N° d’ordre 2011ISAL 0074 Année 2011 Thèse Multi-Providers Location Based Services for Mobile-Tourism: a Use Case for Location and Cartographic Integrations on Mobile Devices Présentée devant L’Institut National des Sciences Appliquées de Lyon Pour obtenir Le grade de Docteur École doctorale : Informatique et Mathématiques Par Roula Karam Soutenue publiquement le 26 Septembre 2011 devant la commission d’examen Jury MM. Président du Jury : Ahmed LBATH, Professeur, Université Joseph Fourier, Grenoble, France Rapporteurs : Nadine CULLOT, Professeur, Université de Bourgogne, Dijon, France Elena MUGELLINI, Professeur, Ecole d‘Ingénieurs et d‘Architectes de Fribourg, Suisse Directeurs de Thèse : Robert LAURINI, Professeur, INSA de Lyon, Université de Lyon, France Rima KILANY, Maître de Conf., Université St. Joseph, Ecole Sup. d‘Ing. de Beyrouth, Liban Examinateur : Franck FAVETTA, Maître de Conf., Ecole Nat. Sup. de la Nature et du Paysage, Blois, France Laboratoires de recherche : INSA de Lyon, Laboratoire d'InfoRmatique en Image et Systèmes d‘Information, LIRIS. Université Saint Joseph, Ecole Supérieure d‘Ingénierie de Beyrouth, ESIB. Ecole Navale, Institut de Recherche de l‘Ecole Navale, IRENav. To My Family My father NAGIB My mother HIND My sisters HILDA and CAROLE My brother PAUL, his wife PATRICIA and their daughter LYNN My love MICHELE We are maybe STARS in the eyes of others, but NOT in our eyes. We are a FAMILY, that’s all. And every one of us knows very well that we are NOTHING without each others. One, two could NOT be STAR(S); I could Not be without you ALL together. This PhD degree is dedicated for ALL of us. Thank you for everything. Roula Nagib KARAM 29/07/2011 Acknowledgments This dissertation would not have been possible without the guidance and the help of several persons who in one way or another have contributed and extended their valuable assistance in the preparation and completion of this study. First of all, my highest gratitude to my PhD main supervisor, distinguished Pr. Robert LAURINI, formerly deputy head of the LIRIS laboratory (Lyon Research Center for Images and Information Systems), formerly vice-president of the INSA board of Regents and currently president of Academics without Borders. I remembered very well as if it was today when we first met on January 28th, 2008 at 08.30 in his office. After discussing the subject and how to start, the last question that came to my mind in that day and eventually the only question that stays in my mind till now: Why had you chosen me for this subject? I had lot of weaknesses but he replied back: ―I trust you‖. From that moment, I decided to keep on my promise and never disappoint him despite of all obstacles I had faced. He was not only my thesis supervisor but as well my Godfather to adjust the balance in my thoughts and emotions. I will never forget Dr. Rima KILANY, my second supervisor from Saint Joseph University, Lebanon. She has been my inspiration as I hurdle all the obstacles in the completion of this research work. Her unselfish and unfailing supports were unlimited, day and night, during business hours and holidays. She was always here and my refugee across time and distance. Pr. Ahmed LBATH, Pr. Fadi GEARA, Pr. Nadine CULLOT and Pr. Elena MUGELLINI for their support, their interest in my work, their corrections and feedbacks to excel. Pr. Christophe CLARAMUNT, head of the IRENav research laboratory at the French Naval Academy (Ecole Navale), who welcomes me for teaching and prepares the environment so I can pursue my last PhD year without pressure. I cannot forget as well, associate Pr. Eric SAUX, head of the teaching department at Ecole Navale, for his continuous support, understanding and kindness that cheer me up when I can‘t go on. Dr. Cyril RAY and Dr. Rémy THIBAUD, thank you a lot for all your support regarding my academic and research requirements. Pr. Fairuz SARKIS, director of the Arab Open University, Lebanon, where I started my PhD for the first two years, being a full time tutor and coordinator in the ITC department. She had supported me to do my first steps in this difficult experience and gave me the financial security to go for it till the end. I thank her for her sincerity and encouragement. Dr. Frank FAVETTA, attached member at LIRIS laboratory, INSA de Lyon for the technical and moral supports, for sharing my stress and anxiety; Thank you for all the moments we spent together and I learnt from your presence that research needs more than one person otherwise we will loose passion and motivation. Dr. Michele MELCHIORI as well, who believes in my work since we had presented our papers in the same conference. I thank you so much for your guidance, your patience and your continuous encouragement to complete this study; you make me understand in different ways that doing a PhD after being graduated since more than ten years, is not a bad decision even though we passed through other kinds of difficulties that a fresh graduated student will 3 not experience them. Good research needs maturity as well. You kept the motivation up and running! Special thanks to Mr. Imad DAOU and the fresh graduated students of Saint Joseph University who helped me to develop most of my prototypes; thank you Nadine CHEMALI, Betty JARDAK, Lamis JALALEDDINE and Rabih MOURAD. My colleagues and staff in the four universities I had worked with during my PhD: Saint Joseph University (USJ) and Arab Open University (AOU) from Lebanon, Ecole Navale (Brest) and INSA de Lyon, member of the University of Lyon, France. My warmest regards and special gratitude are for everyone who had an ear to listen to me, a hand to calm me, a voice to relax me or had prepared a bed and ―Internet connection‖ for me. Last but not the least, I could not reach my goals without my family who had supported me and lighten my dark moments, day after day since 1976 till now. My special thanks to all my relatives and friends who are still waiting for me till the end of the race. Finally, the one above all of us, the omnipresent God, for answering my prayers for giving me the strength to persevere despite my constitution wanting to give up and throw in the towel, thank you so much Dear Lord. Now, I can say that my PhD could not be started and ended without these three main keywords: Trust, Passion and Endurance. Thank you from all my heart, my mind and my soul! Roula Nagib KARAM 4 Résumé Les services géolocalisés (LBS) sont destinés à délivrer de l‘information adéquate aux utilisateurs quelque soit le temps et l‘endroit et ceci en se basant sur leur profil, contexte et position géographique. A travers n‘importe quelle application dans ce domaine, par exemple m-tourisme, les utilisateurs souhaitent toujours recevoir une réponse rapide et précise en se déplaçant. Cependant, la qualité de service proposée par les fournisseurs cartographiques actuels (i.e. Google Maps, Bing, Yahoo Maps, Mappy ou Via Michelin) dépend de leurs données géographiques. En général, ces données sont stockées dans plusieurs bases de données géographiques (BDG) dans le monde entier. D‘autre part, le nombre croissant des différentes BDGs couvrant la même zone géographique et la récupération des données/métadonnées non erronées pour un service quelconque, impliquent de nombreux raisonnements et de contrôles d‘accès aux BDGs afin de résoudre les ambiguïtés dûes à la présence des objets homologues dupliqués sur l‘écran mobile. Un exemple type nous a inspirée pour diriger notre recherche vers un problème plus important nécessitant l‘intégration cartographique pour le même service géolocalisé provenant de plusieurs fournisseurs. Considérons une requête utilisateur pour trouver les restaurants les plus proches. Il pourra récupérer la réponse d‘un restaurant américain, visualisé par deux fournisseurs différents, donc deux icones différentes placées à 50 mètres l‘une de l‘autre et avec des noms différents. La première icône porte le nom « KFC » et la seconde porte le nom « Kentucky Fried Chicken ». De même, les fonds de cartes sont différents, car provenant de fournisseurs différents et les détails sémantiques diffèrent légèrement entre les deux icones pour le même restaurant. Une interprétation classique de ce phénomène est que les fournisseurs de services devraient se servir jusqu'à présent d‘une unique base de données géographiques comme: les pages jaunes, les pages blanches, le guide des restaurants dans le monde, etc. Le refus d‘accéder plusieurs BDG ajoute de l‘incohérence et de la rigidité aux résultats fournis pour les applications géolocalisées. De plus, certaines entités d‘un point d‘intérêt peuvent être modifiées au fil du temps (changement de nom ou numéro de téléphone) et ne sont pas mises à jour systématiquement dans la BDG concernée. Une solution envisagée se propose de récupérer l‘information depuis plusieurs BDG. Mais on doit savoir comment résoudre les incohérences surtout entre des objets homologues, candidats pour intégration. Mon travail consiste à permettre cette intégration cartographique pour les applications m- tourisme et ceci en récupérant les informations spatiales/non-spatiales (noms, positions géographiques, catégorie du service, détails sémantiques et symboles cartographiques) de plusieurs fournisseurs. Cependant, ceci peut conduire à visualiser des objets dupliqués pour le même point d‘intérêt et ajouter des difficultés au niveau de la gestion des données. En outre, l‘utilisateur sera dérouté par la présence de résultats multiples pour un même point. Donc, mon but ultime sera de générer automatiquement une carte unique intégrant plusieurs interfaces des fournisseurs sur laquelle les objets homologues seront intégrés avant de les visualiser sur l‘écran mobile. 5 Dans cette dissertation, on présente MPLoM (Multi-Providers LBS on Mobile), un prototype que nous avons développé pour tester l‘intégration des données/métadonnées au niveau de leur position géographique, noms, catégorie et détails sémantiques. Au niveau cartographique, et pour générer une carte unifiée, on montre la possibilité de construire un nouveau type d‘ontologie dont les concepts sont décrits sémantiquement et visuellement (icône, texture, couleur, etc.). Pour atteindre cette approche, on propose une extension du standard Web Ontology Language, nommé CartOWL. Une fois construites les ontologies cartographiques locales pour chaque fournisseur, un raisonnement par inférence aura lieu pour aligner ces ontologies vers une ontologie du domaine touristique de référence. Cet alignement est fait en premier lieu manuellement par un expert du domaine pour éliminer les incertitudes, aux niveaux syntaxiques, sémantiques et visuels. De plus nous avons aussi étudié les avantages d‘utiliser les services web géographiques au lieu d‘un accès direct non sécurisé aux BDG. De même, on a proposé de créer un prototype pour simuler une orchestration intelligente des web services nécessaires entre OGC et W3C afin de répondre à n‘importe quelle requête utilisateur, tout en contactant plusieurs fournisseurs. Nos nouveaux concepts, basés sur certains algorithmes de fusion, sur l‘ontologie pour assurer l‘intégration au niveau sémantique et cartographique, sur l‘orchestration des géo web services, sont implémentés dans des prototypes modulaires et évalués. Un autre développement est en cours pour obtenir une plateforme complète utilisant d‘autres approches de l‘intelligence artificielle (machine learning approach). La construction, l‘alignement des ontologies cartographiques et l‘intégration par des services web géographiques seront faits automatiquement pour plus d‘efficacité et de scalabilité. Mots-Clés: Science de l‘Information Géographique, Services Géolocalisés LBS, Cartographie, Ontologie, Sémiologie Graphique, Services Web, Technologie Mobile, Web Sémantique, Application m-tourisme. 6 Abstract Location Based Services (LBS) had been involved to deliver relevant information to customers anywhere at any time and thus based on their profile, context and geographic position. Through any location based services application (LBA) (i.e. m-tourism), users who request information while on the move, intentionally seek as well a quick and precise answer on any map. However, the quality of the cartographic search engines such as Google maps, Bing, Yahoo Maps, Mappy or Via Michelin relies on their geographic datasets. Typically, these datasets had been collected from many geographic databases worldwide. However, the increasing number of different GDBs covering the same area and the retrieval of accurate data/metadata for the requested service will imply lots of reasoning processes and databases‘ accesses in order to avoid nearly-duplicated records when displayed on the screen. A motivating example had inspired us to direct our study towards a major problem which is related to location and cartographic integration of the same geo-located service from many providers. Let us consider a user‘s request to find the nearest restaurant in his area. First of all, he might encounter the answer of an American restaurant listed by two different providers, not exactly located at the same place (50 yards of difference). The same restaurant is named ―KFC‖ in the first one and ―Kentucky Fried Chicken‖ in the second one, with few differences in their semantic details and represented differently as cartographic symbols (icons, texture, etc.) on different proprietary base-maps. The classic interpretation is that the actual mono-provider search engines are still accessing their own gazetteer or geographic database. The avoidance to access many GDBs will add more inconsistencies and rigidness to LBA results. What if some fields of a geographic point of interest (POI) had been modified as time goes by (i.e. place name or telephone number) and they were not updated on this GDB? A trustworthy solution is to collect information from many GDBs. As a matter of fact, we should know how to deal with some inconsistencies especially between homologous datasets, candidates for integration. The scope of my research is to ensure location and cartographic integrations for m-tourism LBA by retrieving spatial/non-spatial information (place names, geographic positions, category type, semantic details and cartographic symbols) from many service providers. However, this will cause many nearly-duplicated records for the same datasets which would bring trouble to data management and make users confused by the different results of a unique query especially for the same point of interest. In other words, my ultimate goal is to generate automatically a unique map from multiple providers‘ portrayals such as Google Maps, Bing and Yahoo Maps while homologous features should be integrated to avoid duplicate icons on the mobile screen. In this dissertation, we present MPLoM (Multi-Providers LBS on Mobile), a platform we have developed in order to test data/metadata integration for geographic position, place names, category types and semantic details ambiguities. At visual level, and in order to achieve map conflation, we demonstrate the feasibility of building a new type of ontology which concepts are described by both semantics and visual attributes (icon, texture, color, 7 etc.). To better reach this purpose, we propose an extension of Web Ontology Language standard for cartographic issues: CartOWL. After building the cartographic ontologies for each service provider, inference reasoning will take place to match all these proprietary ontologies towards unique domain reference ontology. The matching of our prototype is done manually by a domain expert, from semantic to cartographic integrations. We also study the benefits of using geo-web services instead of the unsafe direct access to GDBs, and advocate the creation of a semantic geo-web services framework for an intelligent orchestration and integration from multiple providers. Our conceptual framework, based on some fusion algorithms, ontology reasoning for cartographic interoperability and geo-web services orchestration, had been implemented in some modular prototypes and tested for evaluation purpose. Future enhancements are currently running to have a complete combined platform with a machine learning approach. The building/matching of cartographic ontologies and the location integration via geo-web services will be done automatically for scalability purpose and better efficiency. Keywords: Geographic Information Science (GIS), Location Based Services (LBS), Cartography, Ontology, Semiology, Web Services, Mobile technology, Semantic Web, m- tourism. 8 Roula Karam- INSA de Lyon- PhD thesis – September 2011 9 Title: Multi-Providers Location Based Services for Mobile Tourism: A Use Case for Location and Cartographic Integrations on Mobile Devices. Table of Contents Acknowledgment ................................................................................................... 3 Résumé .................................................................................................................. 5 Abstract ................................................................................................................. 7 List of Figures ........................................................................................................ 11 Part 1 Context of the Thesis 1 Introduction 1.0 Motivation .................................................................................................. 14 1.1 Problem Definition ..................................................................................... 17 1.2 Methodology and Contributions.................................................................. 18 1.3 Dissertation Outline .................................................................................... 18 2 State of the Art 2.0 Introduction ................................................................................................ 22 2.1 GIS and LBS technologies .......................................................................... 22 2.2 Cartography and Semiology Rules for LBS applications ............................. 28 2.3 Interoperability of Multiple Providers Location-Based Services .................. 33 2.4 Geo-Web services and Interoperability ....................................................... 39 2.5 Ontology and Interoperability ..................................................................... 44 2.6 Summary .................................................................................................... 53 3 Reframing from the State of the Art 3.0 Introduction ................................................................................................ 56 3.1 Conceptual Assumptions ............................................................................ 56 3.2 Objectives .................................................................................................. 57 3.3 Technological Assumptions ........................................................................ 58 3.4 Contributions .............................................................................................. 58 3.5 Summary .................................................................................................... 59 Part 2 Contributions 4 MPLoM Framework 4.0 Introduction ................................................................................................ 62 4.1 The Conceptual Architecture ...................................................................... 62 4.2 The Implemented Architecture.................................................................... 77 4.3 Summary .................................................................................................... 84 9 Roula Karam- INSA de Lyon- PhD thesis – September 2011 10 5 Cartographic Ontology Prototype 5.0 Introduction ................................................................................................ 86 5.1 Scenario 1: Applying Symbology Encoding Concept ................................. 87 5.2 Scenario 2: Applying a new type of Ontology with visual concepts ............ 87 5.3 Summary .................................................................................................... 96 6 Cartographic Ontology with Protégé 6.0 Introduction ................................................................................................. 99 6.1 Conceptualization of the Cartographic Ontology ......................................... 99 6.2 Implementation of the Cartographic Ontology ............................................. 100 6.3 Conceptualization of Icons .......................................................................... 103 6.4 Implementation of Icons .............................................................................. 103 6.5 Conceptualization of the Final Integration ................................................... 104 6.6 Implementation of the Final Integration ....................................................... 104 6.7 Summary ..................................................................................................... 110 7 Geo-Web services 7.0 Introduction ................................................................................................. 110 7.1 Implementation............................................................................................ 113 7.3 Summary ..................................................................................................... 118 Part 3 Evaluation Criteria 8 Evaluation measures for any LBS platform 8.0 Introduction ................................................................................................. 121 8.1 Evaluation Criteria....................................................................................... 121 8.2 Summary ..................................................................................................... 125 9 Conclusions and Perspectives ...................................................................... 127 Part 4 Appendix Annex .................................................................................................................... 134 List of Publications ................................................................................................ 140 Author‘s Biography ................................................................................................ 141 Bibliography ......................................................................................................... 142 Part 5 Résumé long en français…………………………………………………… 151 10
Description: