ebook img

Thesis by Zaenab Abd Allahl PDF

206 Pages·2012·3.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thesis by Zaenab Abd Allahl

N - ON THERMAL ATMOSPHERIC PRESSURE PLASMA FOR REMEDIATION OF VOLATILE ORGANIC COMPOUNDS A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2012 ZAENAB ABD ALLAH THE SCHOOL OF CHEMICAL ENGINEERING AND ANALYTICAL SCIENCE Contents 1 Introductiontotheenvironmentalproblemandtechnologicalplasmas 28 1.1 Theenvironmentalproblemofairpollution. . . . . . . . . . . . . . . . . 28 1.1.1 Globalwarmingandgreenhousegases. . . . . . . . . . . . . . . 29 1.1.2 Acidrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.1.3 Groundlevelozone . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.2 Volatileorganiccompounds(VOCs) . . . . . . . . . . . . . . . . . . . . 30 1.3 RemovalofVOCsfromgasstreams. . . . . . . . . . . . . . . . . . . . . 31 1.4 Principlesoftechnologicalplasmas . . . . . . . . . . . . . . . . . . . . . 33 1.5 Non-thermalplasmageneration,propertiesandapplication . . . . . . . . 34 1.6 Typesofplasmadischarges . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.7 Directcurrent(DC)discharge . . . . . . . . . . . . . . . . . . . . . . . 36 1.7.1 Coronadischargeplasmareactors . . . . . . . . . . . . . . . . . 37 1.7.2 Radiofrequency(RF)andmicrowavedischarges . . . . . . . . . 38 1.7.3 Dielectricbarrierdischarge(DBD) . . . . . . . . . . . . . . . . . 38 1.7.4 Surfacedischargeplasmareactor(SD) . . . . . . . . . . . . . . . 40 1.8 Packed-bedplasmareactorcharacteristicsandadvantagesforairpollutant remediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.8.1 Pelletmaterialsanddielectricconstant . . . . . . . . . . . . . . . 42 1.8.2 Pelletsizeandshape . . . . . . . . . . . . . . . . . . . . . . . . 43 1.8.3 Advantagesandapplicationsofpacked-bedplasmareactors . . . 43 2 1.9 Literaturereviewfordichloromethaneandmethylchloridedecomposition usingplasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.10 Aimsandobjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.11 Structureofthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 Methodology 47 2.1 Experimentalarrangements . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 Packed-bedplasmareactors . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.1 Singlestagepacked-bedplasmareactor . . . . . . . . . . . . . . 48 2.2.2 Multiplepacked-bedplasmareactor . . . . . . . . . . . . . . . . 50 2.3 SpectroscopicdiagnostictechniquesusinganFTIRspectrometer . . . . . 51 2.3.1 PrinciplesofIRspectroscopy . . . . . . . . . . . . . . . . . . . 52 2.3.2 FTIRspectrometercomponents . . . . . . . . . . . . . . . . . . 53 2.3.3 TheadvantagesofFTIRspectroscopy . . . . . . . . . . . . . . . 58 2.4 Sampling,spectralanalysesandconcentrationcalculations . . . . . . . . 58 2.4.0.1 Signal to noise ratio, spectral resolution and limit of detectionfortheFTIRspectrometer . . . . . . . . . . . 62 2.4.1 Opticalemissionspectroscopy . . . . . . . . . . . . . . . . . . . 65 2.5 Gasdeliverysystemandthecalculationsofthegasflowrates . . . . . . . 66 2.6 Errorcalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.6.1 Theerrorinconcentrationscalculation. . . . . . . . . . . . . . . 68 2.6.2 ErrorcausedbyDCMtemperaturechange . . . . . . . . . . . . . 69 2.7 Electricalmeasurementsandcalculations . . . . . . . . . . . . . . . . . 70 2.8 Time required to reach a steady state plasma in nitrogen and argon gas streamsgeneratedinapacked-bedplasmareactor . . . . . . . . . . . . . 72 3 2.8.1 Dichloromethane decomposition in nitrogen and argon plasma overtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.8.2 Nitrogen and argon plasma emissions over time in a packed-bed plasmareactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.8.3 Consumedpowerandplasmatemperatureovertime . . . . . . . 74 2.8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3 Remediation of dichloromethane, CH Cl using non-thermal plasma gener- 2 2 atedinapacked-bedplasmareactor 77 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1.1 Experimentalsetup . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2 InfluenceofoxygenconcentrationontheremovalefficiencyofDCM. . . 79 3.2.1 The effect of oxygen concentration on the formation of plasma endproducts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 Influenceofinitialdichloromethaneconcentrationsontheremovalefficiency. 85 3.3.1 The effectof initial dichloromethaneconcentration on the forma- tionofplasmaendproducts. . . . . . . . . . . . . . . . . . . . . 85 3.4 InfluenceofenergydensityontheremovalefficiencyofDCM. . . . . . . 87 3.4.1 Influenceofenergydensityontheformationofplasmaendproduct fromdichloroethanedecomposition. . . . . . . . . . . . . . . . . 89 3.5 InfluenceoftheplasmaresidencetimeontheremovalefficiencyofDCM. 90 3.6 InfluenceofbackgroundgasontheremovalefficiencyofDCM . . . . . . 91 3.6.1 Argonplasmainfluenceontheremovalefficiencyofdichloromethane 92 3.7 Reaction pathway for the decomposition of dichloromethane in non- thermalplasmareactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.8 Initialkineticsimulationwork . . . . . . . . . . . . . . . . . . . . . . . 97 3.9 Comparisonbetweentheresultsobtainedinthisinvestigationforoxygen concentrationinfluenceandotherwork. . . . . . . . . . . . . . . . . . . 100 3.10 Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . 102 4 4 Remediation of Methyl Chloride, CH Cl using non-thermal plasma gener- 3 atedinapacked-bedplasmareactor 104 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2 Influenceofoxygenconcentrationandinitialmethylchlorideconcentration ontheremovalefficiencyofmethylchloride . . . . . . . . . . . . . . . . 105 4.2.1 Influence ofoxygen and initialmethyl chloride concentrationon plasmaby-productformation. . . . . . . . . . . . . . . . . . . . 108 4.3 Influenceofenergydensityontheremovalefficiency . . . . . . . . . . . 111 4.3.1 Energydensityeffectonplasmaby-productformation . . . . . . 112 4.4 Influenceofplasmaresidencetimeontheremovalefficiency . . . . . . . 117 4.5 Reactionpathwayforthedecompositionofmethylchlorideinnon-thermal plasmareactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.6 SummaryandConclusions . . . . . . . . . . . . . . . . . . . . . . . . . 120 5 TheeffectofaddingalkeneonthedestructionofDCMinnon-thermalplasma generatedinapackedbedreactor 122 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.3 The influence of adding varying amounts of propylene to a gas stream containing 500 ppm of dichloromethane on the removal efficiency of dichloromethaneinnon-thermalplasma. . . . . . . . . . . . . . . . . . . 124 5.3.1 Theeffectofaddedpropylene concentrationontheformationof plasmaendproducts. . . . . . . . . . . . . . . . . . . . . . . . . 127 5.3.2 Reaction pathway for the decomposition of propylene in non- thermalplasmareactor. . . . . . . . . . . . . . . . . . . . . . . . 129 5.4 SummaryandConclusions . . . . . . . . . . . . . . . . . . . . . . . . . 131 5 6 Multiplepacked-bedplasmareactor 133 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Experimentalsetup . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.2 Multiplepacked-bedplasmareactorfordichloromethaneremediation . . 136 6.2.1 The energy efficiency parameter β for the multiple packed-bed plasmareactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2.2 Theformationofplasmaendproductsasaresultofdichlorometh- anedecompositioninamultiplepacked-bedplasmareactor . . . 141 6.3 Theeffectofaddingpropyleneontheremovalefficiencyofdichlorometh- aneinamultiplepacked-bedplasmareactor. . . . . . . . . . . . . . . . . 144 6.3.1 Thedecomposition ofdichloromethane withthe additionof 500 ppmpropyleneusingamultiplepacked-bedplasmareactor. . . . 144 6.3.2 Thedecomposition ofdichloromethane withtheaddition of1000 ppmpropyleneusingamultiplepacked-bedplasmareactor. . . . 148 6.3.3 The energy efficiency parameter β for dichloromethane decom- positioninamultiplepacked-bedplasmareactorwiththeaddition of1000ppmpropylenetothegasstream. . . . . . . . . . . . . . 151 6.4 In situ IR absorption measurements for the decomposition of dichloro- methaneusingamultiplepacked-bedplasmareactor. . . . . . . . . . . . 152 6.4.1 Comparisonofdichloromethanemeasuredinsituandin-lineusing amultiplepacked-bedplasmareactor. . . . . . . . . . . . . . . . 156 6.4.2 The detection of new species with in situ measurements using a multiplepacked-bedplasmareactor. . . . . . . . . . . . . . . . . 157 6.5 Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . 158 6 7 Behaviourofnitrogenoxidesinnon-thermalplasmapacked-bedreactor 160 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.3 Formation of nitrogen oxides in non-thermal plasma with nitrogen and oxygengasmixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.4 Theeffectofaddingchlorinatedhydrocarbonsontheformationofnitrogen oxides in non-thermal plasma generated in a single stage packed-bed plasmareactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.5 Theeffectofaddingpropylenealonecomparedwithamixtureofdichloro- methaneandpropyleneontheformationofnitrogenoxidesinnon-thermal plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.6 Theinfluenceofthenumberofplasmacellsontheformationofnitrogen oxidesasplasmabyproductduringthedecompositionofdichloromethane inanitrogen-oxygenplasma. . . . . . . . . . . . . . . . . . . . . . . . . 171 7.7 AcomparisonofNO behaviourinallthestudiedconditionsinairplasma. 173 x 7.8 Reaction pathway for the formation of nitrogen oxides in non-thermal plasmareactor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.9 Summaryandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . 176 8 Summary,conclusionsandfurtherwork 177 8.1 Furtherwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 9 Appendix 202 Thetotalwordcountofthisthesisis58460words. 7 List of Figures 1.1 A sketch of the Earths annual energy balance illustrating the incoming radiation from the sun and the radiated energy from earth surface. All the numbers are in W m−2, the width of arrows is proportional to their importance. ThissketchistakenfromKiehletal. (1). . . . . . . . . . . . 29 1.2 Examplesofnaturallygeneratedplasma,sun,auroraandlightning. Pic- turesaretakenfrom(en.wikipedia.org)on26-11-2011 . . . . . . . . . . 34 1.3 SeveralDCdischargesasafunctionofthepropertiesoftheappliedvoltage anddischargecurrent. Takenfrom(2)and(3) . . . . . . . . . . . . . . . 37 1.4 Two examples of pulsed corona plasma reactors. (a) is a wire and pipe reactorand(b)isawireandplatereactor . . . . . . . . . . . . . . . . . 38 1.5 DischargedevelopmentinaDBDreactor. (a,bandc)showsthedischarge development,while(dande)showtheeffectofincreasingthedielectric conductivityanddecreasingthegap. Takenfrom(4) . . . . . . . . . . . 39 1.6 SomeexamplesforDBDplasmareactors . . . . . . . . . . . . . . . . . 40 1.7 Anexampleofsurfacedischargeplasmareactor . . . . . . . . . . . . . . 41 1.8 Examplesofpacked-bedplasmareactors . . . . . . . . . . . . . . . . . . 41 2.1 Aschematicdiagramoftheexperimentalinletsystemwhichhasbeenused foralltheinvestigationscarriedoutinthisstudy. . . . . . . . . . . . . . 48 2.2 Avelocityprofiledistributioninafunnel . . . . . . . . . . . . . . . . . . 49 2.3 Aphotoandasketchforthesinglestageplasmareactor . . . . . . . . . 50 2.4 Photograph and sketch of the modified single stage packed-bed plasma reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.5 Photographandsketch ofthemultiplepacked-bedplasmareactor. Three similarneonsignpowersupplieswithafrequencyof20kHzwereused. . 52 8 2.6 Dichloromethanefundamentalmodesofvibration. AdaptedfromShiman- ouchi,1972(5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.7 An example FTIR spectrum for about 500 ppm of dichloromethane in nitrogenshowingthevibrationalmodes. Amultiplepassopticalgascell witha5.3mpathlengthwasused. . . . . . . . . . . . . . . . . . . . . . 55 2.8 AschematicdiagramforthelayoutofaFTIRspectrometer . . . . . . . . 55 2.9 AnexampleofFTIRinterferogram . . . . . . . . . . . . . . . . . . . . . 56 2.10 An example of the steps taken via the FTIR spectrometer to obtain an absorbance spectrum for a gas stream of 500 ppm DCM, 3 % oxygen andnitrogen. Amultiplepassopticalgascellwith5.3mpathlengthand spectralresolutionof1cm−1 wereused. . . . . . . . . . . . . . . . . . . 57 2.11 Specac multiple pass gas cell and a sketch demonstrating the multiple reflectionstoobtaina5.3mpathlength . . . . . . . . . . . . . . . . . . 59 2.12 Anexampleofareasselectionwhencalculatingtheconcentrationof(A) DCMand(B)CO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.13 The integrated area between 787 and 647 cm−1 for (a) an experimental spectrum of DCM at unknown concentration measured with 5.3 meter opticalpathlengthandaresolutionof2cm−1. (b)standardspectrumfor 1ppmdichloromethanemeasuredwith1meteropticalpathlengthanda resolutionof0.1cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.14 Examples of the different options for setting the spectral baseline for integratingtheareabeneatheachpeak. . . . . . . . . . . . . . . . . . . 61 2.15 AnexampleFTIRspectrumforabout1000ppmCOwitharesolutionof1 cm−1. Amultiplepassopticalgascellwitha5.3mpathlengthwasused. . 62 2.16 An example of the spectrum used to calculate the limit of detection. (a) showsthebackgroundnoisewitharesolutionof1cm−1,while(b)shows theHCNspectrumfor1ppmwitharesolutionof0.1cm−1. Bothspectra arefor5.3mopticalpathlength. . . . . . . . . . . . . . . . . . . . . . . 64 2.17 An example HCN limit of detection calculation. The intercept point between HCN peaks heights and the minimum accepted signal to noise ratio. HCNlimitofdetectionisabout15ppm. . . . . . . . . . . . . . . . 64 9 2.18 Nitrogenplasmaemission . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.19 Simplifiedsketchofthegasdeliverysystem . . . . . . . . . . . . . . . . 66 2.20 Standardandexperimentalspectrafor500ppmCO.Thestandardspec- trumwitharesolutionof0.1cm−1isinblueandtheexperimentalspectrum with a resolution of 2 cm−1 is in red. The black spectrum presents the subtractionofthetwospectra. . . . . . . . . . . . . . . . . . . . . . . . 69 2.21 Voltageandcurrentwaveformsmeasuredusingapicoscope. . . . . . . . 70 2.22 Powerwaveformoveronepulse. . . . . . . . . . . . . . . . . . . . . . . 71 2.23 The removal efficiency of 500 ppm of dichloromethane in nitrogen and argon plasma over thirty minutes starting from the moment of initiating plasma. Gas streams with 0 and 1 % oxygen in a total flow rate of 1 L min−1 wereused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.24 UVvisibleemissionfromargonplasmaafteraboutfifteenminuteofiniti- atingplasmainapacked-bedplasmareactor . . . . . . . . . . . . . . . 74 2.25 Theintensityofexcitednitrogenmoleculesandargonatomsinpacked-bed plasmaismeasuredoverthirtyminutes. Totalflowrateof1Lmin−1 and anenergydensityofabout1000JL−1 wereused. . . . . . . . . . . . . . 75 2.26 Deposited energy consumption and the temperature of the reactor body fornitrogenplasmaasafunctionoftime. Measurementsweretakenevery minutefromthemomentofinitiatingplasmaandupto30minutes . . . . 75 3.1 Plasmainletsystemwhichhadbeenusedtoinvestigatetheinfluenceofa varietyofparametersontheremediationofdichloromethane. . . . . . . . 79 3.2 FTIR spectra for 500 ppm dichloromethane after plasma reactor (a) ni- trogen plasma without adding oxygen (b) nitrogen plasma with adding 3 % oxygen to the gas stream. A multiple pass optical gas cell with a 5.3 m pathlength, a total flow rate of 1 L min−1 and an energy density of about 1000 J L−1 were used. Measurements were taken about 0.75 secondsdownstreamoftheplasmareactor. . . . . . . . . . . . . . . . . 80 10

Description:
6.2 Multiple packed-bed plasma reactor for dichloromethane remediation 136. 6.2.1 The at atmospheric pressure reduces the cost related to vacuum pumps and system modifications to maintain the gnostics of the decomposition of volatile organic compounds in an atmospheric pressure
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.