid:20) (cid:18) (cid:19)(cid:21) r2 r3r˙ 1 +B x v +B v + , (3.21) 3 c2 hi jki 4 c4 hijki O c6 (cid:27) (cid:18) (cid:19) where, 1 5 19ν Gm 5 13ν 1 Gm 3853 14257ν 17371ν2 B =1+ v2 + + + v2 1 c2 6 − 6 r −6 6 c4 r 1320 − 1320 − 1320 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) (cid:20) (cid:18) (cid:19) 9 G2m2 47 1591ν 235ν2 257 7319ν 5501ν2 Gm 247 531ν + + +v4 + + r˙2 + r2 −33 − 132 66 440 − 1320 440 r −1320 440 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) 1347ν2 , (3.22a) − 440 (cid:19)(cid:21) 1 13 107ν 102ν2 Gm 2461 8689ν 1389ν2 B = (1 2ν)+ v2 + + + + , (3.22b) 2 − − c2 −22 22 − 11 r − 660 660 220 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) 1 Gm 1949 62ν 483ν2 61 519ν 504ν2 B =1 2ν+ + +v2 + 3 − c2 r 330 165 − 55 110 − 110 55 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19) 1 4ν 3ν2 +r˙2 + , (3.22c) −11 11 − 11 (cid:18) (cid:19)(cid:21) 13 52ν 39ν2 B = + . (3.22d) 4 55 − 55 55 (cid:18) (cid:19) The remaining mass-type source multipole moments with PN accuracy required in the present work are 1 Gm 10 61ν 105ν2 103 147ν 279ν2 I = νm x 1 3ν+ + +v2 + ijkl hijkli − c2 r −11 11 − 11 110 − 22 22 (cid:26) (cid:20) (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) 1 3649 50191ν 112357ν2 325687ν3 G2m2 15549 9457ν 7961ν2 + v4 + + + c4 5720 − 5720 2860 − 5720 r2 −10010 − 715 143 (cid:20) (cid:18) (cid:19) (cid:18) 5829ν3 Gm 11049 152489ν 15124ν2 46934ν3 Gm 659 + v2 + + + r˙2 − 286 r 3575 − 7150 715 715 r −3575 (cid:19) (cid:18) (cid:19) (cid:18) 12619ν 10557ν2 9617ν3 rr˙ 72 72ν 72ν2 1 Gm + + +x v + + 7150 − 1430 715 hijk li c2 −55 11 − 11 c2 r × (cid:19)(cid:21)(cid:21) (cid:20) (cid:20) 15463 98374ν 25606ν2 18839ν3 476 1228ν 23512ν2 + +v2 + × − 3575 3575 − 715 − 715 −715 143 − 715 (cid:18) (cid:19) (cid:18) 25796ν3 r2 78 78ν 78ν2 1 553 6913ν 25994ν2 + +x v + + v2 + 715 hij klic2 55 − 11 11 c2 715 − 715 715 (cid:19)(cid:21)(cid:21) (cid:20) (cid:20) (cid:18) 28207ν3 Gm 27818 72474ν 17202ν2 27568ν3 4 28ν + + +r˙2 + − 715 r 3575 − 3575 − 715 715 −13 13 (cid:19) (cid:18) (cid:19) (cid:18) 56ν2 28ν3 r3r˙ 304 2128ν 4256ν2 2128ν3 r4 + +x v + +v − 13 13 hi jkli c4 715 − 715 715 − 715 hijklic4 × (cid:19)(cid:21)(cid:21) (cid:20) (cid:21) 71 497ν 994ν2 497ν3 1 + + , (3.23a) × 715 − 715 715 − 715 O c5 (cid:20) (cid:21)(cid:27) (cid:18) (cid:19) 1 Gm 25 139ν 109ν2 79 511ν I = νm∆ x 1 2ν+ + +v2 ijklm − hijklmi − c2 r −26 26 − 13 78 − 78 (cid:26) (cid:20) (cid:20) (cid:18) (cid:19) (cid:18) 137ν2 rr˙ 20 80ν 60ν2 r2 70 280ν 70ν2 + +x v + +x v + 13 hijkl mi c2 −13 13 − 13 hijk lmic2 39 − 39 13 (cid:19)(cid:21)(cid:21) (cid:20) (cid:21) (cid:20) (cid:21)(cid:27) 1 + , (3.23b) O c4 (cid:18) (cid:19) 1 15 21ν 63ν3 Gm I = νm x 1 5ν+5ν2+ v2 +33ν2 (1 9ν ijklmn hijklmni − c2 14 − 2 − 2 − r − (cid:26) (cid:20) (cid:20) (cid:18) (cid:19) 12rr˙ 15r2 +27ν2 26ν3 x v 1 7ν+14ν2 7ν3 +x v (1 7ν − − hijklm ni 7 c2 − − hijkl mni 7 c2 − (cid:1)(cid:3)(cid:3) 1 (cid:0) (cid:1) +14ν2 7ν3 + , (3.23c) − O c4 (cid:18) (cid:19) (cid:1)(cid:9) 1 I = νm∆ 1 4ν+3ν2 x + , (3.23d) ijklmno − − hijklmnoi O c2 (cid:18) (cid:19) (cid:0) (cid:1) 1 I = νm 1 7ν+14ν2 7ν3 x + . (3.23e) ijklmnop − − hijklmnopi O c2 (cid:18) (cid:19) (cid:0) (cid:1) 10 The current quadrupole moment is needed at 2.5PN order and given as 62r˙ν G2m2 J = νm∆ C ǫ x v ij − 1− 7 c5 r2 abhi jia b (cid:26)(cid:20) (cid:21) rr˙ rν Gm 216Gm 4 1 + C + v2 ǫ v x + , (3.24) 2 c2 c5 r 35 r − 5 abhi jib a O c6 (cid:20) (cid:18) (cid:19)(cid:21) (cid:27) (cid:18) (cid:19) where, 1 13 17ν Gm 27 15ν 1 Gm 671 1297ν 121ν2 C =1+ v2 + + + v2 1 c2 28 − 7 r 14 7 c4 r 252 − 126 − 12 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) (cid:20) (cid:18) (cid:19) Gm 5 241ν 335ν2 G2m2 43 1543ν 293ν2 29 11ν + r˙2 + + +v4 r −252 − 252 − 84 r2 −252 − 126 84 84 − 3 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) 505ν2 + , (3.25a) 56 (cid:19)(cid:21) 5 1 1 Gm C = (1 2ν)+ 824+1348ν 1038ν2 +75v2 1 7ν+12ν2 . (3.25b) 2 28 − 504c2 r − − (cid:20) (cid:21) (cid:0) (cid:1) (cid:0) (cid:1) Other current-type source multipole moments with PN accuracies sufficient for present calculations read 1 Gm 14 16ν 86ν2 41 77ν 185ν2 J = νmǫ x v 1 3ν+ +v2 + ijk abhi jkia b − c2 r 9 − 9 − 9 90 − 18 18 (cid:26) (cid:20) (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) 1 1349 4159ν 52409ν2 171539ν3 G2m2 45 988ν 9925ν2 + v4 + + + c4 3960 − 792 1980 − 3960 r2 −44 − 99 198 (cid:20) (cid:18) (cid:19) (cid:18) 8099ν3 Gm 23 637ν 1861ν2 32221ν3 Gm 1597 19381ν + r˙2 + + v2 − 396 r −396 − 990 − 990 1980 r 660 − 990 (cid:19) (cid:18) (cid:19) (cid:18) 6307ν2 21127ν3 rr˙ 2 10ν 10ν2 1 73 841ν 3002ν2 + + +x v x + + v2 + 198 396 j kib a c2 9 − 9 9 c2 495 − 495 495 (cid:19)(cid:21)(cid:21) (cid:20) (cid:20) (cid:18) 3151ν3 Gm 133 81ν 3914ν2 3089ν3 r2 7 + + +v x 1 5ν+5ν2 − 495 r 66 − 55 − 165 330 jkib ac2 45 − (cid:19) (cid:18) (cid:19)(cid:21)(cid:21) (cid:20) 1 119 259ν 2219ν2 4529ν3 14 98ν 196ν2 (cid:0)98ν3 (cid:1) + v2 + +r˙2 + c2 990 − 198 495 − 990 165 − 165 165 − 165 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19) Gm 751 1792ν 227ν2 427ν3 1 + + + , (3.26a) r 495 − 495 − 99 99 O c5 (cid:18) (cid:19)(cid:21)(cid:21)(cid:27) (cid:18) (cid:19) 1 Gm 15 35ν 185ν2 5 95ν J = νm∆ǫ x v 1 2ν+ + +v2 ijkl − abhi jklia b − c2 r 11 44 − 22 11 − 22 (cid:26) (cid:20) (cid:20) (cid:18) (cid:19) (cid:18) 195ν2 5 rr˙ 4 r2 + + x v x 1 4ν+3ν2 + x v x 1 4ν+3ν2 22 22 jk lib a c2 − 11 j klib ac2 − (cid:19)(cid:21)(cid:21) (cid:27) 1 (cid:0) (cid:1) (cid:0) (cid:1) + , (3.26b) O c4 (cid:18) (cid:19) 1 83 161ν 317ν2 707ν3 J = νmǫ x v 1 5ν+5ν2+ v2 + ijklm abhi jklmia b − c2 182 − 26 13 − 26 (cid:26) (cid:20) (cid:20) (cid:18) (cid:19) Gm 81 138ν 210ν2 339ν3 20 rr˙ + + + x v x 1 7ν+14ν2 7ν3 r 65 − 65 − 13 13 91 jkl mib ac2 − − (cid:18) (cid:19)(cid:21)(cid:21) 54 r2 1 (cid:0) (cid:1) + x v x 1 7ν+14ν2 7ν3 + , (3.26c) 91 jk lmib ac2 − − O c4 (cid:27) (cid:18) (cid:19) (cid:0) (cid:1) 1 J = νm∆ǫ x x v 1 4ν+3ν2 + , (3.26d) ijklmn − abhi jklmni a b − O c2 (cid:18) (cid:19) (cid:0) (cid:1)