ebook img

Thinking Probabilistically: Stochastic Processes, Disordered Systems, and Their Applications PDF

243 Pages·2021·7.941 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thinking Probabilistically: Stochastic Processes, Disordered Systems, and Their Applications

ThinkingProbabilistically Probability theory has diverse applications in a plethora of fields, including physics, engineering, computer science, chemistry, biology, and economics. This book will familiarizestudentswithvariousapplicationsofprobabilitytheory,stochasticmodel- ing,andrandomprocesses,usingexamplesfromallthesedisciplinesandmore. Thereaderlearnsviacasestudiesandbeginstorecognizethesortofproblemsthat are best tackled probabilistically. The emphasis is on conceptual understanding, the development of intuition, and gaining insight, keeping technicalities to a minimum. Nevertheless, a glimpse into the depth of the topics is provided, preparing students for more specialized texts while assuming only an undergraduate-level background in mathematics. The wide range of areas covered – never before discussed together in a unified fashion – includes Markov processes and random walks, Langevin and Fokker–Planckequations,noise,generalizedcentrallimittheoremandextremevalues statistics,randommatrixtheory,andpercolationtheory. ArielAmirisaProfessoratHarvardUniversity.Hisresearchcentersonthetheoryof complexsystems. Thinking Probabilistically Stochastic Processes, Disordered Systems, and Their Applications ARIEL AMIR HarvardUniversity,Massachusetts UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108479523 DOI:10.1017/9781108855259 ©ArielAmir2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Amir,Ariel,1981–author. Title:Thinkingprobabilistically:stochasticprocesses,disorderedsystems, andtheirapplications/ArielAmir. Description:Cambridge,UnitedKingdom;NewYork,NY:CambridgeUniversity Press,2021.|Includesbibliographicalreferencesandindex. Identifiers:LCCN2020019651(print)|LCCN2020019652(ebook)| ISBN9781108479523(hardback)|ISBN9781108789981(paperback)| ISBN9781108855259(epub) Subjects:LCSH:Probabilities–Textbooks.|Stochasticprocesses–Textbooks.| Order-disordermodels–Textbooks. Classification:LCCQA273.A5482021(print)|LCCQA273(ebook)|DDC519.2–dc23 LCrecordavailableathttps://lccn.loc.gov/2020019651 LCebookrecordavailableathttps://lccn.loc.gov/2020019652 ISBN978-1-108-47952-3Hardback ISBN978-1-108-78998-1Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Acknowledgments pageviii 1 Introduction 1 1.1 ProbabilisticSurprises 5 1.2 Summary 12 1.3 Exercises 13 2 RandomWalks 15 2.1 RandomWalksin1D 16 2.2 DerivationoftheDiffusionEquationforRandomWalksinArbitrary SpatialDimension 18 2.3 MarkovProcessesandMarkovChains 24 2.4 Google PageRank: Random Walks on Networks as an Example ofaUsefulMarkovChain 25 2.5 RelationbetweenMarkovChainsandtheDiffusionEquation 30 2.6 Summary 32 2.7 Exercises 32 3 LangevinandFokker–PlanckEquationsandTheirApplications 39 3.1 ApplicationofaDiscreteLangevinEquationtoaBiologicalProblem 45 3.2 TheBlack–ScholesEquation:PricingOptions 51 3.3 AnotherExample:The“WellFunction”inHydrology 60 3.4 Summary 62 3.5 Exercises 63 4 EscapeOveraBarrier 67 4.1 SettingUptheEscape-Over-a-BarrierProblem 70 4.2 Applicationtothe1DEscapeProblem 71 4.3 DerivingLanger’sFormulaforEscape-Over-a-BarrierinAny SpatialDimension 73 4.4 Summary 79 4.5 Exercises 79 vi Contents 5 Noise 81 5.1 TelegraphNoise:PowerSpectrumAssociatedwithaTwo-Level-System 83 5.2 FromTelegraphNoiseto1/f NoiseviatheSuperpositionofManyTwo- Level-Systems 88 5.3 PowerSpectrumofaSignalGeneratedbyaLangevinEquation 89 5.4 Parseval’sTheorem:RelatingEnergyintheTimeandFrequencyDomain 90 5.5 Summary 92 5.6 Exercises 92 6 GeneralizedCentralLimitTheoremandExtremeValueStatistics 96 6.1 ProbabilityDistributionofSums:IntroducingtheCharacteristicFunction 98 6.2 Approximating the Characteristic Function at Small Frequencies forDistributionswithFiniteVariance 99 6.3 CentralRegionofCLT:WheretheGaussianApproximationIsValid 100 6.4 Sum of a Large Number of Positive Random Variables: Universal DescriptioninLaplaceSpace 103 6.5 ApplicationtoSlowRelaxations:StretchedExponentials 106 6.6 ExampleofaStableDistribution:CauchyDistribution 108 6.7 Self-SimilarityofRunningSums 109 6.8 GeneralizedCLTviaanRG-InspiredApproach 110 6.9 ExploringtheStableDistributionsNumerically 118 6.10 RG-InspiredApproachforExtremeValueDistributions 120 6.11 Summary 127 6.12 Exercises 128 7 AnomalousDiffusion 133 7.1 ContinuousTimeRandomWalks 134 7.2 LévyFlights:WhentheVarianceDiverges 137 7.3 PropagatorforAnomalousDiffusion 138 7.4 BacktoNormalDiffusion 139 7.5 Ergodicity Breaking: When the Time Average and the Ensemble AverageGiveDifferentResults 139 7.6 Summary 140 7.7 Exercises 141 8 RandomMatrixTheory 145 8.1 LevelRepulsionbetweenEigenvalues:TheBirthofRMT 145 8.2 Wigner’sSemicircleLawfortheDistributionofEigenvalues 149 8.3 JointProbabilityDistributionofEigenvalues 155 8.4 EnsemblesofNon-HermitianMatricesandtheCircularLaw 162 8.5 Summary 179 8.6 Exercises 180 Contents vii 9 PercolationTheory 184 9.1 PercolationandEmergentPhenomena 184 9.2 PercolationonTrees–andthePowerofRecursion 193 9.3 PercolationCorrelationLengthandtheSizeoftheLargestCluster 195 9.4 UsingPercolationTheorytoStudyRandomResistorNetworks 197 9.5 Summary 202 9.6 Exercises 203 AppendixA ReviewofBasicProbabilityConceptsandCommonDistributions 207 A.1 SomeImportantDistributions 208 A.2 CentralLimitTheorem 210 AppendixB ABriefLinearAlgebraReminder,andSomeGaussianIntegrals 211 B.1 BasicLinearAlgebraFacts 211 B.2 GaussianIntegrals 212 AppendixC ContourIntegrationandFourierTransformRefresher 214 C.1 ContourIntegralsandtheResidueTheorem 214 C.2 FourierTransforms 214 AppendixD ReviewofNewtonianMechanics,BasicStatisticalMechanics,andHessians 217 D.1 BasicResultsinClassicalMechanics 217 D.2 TheBoltzmannDistributionandthePartitionFunction 218 D.3 Hessians 218 AppendixE MinimizingFunctionals,theDivergenceTheorem,andSaddle-Point Approximations 220 E.1 FunctionalDerivatives 220 E.2 LagrangeMultipliers 220 E.3 TheDivergenceTheorem(Gauss’sLaw) 220 E.4 Saddle-PointApproximations 221 AppendixF Notation,Notation… 222 References 225 Index 232 Acknowledgments I am indebted to the students of Harvard course APMTH 203 for their patience and perseveranceasthecoursematerialsweredeveloped,andIamhugelygratefultoall ofmyteachingfellowsalongtheyearsfortheirhardwork:SarahKostinksi,Po-YiHo, FelixWong,SihengChen,PéturRafnBryde,andJiseonMin.Muchofthecontentsof theAppendicesdrawsontheirhelpfulnotes. IthankEliBarkai,StasBurov,OriHirschberg,YipeiGuo,JieLin,DavidNelson, Efi Shahmoon, Pierpaolo Vivo, and Ahmad Zareei for numerous useful discussions andcommentsonthenotes.ChristopherBergevinhadexcellentsuggestionsforChap- ter 2, and Julien Tailleur for Chapter 3. Ori Hirschberg and Eli Barkai had many importantcommentsandusefulsuggestionsregardingChapter6.IthankGraceZhang, Satya Majumdar, and Fernando L. Metz for a careful reading of Chapter 8. I am grateful to Martin Z. Bazant and Bertrand I. Halperin for important comments on Chapter9.IthankTerryTaoforallowingmetoadaptthediscussionofBlack–Scholes in Chapter 3 from his insightful blog. I also thank Dr. Yasmine Meroz and Dr. Ben Golubforgivingguestlecturesinearlyversionsofthecourse.Finally,Iamgrateful toSimon’scoffeeshopforprovidingreliablyexcellentcoffee,whichwasinstrumental tothewritingofthisbook. I dedicate this book to Lindy, Maayan, Tal, and Ella, who keep my feet on the groundandasmileonmyface. 1 Introduction Iknowtoowellthattheseargumentsfromprobabilitiesareimpostors,andunless greatcautionisobservedintheuseofthemtheyareapttobedeceptive–in geometry,andinotherthingstoo (fromPlato’sPhaedo) The purposes of this book are to familiarize you with a broad range of examples where randomness plays a key role, develop an intuition for it, and get to the level whereyoumayreadarecentresearchpaperonthesubjectandbeabletounderstand the terminology, the context, and the tools used. This is in a sense the “organizing principle” behind the various chapters: In all of them we are driven by applications whereprobabilityplaysafundamentalrole,andleadstoexcitingandoftenintriguing phenomena. There are many relations between the chapters, both in terms of the mathematical tools and in some cases in terms of the physical processes involved, but one chapter does not follow from the previous one by necessity or hinge on it – rather, the idea is to present a rich repertoire of problems involving randomness, giving the reader a good basis in a broad range of fields ... and to have fun alongtheway. Randomnessleadstonewphenomena.Inaclassicpaper,Anderson(1972)coined thephrase“moreisdifferent”.Itisalsotruethat“stochasticisdifferent”...Thebook willgiveyousometoolstounderstandphenomenaassociatedwithdisorderedsystems and stochastic processes. These will include percolation (relevant for polymers, gels, social networks, epidemic spreading); random matrix theory (relevant for understanding the statistics of nuclear and atomic levels, model certain properties of ecological systems and more); random walks and Langevin equations (pertinent to understanding numerous applications in physics, chemistry, cell biology as well as finance). The emphasis will be on understanding the phenomena and quantifying them. Note that while all of the applications considered here build on random- ness in a fundamental way, the collection of topics covered is far from repre- sentative of the vast realm of applications that hinge on probability theory. (For instance, two important fields not touched on here are statistical inference and chemicalkinetics).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.