DECISION MAKING WITH ANALYTICAL HIERARCHY PROCESS (AHP) FOR VIABLE MANUFACTURING OF SCREW ANDY ANAK BUJA A project report submitted in partial fulfillment of the requirement for the award of the Degree of Master of Mechanical Engineering Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia JUNE 2013 v ABSTRACT This study is an approach to investigate the viable impacts of screw manufacturing and to choose the suitable material for selected manufacturing process of screw by putting environmental aspects as important as economic aspect. The parameters involved were types of material and manufacturing process of screw that using the available data of environmental and production volume. The two different manufacturing approaches being evaluated were machining and forging process. The types of material concerned for forging process encompassed low carbon steel, alloy steel stainless steel, and aluminium alloy. On the other hand, for machining process, the material being considered in screw manufacturing were cast iron, low carbon steel, alloy steel, stainless steel and aluminium alloy. The information of environmental impacts that generated from SolidWorks Sustainability tool and screw production cost were calculate using Manufacturing cost model, both information was used in Analytic Hierarchy Process (AHP) analysis to obtain local priority of economic and environmental impacts. Then, the ranking of global priorities with combination of local priority from economic impact and environmental impacts had enabled the determination of appropriate material used for those selected screw manufacturing process. As result, low carbon steel was chosen for forging process whereas cast iron was excelled in machining process, at the same time, stainless steel was not suggested to be used in all two processes. vi ABSTRAK Kajian ini merupakan satu pendekatan untuk mengkaji gabungan kesan alam sekitar dan kesan economi bagi pembuatan skru dan memilih bahan yang sesuai untuk proses pembuatan skru yang terpilih, aspek alam sekitar diletakkan sama pentingnya dengan aspek ekonomi. Parameter yang terlibat adalah jenis bahan skru dan jenis proses pembuatan skru. Jenis proses pembuatan skru yang dikaji adalah proses pemesinan dan proses penempaan. Jenis bahan skru yang dikaji dalam proses penempaan merangkumi keluli karbon rendah, keluli aloi, keluli tahan karat, dan aloi aluminium. Sebaliknya, untuk proses pemesinan, bahan yang dikaji dalam proses pembuatan skru ialah besi tuangan, keluli karbon rendah, keluli aloi, keluli tahan karat dan aloi aluminium. Maklumat impak alam sekitar yang dijana daripada perisian SolidWorks Sustainability tool dan maklumat kos pula diperolehi melalui modul kos pembuatan, kedua-dua maklumat telah digunakan dalam Analytical Hierarchic Process (AHP ) untuk mendapatkan pemberatan untuk impak ekonomi dan impak alam sekitar. Kemudiannya, daripada pemberatan gabungan daripada kesan ekonomi dan impak alam sekitar telah membolehkan penentuan bahan yang sesuai dipilih. Hasilnya, keluli karbon rendah telah dipilih untuk proses penempaan manakala besi tuang telah cemerlang dalam proses pemesinan, pada masa yang sama, keluli tahan karat tidak dicadangkan untuk digunakan untuk kedua-dua proses yang dikaji. vii CONTENTS TITLE i DECLARATION ii DEDICATION iii ACKNOWLEDGEMENTS iv ABSTRACT v CONTENT vii LIST OF TABLE x LIST OF FIGURE xi LIST OF SYMBOLS xiii CHAPTER 1 INTRODUCTION 1.1 Background of study 2 1.1.1 Screw types 3 1.1.2 Screw materials 4 1.1.3 Sustainability 4 1.2 Objectives 5 1.3 Scopes 5 1.4 Limitations of study 6 1.5 Statement of problem 7 1.6 Expected result 8 1.7 Thesis outline 8 viii CHAPTER 2 LITERATURE REVIEW 2.1 Manufacturing industry and impact on environment 9 2.1.1 Impact of recycling 10 2.1.2 Eco-design 11 2.2 Screw manufacturing 11 2.2.1 Forging 12 2.2.2 Hot forging 13 2.2.3 Cold forging 13 2.2.4 Comparison between hot forging and cold Forging 15 2.2.5 Screw machining 15 2.2.6 Screw threading 16 2.2.7 Screw manufacturing process flow chart 18 2.3 Material selection 19 2.3.1 Green materials 19 2.3.2 Recyclable materials 20 2.4 Sustainability and sustainable development 20 2.4.1 Economic aspect in sustainability 23 2.4.2 Environmental aspect in sustainability 23 2.4.3 Social aspect in sustainability 24 2.4.4 Sustainability analysis 25 2.5 Decision making method 26 2.5.1 Multi-criteria analysis 27 2.5.2 Analytical Hierarchy Process 27 2.6 Previous study 30 ix CHAPTER 3 METHODOLOGY 3.1 Overview 31 3.2 Methodology flow chart 32 3.3 Screw determination 33 3.4 3D CAD drawing 33 3.5 Parameter selection 34 3.6 Environmental impact analysis 35 3.7 Decision Making 36 3.7.1 AHP methodology 36 3.8 Screw Manufacturing Cost Model 40 CHAPTER 4 RESULTS AND DISCUSSION 4.1 Data of environmental impact 46 4.2 Data of economic impact 46 4.3 Analytic hierarchy process (AHP) Analysis 47 4.3.1 Global priority for environmental impact 49 4.3.2 Global priority for economic impact 50 4.3.3 Global priority for viable impact 50 CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion 53 5.2 Recommendations 54 REFERENCES 55 APPENDICES 58 x LIST OF TABLE TABLE NO. TITLE PAGE 2.1 Herman Daly proposal 24 2.2 Environmental indicator 25 2.3 Example of goal, criteria and alternatives 28 2.4 The fundamental scale of absolute numbers 29 3.1 Data of environment impacts of screw production 35 3.2 Pair-wise comparison matrix for Secondary Criteria 38 3.3 Summation of the values in each column 38 3.4 Division of each value in matrix to the column total and then summation of each row 38 3.5 Division of each row summation with total row summation. 39 3.6 RI values of different value of n 39 4.1 Data of environment impacts for M5 hex screw under forging and machining operation 46 4.2 Production cost with different production volume 47 4.3 Priority weight (environmental) 50 4.4 Priority weight (economic) 50 4.5 Results of global priority 51 4.6 Global priority with different production volume 52 4.7 Table for viable impact 52 xi LIST OF FIGURES FIGURE NO. TITLE PAGE 1.1 Screw parts 2 1.2 Fastener categories 3 1.3 Screw head style 4 1.4 Venn diagram of sustainable development 5 1.5 Interlocking circle model 6 1.6 Sustainable company criteria 8 2.1 Shares of Global Final Energy Consumption and CO2 Emissions 10 2.2 Types of metal forming 12 2.3 Hot forging processes for a screw 13 2.4 Cold heading 14 2.5 Grain structure 16 2.6 (a) solid die (b) split die (c) spring die (d) pipe die 17 2.7 External threading 17 2.8 (a) single point (b) multi point (c) self-opening die 18 2.9 Flow chart of screw manufacturing 19 2.10 The hierarchical structure 21 2.11 Theme indicator framework 22 2.12 Sustainable development triangle 22 2.13 Summary of AHP method 29 3.1 Full thread hexagon head screws 33 3.2 Hexagonal machine screw 34 3.3 Sustainability toolbar 35 3.4 Flow chart of AHP methodology 37 xii FIGURE NO. TITLE PAGE 3.5 Hierarchical structure 38 3.6 How to get λ 39 max 3.7 P (basic processing cost) for c forming process 41 3.8 Relative cost data for material processing suitability 41 3.9 Three basic shape categories 42 3.10 Subcategory of category A 42 3.11 Shape complexity coefficient against sub category classification 43 3.12 Section coefficient against maximum dimension graph. 44 3.13 (a)Tolerance coefficient, (b) Surface finish coefficient 44 3.14 Sample material cost values per unit volume 45 3.15 Waste coefficient (W ) 45 c 4.1 The hierarchical structure used in a. forging, b. machining process 48 4.2 AHP analysis (Front page) 48 4.3 AHP analysis (Main frame) 48 xiii LIST OF SYMBOLS M = VC + R P i mt c c V = volume of material required in order to produce the component C = the cost of the material per unit volume mt P = Basic processing cost for an ideal design of component by a specific c process R = relative cost coefficient assigned to a component design. c R = C C C C c mp c s ft C = suitability of using various materials with different processes mp C = Shape complexity c C s Section coefficient = C = Tolerance coefficients t C surface finish coefficients f =
Description: