Downloaded from orbit.dtu.dk on: Mar 13, 2023 Thick Airfoils and High Lift Gaunaa, Mac; Sørensen, Niels N.; Bak, Christian Published in: Research in Aeroelasticity EFP-2007-II Publication date: 2009 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Gaunaa, M., Sørensen, N. N., & Bak, C. (2009). Thick Airfoils and High Lift. In T. Buhl (Ed.), Research in Aeroelasticity EFP-2007-II (pp. 103-114). Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi. Denmark. Forskningscenter Risoe. Risoe-R No. 1698(EN) General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Research in Aeroelasticity EFP-2007-II t r o p e R - R - ø s i R Edited by Thomas Buhl Risø-R-1698(EN) June 2009 Author: Thomas Buhl (ed.) Risø-R-1698(EN) Title: Research in Aeroelasticity EFP-2007-II June 2009 Division: Wind Energy Division Abstract (max. 2000 char.): ISSN 0106-2840 This report contains results from the EFP-2007-II project "Program ISBN 978-87-550-3759-5 for Research in Applied Aeroelasticity". The main results can be summed up into the following bullets: • 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower shadow models implemented in the aeroelastic code HAWC2. • Using a streamlined tower reduces the tower shadow by 50% Contract no.: compared to a cylindrical tower. Similar reductions can be ENS 033001/33033-0266 achieved using a four legged lattice tower. • The application of laminar/turbulent transition in CFD Group's own reg. no.: computations 1110065-01 to 1110065-08 for airfoils is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ Sponsorship: turbulent transition modeling improve the results in stalled Danish Energy Authorities conditions for a thick airfoil. • The unsteady flow in the nacelle region of a wind turbine is Cover : dominated by large flow gradients caused by unsteady shedding Multi element airfoil of vortices from the root sections of the blades. • The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. • The trailing edge noise model, TNO, was implemented and validated. The results showed that the noise was not predicted accurately, but the model captured the trends and can be used in airfoil design. The model was implemented in the airfoil design tool AIRFOILOPT and existing airfoils can be adjusted to maintain the aerodynamic characteristics, but with reduced noise in the order of up to 3dB in total sound power level and up to 1dB with A-weighting. • 2D CFD simulations are performed to verify their capability in predicting multi element airfoil configurations. The present computations show good agreement with measured performance from wind tunnel experiments. • The stochastic fluctuations of the aerodynamic forces on blades Pages: 147 in deep-stall have an insignificant effect on the risk of stallinduced Tables: 19 vibrations predicted by quasi-steady aerodynamic References: models, but more realistic models of deep-stall aerodynamics must be developed to finally conclude on the real risk of Information Service Department Risø National Laboratory for stallinduced vibrations at standstill. Sustainable Energy • Finite element analysis shows that local blade cross section Technical University of Denmark deformations P.O.Box 49 caused by global blade deflection do not have significant DK-4000 Roskilde Denmark influence on the aerodynamic performance. Telephone +45 46774005 [email protected] Fax +45 46774013 www.risoe.dtu.dk (cid:0) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14) (cid:0)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6) 1 Preface 6 2 Summary 7 2.1 Introduction 7 2.2 EvaluationofTowerShadowEffectsonVariousWindTurbineConcepts 7 2.3 CharacterisationoftheUnsteadyFlowintheNacelleRegionofaModernWind Turbine 7 2.4 CorrelationBasedTransitionModelingofLaminartoTurbulentTransition 8 2.5 Aeroacoustics 8 2.6 DesignofHighLift,LowNoiseAirfoilsandHighAerodynamicPerformance 8 2.7 PredictionofMultiElementAirfoilsWiththeEllipSysCode 9 2.8 Stall-inducedvibrationsofabladesectionindeep-stall 9 2.9 GlobalBladeDeflectionsEffectonLocalAirfoilDeformationandPerformance 9 3 EvaluationofTowerShadowEffectsonVariousWindTurbineConcepts 11 3.1 Introduction 11 3.2 ComputationalSolver 12 3.3 ComputationalSetup 13 3.4 NRELPhaseVIResults 17 3.5 UPWINDTurbineResults 19 3.6 Conclusions 28 4 Characterisationofthe UnsteadyFlowin the NacelleRegionofa ModernWind Turbine 30 4.1 Introduction 30 4.2 ComputationalSetup 31 4.3 ComputationalParameters 32 4.4 Results 33 4.5 Conclusions 39 5 CorrelationBasedTransitionModelingofLaminartoTurbulentTransition 42 5.1 Introduction 42 5.2 Codedescription 42 5.3 Computationalgrid 43 5.4 2DAirfoilResults 45 5.5 3DCylinderComputations 51 5.6 Flowoverathickairfoil 55 5.7 DiscussionofAirfoilResults 58 5.8 Acknowledgement 59 6 ValidationofandAirfoilOptimizationwithTrailingEdgeNoiseModel 61 6.1 Introduction 61 6.2 ValidationofaTrailingEdgeNoiseModel 61 6.3 AirfoilsAeroacousticOptimization 65 6.4 Conclusions 72 7 DesignofHighLiftAirfoilsWithLowNoiseandHighAerodynamicPerformance 76 7.1 Nomenclature 76 7.2 Introduction 76 7.3 MethodforAirfoilDesign 77 7.4 StrategyforAirfoilDesign 78 7.5 AirfoilDesignswithNoiseReduction 80 7.6 Conclusions 85 8 NoisepredictionofNACA64418airfoil 87 8.1 Introduction 87 8.2 Governingequations 87 8.3 High-orderdiscretizations 88 8.4 Results 91 8.5 Conclusions 92 9 PredictionofMultiElementAirfoilsWiththeEllipSysCode 95 9.1 Introduction 95 9.2 Codedescription 95 9.3 Computationalgrids 95 9.4 Results 96 9.5 Conclusion 99 (cid:15) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14) 9.6 Acknowledgement 99 9.7 Appendix:Geometrydescription 101 10 Thickairfoils&Highlift 103 10.1 Introduction 103 10.2 HowAndWhyDoMultipleElementAirfoilsWork 105 10.3 MultiElementAerodynamicComputationalTool 106 10.4 ParametricStudyofTwo-ElementAirfoils 110 10.5 Conclusions&Furtherwork 112 11 Stall-inducedvibrationsofabladesectionindeep-stall 114 11.1 Models 115 11.2 Stall-inducedvibrations 117 11.3 Numericalexample 118 11.4 Conclusion 120 12 Global Blade Deflections Effect on Local Airfoil Deformation and Performance 122 12.1 TheWindTurbineBlade 122 12.2 AerodynamicForces 122 12.3 FiniteElementModel 122 12.4 DeformedAirfoilSection 125 12.5 Conclusion 127 13 GearDynamics 134 13.1 Doublecontacttheory 134 13.2 Interface 138 13.3 ValidationExample 140 13.4 Conclusion,Perspective,andFutureWork 142 14 Completelistofpublicationsfromtheproject 143 14.1 Journalpapers 143 14.2 Conferencepapers 143 14.3 Oralpresentations 144 14.4 Books 144 14.5 PhDTheses 144 14.6 MScTheses 145 (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14) (cid:16) (cid:7) (cid:8)(cid:9)(cid:5)(cid:10)(cid:11)(cid:12)(cid:5) TheEnergyResearchProject"ProgramforResearchinAppliedAeroelasticity,EFP-2007-II" wascarriedoutincooperationbetweentwoinstitutesattheTechnicalUniversityofDenmark (DTU),RisøNationalLaboratoryforSustainableEnergy(RisøDTU)andtheDepartmentof MechanicalEngineering(DTUMEK),from1April2008to31March2009.Fromtheonsetof theproject,sixmilestonesweredefinedwhichrepresentthemainpartoftheresearchactivity. Apartfromtheworkfocusedonthemilestones,alsoanalysisofcurrentproblemsandfurther developmentoftheexistingmodelswerecarriedout. SeveralresearchersatDTUMEKandRisøDTUhavebeeninvolvedintheprojectworkand havecontributedto the researchpresentedin this report.To enablereferenceto the different partsofthereport,thenamesoftheauthorsareindicatedforeachchapter.Itshould,however, beemphasizedthatthereportisnotadetailedreportofthecompleteactivitywithintheproject. Thus,notallofthecontributorstotheprojectappearasauthorstothedifferentchapters.Fora detaileddescriptionoftheresultsfromtheproject,pleaseseeChapter14inwhichacomplete listofpublicationsintheprojectcanbefound. AtDTUMEK,thefollowingresearchersfromtheFluidMechanicsSectionoftheDepartment ofMechanicalEngineeringhavebeeninvolvedintheproject: KurtS.Hansen MartinO.L.Hansen GabrielHernandez RobertMikkelsen WenZhongShen JensN.Sørensen StigØye AtRisøDTU,primarilytheresearchersfromtheAeroelasticDesignGrouphavecontributed totheproject: PeterB.Andersen ChristianBak AndreasBechmann FranckBertagnolio ThomasBuhl MadsDøssing MacGaunaa AndersM.Hansen MortenH.Hansen BjarneS.Kallesøe GunnerC.Larsen TorbenJ.Larsen HelgeA.Madsen HelenMarkou FlemmingRasmussen NielsN.Sørensen NielsTroldborg FrederikZahle (cid:8) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14) (cid:13) (cid:14)(cid:15)(cid:16)(cid:16)(cid:11)(cid:9)(cid:17) (cid:0)(cid:2)(cid:3) (cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:6)(cid:12)(cid:8)(cid:5) This report contains the results from the EnergyResearch Project "Programfor Research in AppliedAeroelasticity,EFP-2007-II"coveringthe periodfromApril 1st 2008to March 31st 2009. The partners in the project are the two institutes at Technical University of Denmark (DTU),RisøNationalLaboratoryforSustainableEnergy(RisøDTU)andtheDepartmentof MechanicalEngineering(DTUMEK).Theoverallobjectivesoftheprojectaretoensurethe developmentofanaeroelasticdesigncomplex,whichcancreatethebasisforthenextgener- ationofwindturbinesandmakenewdesignconceptspossible.Theprojectformsastrategic cooperationbetween Risø DTU and DTU MEK and the wind turbine industry with empha- sisonobtainingasuitablebalancebetweenlong-termstrategicresearch,appliedresearchand technological development. To obtain synergy between the different subjects and to ensure an optimal, dynamic cooperation with the industry, while maintaining the continuity of the research, the project is organizedas a research program within applied aeroelasticity with a combinationofresearchactivitieswithspecificshort-termtargetswithinoneyearandgeneral continuouslong-termresearchactivities.Thisresearchprojecthasbeenthetenthinarowof one-yearprojects,whichhasensuredacontinuousdevelopmentsince1997,wheretheactivity inthisrowofprojectsisdescribedin[1–10]. (cid:0)(cid:2)(cid:0) (cid:13)(cid:14)(cid:15)(cid:16)(cid:10)(cid:15)(cid:6)(cid:12)(cid:8)(cid:5) (cid:8)(cid:17) (cid:18)(cid:8)(cid:19)(cid:20)(cid:7) (cid:21)(cid:22)(cid:15)(cid:9)(cid:8)(cid:19) (cid:13)(cid:23)(cid:20)(cid:11)(cid:6)(cid:24) (cid:8)(cid:5) (cid:25)(cid:15)(cid:7)(cid:12)(cid:8)(cid:10)(cid:24) (cid:26)(cid:12)(cid:5)(cid:9) (cid:18)(cid:10)(cid:7)(cid:27)(cid:12)(cid:5)(cid:20) (cid:28)(cid:8)(cid:5)(cid:11)(cid:20)(cid:29)(cid:6)(cid:24) A2DCFDstudyhasbeencarriedouttoevaluatetheeffectsoftowershadowonabladesection for an upwind turbine and three downwind turbine concepts; one with a traditional tubular tower,anotherwithastreamlinedtowerandlastly,onewithafourleggedconfiguration.Two turbineswereusedasbasisforthestudy:FirstlytheNRELPhaseVIturbine,whichwasused for validation against experimentalresults; secondly the UPWIND 5 MW reference turbine, sinceitisrepresentativeinsizeofmodernturbines. The2Dsimulationssucceededincapturingtheunsteadyinteractionbetweenthebladesection and the tower wake, and the results for the Phase VI turbine were in good agreement with the experimental data for low wind speed cases, whereas for higher wind speeds with flow separation,theagreementwasnotasfavourable.Forthedownwindtubulartowerconfiguration oftheUPWIND turbine,thetowerwakegaveriseto asignificanttowershadowwith a 20% reductioninthebladenormalforce.Changingthetowerclearancedidnotgiverisetosignificant reductionofthetowershadow.Usingastreamlinedtower,however,reducedthetowershadow 50% comparedto the cylindricaltower,andeliminatedthe unsteadyblade/vortexinteraction seenontheconventionaltower.Simulationswithafourlegconfigurationshowedthatthetower shadowcouldbereducedwithsuchaconfiguration.Thetowerwakewas,however,significantly moreturbulent. Comparisonof the Navier-Stokes simulations and the aeroelastic code HAWC2 showed that theoverallagreementwasgood,andthatappropriateadjustmentofthetowerdragcoefficient canbeusedtofittheHAWC2resultstotheCFDsimulations. (cid:0)(cid:2)(cid:30) (cid:28)(cid:22)(cid:15)(cid:7)(cid:15)(cid:11)(cid:6)(cid:20)(cid:7)(cid:12)(cid:24)(cid:15)(cid:6)(cid:12)(cid:8)(cid:5) (cid:8)(cid:17) (cid:6)(cid:22)(cid:20) (cid:31)(cid:5)(cid:24)(cid:6)(cid:20)(cid:15)(cid:9) !(cid:16)(cid:8)(cid:19) (cid:12)(cid:5) (cid:6)(cid:22)(cid:20) "(cid:15)(cid:11)(cid:20)(cid:16)(cid:16)(cid:20) #(cid:20)$(cid:12)(cid:8)(cid:5) (cid:8)(cid:17) (cid:15) %(cid:8)(cid:9)(cid:20)(cid:7)(cid:5) (cid:26)(cid:12)(cid:5)(cid:9) (cid:18)(cid:10)(cid:7)(cid:27)(cid:12)(cid:5)(cid:20) A3DNavier-Stokessolverhasbeenusedtoinvestigatetheflowinthenacelleregionofawind turbinewhereanemometersaretypicallyplacedtomeasuretheflowspeedandtheturbineyaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14) (cid:17) thecomplexseparatedflowinthebladerootregionoftherotor.Anumberofsteadystateand unsteadysimulationswerecarriedoutforwindspeedsrangingfrom6m/sto16m/saswellas twoyawandtiltangles.Theflowinthenacelleregionwasfoundtobehighlyunsteady,domi- natedbyunsteadyvortexsheddingfromthecylindricalpartofthebladeswhichinteractedwith the rootvortices fromeachblade,generatinghightangentialvelocities in the nacelleregion. Forpureaxialinflowtheaveragednacellewindspeedvariedapproximatelylinearlywiththe freestreamwindspeed,whereasthenacelleflowanglechangedsignificantlywithwindspeed. Thenacelleanemometryshowedsignificantdependenceonbothyawandtiltangleswithyaw ◦ errorsofupto10 whenoperatinginatiltedinflow. (cid:0)(cid:2)& (cid:28)(cid:8)(cid:7)(cid:7)(cid:20)(cid:16)(cid:15)(cid:6)(cid:12)(cid:8)(cid:5) ’(cid:15)(cid:24)(cid:20)(cid:9) (cid:18)(cid:7)(cid:15)(cid:5)(cid:24)(cid:12)(cid:6)(cid:12)(cid:8)(cid:5) %(cid:8)(cid:9)(cid:20)(cid:16)(cid:12)(cid:5)$ (cid:8)(cid:17) ((cid:15))(cid:12)(cid:5)(cid:15)(cid:7) (cid:6)(cid:8) (cid:18)(cid:10)(cid:7)(cid:27)(cid:10)* (cid:16)(cid:20)(cid:5)(cid:6) (cid:18)(cid:7)(cid:15)(cid:5)(cid:24)(cid:12)(cid:6)(cid:12)(cid:8)(cid:5) For thin airfoils a very good agreement is observed between measurements, Xfoil computa- tionandpredictionsbythe2DEllipSyscodeforlowanglesofattack.Fora thickairfoiland acylinderthecouplingoftheDESmethodologyandthelaminar/turbulenttransitionmodelis demonstrated.Fortheairfoilthesecomputationsshowanimprovedagreementwiththemea- sureddatainstall,comparedto2Dcomputations.Inthecylindercasethecomputationsshow thatthecodeiscapableofpredictingtheflowfromthelaminarregionataReynoldsnumberof 10tothefullyturbulent/transitionalflowataReynoldsnumberaboveonemillion.Theuseof thecombinedDES/transitionalmethodologyimprovesthepredictionofthedragcrisisonthe cylinder compared to pure DES simulation. Additionally, the DES/transitional methodology predictsthecorrectflowphenomenaincludinglaminarseparationandturbulentreattachment followedbyturbulentseparation. (cid:0)(cid:2)+ ,(cid:20)(cid:7)(cid:8)(cid:15)(cid:11)(cid:8)(cid:10)(cid:24)(cid:6)(cid:12)(cid:11)(cid:24) Theaimofthiscontributionistwo-sided.Firstly,anexistingtrailingedgenoisemodelisvali- datedbycomparisonwithexperimentaldata.Measuredairfoilsurfacepressurefluctuationsare comparedwiththecomponentofthemodelthatrelatestheturbulentboundarylayercharacter- isticstothesurfacepressure.Farfieldsoundpressurelevelsarealsoconsideredforcomparisons betweenmodelresultsandexperimentaldata.Secondly,themodelisimplementedintoanair- foildesigncodethatisnormallyusedforaerodynamicoptimization.Anexistingwindturbine airfoilis optimizedin orderto reduceits noise emission,tryingat the same time to preserve itsaerodynamicperformancesandgeometriccharacteristics.Themodificationsresultingfrom thisnewdesignareanalyzed. (cid:0)(cid:2)- .(cid:20)(cid:24)(cid:12)$(cid:5) (cid:8)(cid:17) /(cid:12)$(cid:22) ((cid:12)(cid:17)(cid:6)0 ((cid:8)(cid:19) "(cid:8)(cid:12)(cid:24)(cid:20) ,(cid:12)(cid:7)(cid:17)(cid:8)(cid:12)(cid:16)(cid:24) (cid:15)(cid:5)(cid:9) /(cid:12)$(cid:22) ,(cid:20)(cid:7)(cid:8)(cid:9) (cid:5)(cid:15))(cid:12)(cid:11) 1(cid:20)(cid:7)(cid:17)(cid:8)(cid:7))(cid:15)(cid:5)(cid:11)(cid:20) Noisefromwindturbineshasseveralsourcessuchasgear,generatorandaerodynamics.This workfocusesontheaerodynamicnoise,alsocalledaeroacoustics.Thegenerationofthisnoise iscommonlydividedintodifferentsources,wherethenoisegeneratedfromthetrailingedge is one of a few dominant sources. The objective of this work is to design airfoils which are aerodynamicallyhighperformingandhavereducednoise.Thefirstofthreestepsinthisinves- tigationwasimplementationandvalidationofanadvancedtrailingedgenoisemodel(TNO), whichshowedthatthemodeldoesnotpredictthenoiselevelaccurately,butcapturedthecor- rect trends. Thus, the model can be used qualitatively in a design process. The second step involved the implementation of the model in the airfoil design tool AIRFOILOPT and test- ingtheimplementationbyreducingthenoiseontheRisø-B1-18andtheNACA63418airfoils showedthatthenoisecouldbereducedbetween1and2.5dB,whilestillmaintainingitsaero- dynamiccharacteristics.Thethirdandlaststepwasthedesignofahighperformanceandhigh liftairfoilwhichhadits basisintheRisø-C2-18.Whilemaintainingtheaerodynamicperfor- (cid:10) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:2)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)
Description: