ebook img

Thin Airfoil Theory PDF

17 Pages·2007·0.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thin Airfoil Theory

Thin Airfoil Theory Airfoil Characteristics l y α x m V ∞ 2 • Lift coeffcient: C = l / 1 ρV c l 2 ∞ • Moment coeficient: • Center of pressure: • Aerodynamic Center: 2 Thin Airfoil Theory – Setup Symbols: v=V sinα+v' Assumptions: y ∞ 1. Airfoil is thin η<< c u=V cosα+u' 2. Angles/slopes are small e.g. ∞ sinα≈ α, cosα≈ 1, slope ≈ angle η η t 3. Airfoil only slightly disturbs u η c free stream u', v' << V x ∞ α η (<0) l V Kutta condition? (cusped TE) ∞ Chord c Camber η = 1 (η +η) η =η +η c 2 u l or u c t ½ Thickness η = 1 (η −η) η =η −η t 2 u l l c t Non-penetration condition? Bernoulli? 3 Thin Airfoil Theory - Simplifications Bernoulli: Assumptions: 1. Airfoil is thin η<< c C =1−(u2 + v2)/V 2 p ∞ 2. Angles/slopes are small e.g. =1−[(V cosα+u')2 + (V sinα+ v')2]/V 2 ∞ ∞ ∞ sinα≈ α, cosα≈ 1, slope ≈ angle 2u' 2v' u'2 v'2 = − cosα− sinα− − 3. Airfoil only slightly disturbs free V V V 2 V 2 ∞ ∞ ∞ ∞ stream u', v' << V ∞ “Linearized Pressure C ≈ Coefficient” p v=V sinα+v' ∞ u=V cosα+u' y ∞ Kutta Condition: V(c,0 ) =V(c,0 ) V(c,0 ) + − + x c V(c,0 ) - 4 Thin Airfoil Theory - Simplifications Exact: v=V sinα+v' Exact: y ∞ u=V cosα+u' ∞ η dη dη v'(x,η ) η t c + t ≈α+ u u η Small disturbances dx dx V c x ∞ and angles: v'(x,η ) dη dη α η =η +η u ≈ −α+ c + t η(<0) u c t l V V dx dx η =η −η ∞ ∞ l c t v'(x,0 ) dη dη Linearized: Airfoil thin: + ≈ −α+ c + t C (x,0 ) ≈ y V dx dx p ± ∞ v'(x,0 ) dη dη Likewise for − ≈ −α+ c − t y=0 + lower surface: V dx dx ∞ x α v'(x,0 ) dη dη Or: ± ≈ −α+ c ± t V∞ y=0- u(c,0 )=u(c,0 ) + - V dx dx ∞ 5 A Source Sheet Jump in normal velocity component A Vortex Sheet Jump in tangential velocity component 6 Solving for the Flow Linearized problem: Proposed Ideal Flow Solution: y iy C (x,0 ) ≈ −2u(x,0 )/V p ± ± ∞ z v'(x,0 ) dη dη ± ≈ −α+ c ± t y=0 V dx dx y=0 + ∞ + x x α α x dx 1 1 Source sheet V y=0 V y=0 ∞ - u(c,0+)=u(c,0-) ∞ - + vortex sheet Complex velocity at z 1 q(x )−iγ(x ) Complex velocity at z 1 c q(x )−iγ(x ) 1 1 dx W'(z) = ∫ 1 1 dx due to element dx : 2π (z − x ) 1 due to whole sheet: 2π (x+iy − x ) 1 1 1 0 1 c 1 q(x )−iγ(x ) Complex velocity at W'(x,0 ) = ∫ 1 1 dx K y=0 due to sheet: ± 2π (x−x ) 1 ± 0 1 So what? v'(x,0 ) ⎧W'(x,0 )⎫ 1 c γ(x ) q(x) ± = −Im⎨ ± ⎬ = ∫ 1 dx ± 1 V V 2πV (x− x ) 2V ⎩ ⎭ ∞ ∞ ∞ 0 1 ∞ N.B. Karamcheti defines the vortex u'(x,0 ) ⎧W'(x,0 )⎫ 1 c q(x ) γ(x) ± = Re⎨ ± ⎬ = ∫ 1 dx m 7 sheet strength with the opposite sign 1 V V 2πV (x − x ) 2V ⎩ ⎭ ∞ ∞ ∞ 0 1 ∞ Solving for the Flow Linearized problem: Proposed Ideal Flow Solution: y iy C (x,0 ) ≈ −2u(x,0 )/V v'(x,0 ) 1 c γ(x ) q(x) p ± ± ∞ ± = ∫ 1 dx ± V 2πV (x− x ) 1 2V v'(x,0 ) dη dη ∞ ∞ 0 1 ∞ ± ≈ −α+ c ± t y=0 V dx dx y=0 u'(x,0 ) 1 c q(x ) γ(x) + ∞ + ± = ∫ 1 dx m V 2πV (x− x ) 1 2V ∞ ∞ 0 1 ∞ x x α α x dx 1 1 Source sheet V y=0 V y=0 ∞ - u(c,0+)=u(c,0-) ∞ - + vortex sheet Kutta u'(c,0 ) u'(c,0 ) 1 c q(x ) γ(c) 1 c q(x ) γ(c) + = − so ∫ 1 dx − = ∫ 1 dx + so γ(c) = 0 condition: V V 2πV (c− x ) 1 2V 2πV (c− x ) 1 2V ∞ ∞ ∞ 0 1 ∞ ∞ 0 1 ∞ c Non- dη dη 1 iγ(x ) q(x) −α+ c ± t = ∫ 1 dx ± 1 penetration: dx dx 2πV (x− x ) 2V ∞ 0 1 ∞ c 1 q(x ) γ(x) Pressure: C (x,0 ) = − ∫ 1 dx ± p ± 1 πV (x − x ) V ∞ 0 1 ∞ Solution Pressure Difference: order? 8 Need q(x)? General Algebraic Solution Non-penetration c dη dη 1 iγ(x ) q(x) −α+ c + t = ∫ 1 dx + 1 dx dx 2πV (x− x ) 2V c ∞ 0 1 ∞ dη 1 iγ(x ) add −α+ c (x) = ∫ 1 dx 1 dx 2πV (x− x ) c dη dη 1 iγ(x ) q(x) ∞ 0 1 −α+ c − t = ∫ 1 dx − 1 dx dx 2πV (x− x ) 2V ∞ 0 1 ∞ +Kutta γ(c) = 0 dη How to solve for γ(x) w/o specifying c ( x ) ? dx •Write γ as x/c = 1 (1+cosθ) 2 •Solve integral for each term in x /c = 1 (1+cosθ) 1 2 1 dη •Relate to for c dx 0 c α x V π 0 ∞ θ 9 General Algebraic Solution Fourier Series Solution gives: x/c = 1 (1+cosθ) 1−cosθ ∞ 2 l γ(θ)/V = −(2α− B ) + 2∑B sin(nθ) ∞ o sinθ n m ΔC O n=1 p 0 c 2 π dη α x where: B = ∫ c (θ)cos(nθ)dθ n π dx V π 0 0 ∞ θ and we have that ΔC (θ) = 2γ(θ)/V p ∞ l C = = l 1 ρV 2c 2 ∞ Substitute for γ(θ) and evaluate: C = 2πα−π(B + B ) l 0 1 c 1 0 m −1 x x C = O = ∫ xΔpdx = −∫ ΔC (x)d = − 1 ∫ ΔC (θ)(1+ cosθ)sinθdθ mO 1 ρV 2c2 1 ρV 2c2 c p c 4 p 2 ∞ 2 ∞ 0 0 π Substitute for γ(θ) and evaluate: C = − 1πα+ 1π(B + 2B + B ) mO 2 4 0 1 2 = − 1 C + 1π(B + B ) 10 4 l 4 1 2

Description:
Aerodynamic Center: Airfoil Characteristics x y α Airfoil only slightly disturbs free stream u', v'
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.