ebook img

Thesis - Departement Computerwetenschappen - KU Leuven PDF

282 Pages·2006·1.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thesis - Departement Computerwetenschappen - KU Leuven

KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT INGENIEURSWETENSCHAPPEN DEPARTEMENT COMPUTERWETENSCHAPPEN AFDELING NUMERIEKE ANALYSE EN TOEGEPASTE WISKUNDE Celestijnenlaan 200A – B-3001 Leuven MULTISCALE AND HYBRID METHODS FOR THE SOLUTION OF OSCILLATORY INTEGRAL EQUATIONS Promotor: Proefschrift voorgedragen tot Prof. Dr. ir. S. Vandewalle het behalen van het doctoraat in de ingenieurswetenschappen door Daan HUYBRECHS Mei 2006 KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT INGENIEURSWETENSCHAPPEN DEPARTEMENT COMPUTERWETENSCHAPPEN AFDELING NUMERIEKE ANALYSE EN TOEGEPASTE WISKUNDE Celestijnenlaan 200A – B-3001 Leuven MULTISCALE AND HYBRID METHODS FOR THE SOLUTION OF OSCILLATORY INTEGRAL EQUATIONS Jury: Proefschrift voorgedragen tot Prof. Dr. ir. L. Froyen, voorzitter het behalen van het doctoraat Prof. Dr. ir. S. Vandewalle, promotor in de ingenieurswetenschappen Prof. Dr. A. Bultheel door Prof. Dr. ir. G. Vandenbosch Daan HUYBRECHS Prof. Dr. ir. R. Cools Prof. Dr. ir. D. Roose Prof. Dr. A. Iserles (University of Cambridge) Prof. Dr. R. Stevenson (Universiteit Utrecht) U.D.C. 519.64 Mei 2006 c Katholieke Universiteit Leuven — Faculteit Ingenieurswetenschappen (cid:13) Arenbergkasteel, B-3001 Leuven, Belgium Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the publisher. D/2006/7515/48 ISBN 90-5682-714-6 Rev. 1.1 Multiscale and hybrid methods for the solution of oscillatory integral equations Daan Huybrechs Departement Computerwetenschappen, K.U.Leuven Celestijnenlaan 200A, B-3001 Leuven, Belgi¨e Abstract Wavesandoscillatoryphenomenaaboundinmanydisciplinesofscienceand engineering. Prime examples are electromagnetic and acoustic waves that permeatetheatmosphere. Inthisthesis,weanalyseanddevelopalgorithms for the efficient numerical simulation of the scattering of such waves. Time-harmonic scattering problems are modelled by an integral equa- tion formulation. We consider three multiscale methods for the efficient solution of the resulting oscillatory integral equation: methods based on wavelets, methods based on hierarchical matrices and fast multipole meth- ods. Although the discretisation matrix for integral equations is a dense matrix, each of these methods yields a fast matrix-vector product, where the number of operations scales approximately linearly in the number of unknowns. The solution can then be obtained efficiently in combination with an iterative Krylov subspace solver. Weshowthatwaveletbasedmethodsarenotsuitableforhighfrequency problems, where the number of oscillations is large with respect to the size of the scattering obstacle. We quantify the behaviour of the method in the oscillatory setting, and propose an improvement based on wavelet packets. Quadrature techniques are constructed for the efficient implementation of wavelet Galerkin discretisations. Methods based on hierarchical matrices and fast multipole methods are discussed for low frequency and high fre- quency scattering problems, and their applicability is compared. iv Due to their ubiquitous nature in wave phenomena, oscillatory integrals arestudied. Anewmethodisproposedfortheevaluationofunivariateand multivariate oscillatory integrals, based on an extension of the method of steepest descent. Contrary to traditional methods, the accuracy of the new method increases rapidly with increasing frequency of the integrand, and it is shown that its computational cost is very low. Finally, the insights in the behaviour of oscillatory integrals lead to the formulation of a novel method for highly oscillatory integral equations. We proposeahybridmethodthatcombinesasymptoticestimatesofthesolution with a classical boundary element discretisation. The hybrid asymptotic method requires a number of operations that is fixed with respect to the frequency. Results are given for the case of smooth and convex scattering obstacles. We show that the discretisation matrix in this case is small and highly sparse. Multiscale and hybrid methods for the solution of oscillatory integral equations Daan Huybrechs Departement Computerwetenschappen, K.U.Leuven Celestijnenlaan 200A, B-3001 Leuven, Belgi¨e Samenvatting Golven en golfverschijnselen komen voor in verchillende disciplines van de wetenschap en in vele ingenieurstoepassingen. De voornaamste voorbeel- den zijn electromagnetische en akoestische golven die ons overal omgeven. In deze doctoraatsthesis analyzeren en ontwikkelen we algoritmes voor de effici¨ente numerieke simulatie van de weerkaatsing van dergelijke golven. Tijdsharmonischeverstrooi¨ıngsproblemenwordengemodelleerdmeteen wiskundige formulering in de vorm van een integraalvergelijking. We be- kijken drie multischaalmethodes voor het oplossen van de resulterende os- cillerende integraalvergelijking: methodes gebaseerd op wavelets, methodes gebaseerdophi¨erarchischematricesensnellemultipoolmethodes. Hoewelde discretizatiematrix voor integraalvergelijkingen een volle matrix is, maakt elk van die methodes een snel matrix-vectorproduct mogelijk waarbij het aantal bewerkingen bij benadering linear is in het aantal onbekenden. De oplossing kan dan snel gevonden worden in combinatie met een iteratieve Krylov deelruimte oplossingsmethode. We tonen aan dat waveletgebaseerde methodes niet geschikt zijn voor problemen met hoge frequenties, waarbij het aantal oscillaties groot is ten opzichtevandegroottevanhetweerkaatsendeobstakel. Weanalyzerenhet gedragvandemethodeineensterkoscillerendregime,enstelleneenverbe- tering voor op basis van wavelet pakketten. Kwadratuurtechnieken worden vi opgesteld voor de effici¨ente implementatie van wavelet-Galerkin discretiza- ties. Methodes gebaseerd op hi¨erarchische matrices en snelle multipool- methodes worden onderzocht voor lage- en hoge frequentieregimes, en de toepasbaarheid van de methodes wordt vergeleken. Omwille van hun verschijnen in de beschrijving van tal van golfproble- men, worden vervolgens integralen bestudeerd met een sterk oscillerende integrand. Er wordt een nieuwe methode voorgesteld voor de evaluatie van dergelijkeintegralenin´e´enofmeerderedimensies,gebaseerdopeenuitbrei- dingvandemethodevandesteilstehelling. Integenstellingtottraditionele methodesverhoogtdenauwkeurigheidvandenieuwemethodesterkbijstij- gende frequenties, en we tonen aan dat de berekeningstijd klein blijft. Tenslotte worden de verworven inzichten in het gedrag van oscillerende integralen aangewend in een originele oplossingsmethode voor sterk oscil- lerende integraalvergelijkingen. We stellen een hybride methode voor die een asymptotische schatting van de oplossing combineert met een klassie- ke randelementendiscretizatie. Resultaten worden gegeven voor het geval van convexe obstakels met een zachtverlopende rand. We tonen aan dat de discretisatiematrix in dit geval klein is en in hoge mate ijl. Preface This thesis is the result of four years of research in numerical analysis, of analysing and developing algorithms for the simulation of engineering pro- blems. YoucouldsaythatIhavespenttheseyearstakingthingsaparttosee whatmakesthemwork. ThisismuchlikeIdidwhenIwasyoung,although, admittedly, wavelets are somewhat less tangible than clock radio’s. Severalpeoplehavehelpedmetogettothispoint,andI’dliketomention a few that have made a difference. Foremost, I would like to thank Stefan Vandewalle,mysupervisor. Hehasoriginallygivenmethechancetopursue thestudyofintegralequations. Sincethen,hehasactivelysupportedmein various ways, and introduced me to many people. Also, it is no coincidence that almost every referee report that we received on one of our papers stated that the paper was well written. This is certainly due to Stefan and his strong desire for clarity and perfection. A number of people from abroad have also played an important role. I thankStephenLangdonandSimonChandler-Wilde(UniversityofReading) for inviting me to Reading and for the great experience I’ve had there. Likewise, I thank Arieh Iserles (University of Cambridge) for a wonderful visit to Cambridge, but also for his support in my research and for the opportunity to participate in the HOP programme at the Isaac Newton InstituteinCambridgenextyear. Iamverymuchlookingforwardtodoing research in the United Kingdom. I thank all the members of the jury for agreeing to take part in my de- fence,andespeciallymyassessorsAdhemarBultheelandGuyVandenbosch fortheircarefulreadingofthetextandtheirsuggestionsforimprovements. IhavelearnedmanyaspectsofnumericalintegrationfromRonaldCools. There are numerous other people at the department who had an influence on this thesis, in particular the members of the TWR research group and theothergroups, withwhomI’vehadmanyinterestingdiscussions. I’dlike to thank Bert, Dominik and Bart for making our office an enjoyable place to work, and Pieter for the many snooker games. It’s funny to notice how the level of our game accurately reflected the deadlines we faced. Judging from past experiences, we should be breaking some records after our PhD. vii viii PREFACE Finally, I would like to thank my family and friends for their support over the years, especially my fianc´ee Elise. The times I was faced with a choice of different research paths to pursue, her advice has invariably been to work harder and do it all. She then made sure that I could do so. It is impossibletosayhowmuchhermotivationandencouragementhavehelped me, except that it must be a lot. Fouryearsago,intheprefaceofmymaster’sthesis,Iwrotethatresearch is an ongoing process without end. It’s an obvious truth, that I can easily repeathere. Itisperhapsatellingfactthatthelistofsuggestionsforfuture researchattheendofthisthesisislongerthanthelistofachievements. One cannotpossiblyhopetofindalltheanswers. Instead,intheyearstocome, I hope to find many more interesting questions. Daan Huybrechs May 2006

Description:
Waves and oscillatory phenomena abound in many disciplines of science and This thesis is the result of four years of research in numerical analysis, of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.