Thèse de Doctorat Alejandro M ONTOYA Mémoire présenté en vue de l’obtention du gradedeDocteurdel’Université d’Angers Label européen sous le label de l’Université de Nantes Angers Le Mans Écoledoctorale: Sciencesettechnologiesdel’information,etmathématiques Discipline: Informatiqueetapplications,sectionCNU27 Unitéderecherche: LaboratoireAngevindeRechercheenIngenieriedesSystèmes(LARIS) Soutenuele9décembre2016 Electric Vehicle Routing Problems: models and solution approaches JURY Président: M.Emmanuel NÉRON,Professeur,PolytechTours Rapporteurs: M.Dominique FEILLET,Professeur,EcoledesMinesdeSaint-Etienne M.Daniele VIGO,Professeur,UniversitàdiBologna,Bologna,Italy Examinateurs: M.Emmanuel NÉRON,Professeur,PolytechTours M.Fabien LEHUÉDÉ,Maîtredeconférences,EcoledesMinesdeNantes Directricedethèse: Mme Christelle GUÉRET,Professeur,Universitéd’Angers Co-directeursdethèse: M.JorgeE. MENDOZA,Maîtredeconférences,PolytechTours M.JuanG. VILLEGAS,Professeur,UniversidaddeAntioquia,Medellin,Colombie Acknowledgement Thisresearchprojecthasbeenpossiblewiththehelpandsupportofmanypeople. Iwouldliketoexpress mysinceregratitudetoallpeoplewhowereveryhelpfulduringmyPh.D.experience. Thisexperiencegave me the opportunity to know different countries and cultures, to meet a lot of friendly people, to do new friends,andtoimprovemyacademicandresearchskills. I first thank to my wife, Diana, for her support, sacrifice, company, and love. She was always there, no matter the place, the weather or the language. I am fortunate to have her by my side. I would also like to thank my mother, Angela, my stepfather Orlando and my grandmother Blanca, for their company. They havesupportedmeallthewayinthedevelopmentofthisthesisandtheyalwaysbelievedIcouldfollowthis dream. I like to thank my thesis advisors, Christelle Guéret for her patience, support and advice in all this process; Jorge Mendoza I have learned from his many things that go far beyond optimization, vehicle routing problems, and operations research; and Juan Guillermo Villegas for his intellectual generosity and tobewithmeingreatpartofmyacademicformation(mymasterandPh.D.). IwouldliketothankthejurymembersDanieleVigo,DominiqueFeillet,EmmanuelNéron,andFabien Lehuédéforacceptingtheinvitationtobepartofthejury. I want to thank the University EAFIT for the support in this project, especially to Gabriel Arango, DirectorofTeaching;AlbertoRodriguez,DeanoftheFacultyofEngineering;andSergioAugustoRamirez, Chief of Production Engineering department for their trust and support. I also want to thank Mario Velez forbelievinginmesinceIwasdoingmycareer;JairoMayaforsharehistimeandknowledge;andGabriel Hincapié and Nora Cadavid for his support and helping. And I would like to thank the Universidad EAFIT scientificcomputingcenter(APOLO)fortheirsupportinthecomputationalexperiments IthanktopeopleofUniversitéd’Angers,especiallytoMichelLandronforhissupportandforintroduc- ing me to French culture; Simone Rees for her support and help; and my partners at LARIS, Achraf, Fally, Khadim,Ibrahim,AminandKhaoulafortheirfriendship. IwouldliketothankeveryonewhosupportedmeduringmydoctorateinAngers. PedroandNataliamy "paisasbrothers",whoofferedmetheircompany,andsupportedmeinthefirsttwoyears. Ialsowouldthank Alexis,Evelin,Cristhope,JuanPablo,Clemence,Ana,SilvanandVictoriafortheunforgettablemoments. I want to thank the people who supported me in Colombia. To my in-laws and unconditional friends (Joa, Marc, James, Naty, David and Naty) for being with Diana when I was in France; Pauline for her FrenchclassesinMedellin;andPabloMayaforhisnetworkflowcourseattheUniversityofAntioquia. I like to thank VeRoLog group for allowing me participating to the summer schools of 2014 and 2015. Inthoseschools,Icouldimprovemyresearchskillsandmadealotoffriends. Finally, I gratefully acknowledge the financial support provided by Programa de Movilidad Doctoral hacia Francia (Colfuturo - Emb. de Francia - ASCUN - Colciencias - Min. de Educación), and Programa EnlazaMundos(AlcaldíadeMedellín). 3 Contents 1 Introduction 11 2 MSHfortheGreenVRP 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Literaturereview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Multi-spacesamplingheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Generalstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Samplingheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.4 Repairprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.5 Setpartitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6.1 Notationforproblemdefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6.2 Notationformulti-spacesamplingheuristic . . . . . . . . . . . . . . . . . . . . . 31 2.6.3 Notationforrepairprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 AcomparativestudyofchargingassumptionsineVRPs 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Chargingasumptionintheliterature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Settingupthestudy: problemandformulations . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 Problemdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 MILPformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.1 Experimentalsettings&Testinstances . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.2 Experimentalenvironment&Parametersetting . . . . . . . . . . . . . . . . . . . 41 3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6.1 NotationfortheMILPformulation . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 ILS+HCforeVRP-PNL 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Hybridmetaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.1 Initialsolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.2 Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.3 Variableneighborhooddescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.4 Perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.5 Heuristicconcentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 6 CONTENTS 4.3 Thefixed-routevehicle-chargingproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Mixed-integerlinearprogrammingformulation . . . . . . . . . . . . . . . . . . . 50 4.3.2 SolvingtheFRVCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.1 TestinstancesfortheeVRP-NL . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.2 Parametersettings&experimentalenvironment . . . . . . . . . . . . . . . . . . . 56 4.4.3 Solutionaccuracy: optimalvs. heuristicchargingdecisions . . . . . . . . . . . . . 57 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.6 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6.1 Notationforproblemdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6.2 Notationforhybridmetaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6.3 Notationforthefixed-routevehicle-chargingproblem . . . . . . . . . . . . . . . 62 5 TRP-CEV 63 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Literaturereview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Problemdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.1 Mixed-integerlinearprogrammingformulation . . . . . . . . . . . . . . . . . . . 67 5.4 Parallelmatheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.1 Identifyingfeasiblerequests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.2 GRASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.3 Setcovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.5 Thefixed-routevehiclechargingproblemwithtimewindows . . . . . . . . . . . . . . . . 73 5.5.1 Greedyheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.6 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.6.1 TestinstancesfortheTRP-CEV . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.6.2 Parametersettings&experimentalenvironment . . . . . . . . . . . . . . . . . . . 77 5.6.3 PerformanceofPMa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.6.4 Managerialinsight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.8 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.8.1 Notationfortheproblemdescription . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.8.2 NotationfortheMILPformulation . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.8.3 NotationforthePMa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.8.4 NotationfortheFRVCP-TW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Generalconclusions&perspectives 87 A Appendices 89 A.1 DetailedresultsforGreenVRPinstances . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A.2 DetailedresultsoftheeVRP-NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 A.3 DetailedresultsfortheTRP-CEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.4 DetailedresultsfortheE-FSMFTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 List of Tables 2.1 SummaryresultsandcomparisonofourMSHwithothermethodsonthesmallinstancesof Erdog˘an&Miller-Hooks(2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 SummaryresultsandcomparisonofourMSHwithothermethodsonthelargeinstancesof Erdog˘an&Miller-Hooks(2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Comparisonofourchargingassumptionswithchargingassumptionsfromtheliterature . . 42 4.1 Comparisonofthetwoversionsofthemetaheuristiconsmallinstanceswithprovenoptima 57 4.2 Comparisonofthetwoversionsofthemetaheuristiconlargeinstances . . . . . . . . . . . 58 4.3 Averagecomputingtime(inseconds)ofdifferentvariantsofthemetaheuristic . . . . . . . 59 5.1 ComparisonofthePMaonsmallinstanceswithprovenoptima . . . . . . . . . . . . . . . 78 5.2 ComparisonofthePMawiththeroutingsoftwareusedbyENEDIS . . . . . . . . . . . . 78 5.3 ComparisonofourPMawiththeALNSbyHiermannetal.(2016)onsmallinstances . . . 79 5.4 ComparisonofourPMawiththeALNSbyHiermannetal.(2016)onlargeinstances . . . 79 A.1 ResultsofMSHonsmallinstancesofErdog˘an&Miller-Hooks(2012). . . . . . . . . . . 90 A.2 ResultsofMSHonlargeinstancesofErdog˘an&Miller-Hooks(2012). . . . . . . . . . . . 91 A.3 ResultsofILS(H)+HCandILS(S)+HConthe20smallinstances . . . . . . . . . . . . . . 92 A.4 ResultsofILS(H)+HCandILS(S)+HConthe100largeinstances . . . . . . . . . . . . . 92 A.5 ResultsofPMaonsmallinstancesofTRP-CEV . . . . . . . . . . . . . . . . . . . . . . . 95 A.6 ResultsofPMaonlargeinstancesofTRP-CEV . . . . . . . . . . . . . . . . . . . . . . . 96 A.7 ResultsofPMaonsmallinstancesofHiermannetal.(2016). . . . . . . . . . . . . . . . . 98 A.8 ResultsofPMaonlargeinstancesofHiermannetal.(2016). . . . . . . . . . . . . . . . . 99 7 List of Figures 2.1 ExampleofafeasibleGreenVRPsolution . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 SplittingaTSPtourintoaGreenVRPsolution . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 OutlineofthestructureoftherepairgraphB = (Z,U) . . . . . . . . . . . . . . . . . . . 26 2.4 Optimalrepairexampleforthethree-customersequencer = {0,A,B,C,0},threeAFSs. . 27 2.5 Trade-offbetweensolutionqualityandCPUtime . . . . . . . . . . . . . . . . . . . . . . 29 2.6 PercentageshareofCPUtimebyMSHphases . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1 Typical charging curve, where i and u represent the current and terminal voltage respec- tively. (SourceHõimojaetal.(2012)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Firstsegmentapproximation(FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Linearapproximationsofchargingfunctions. . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Approximationvsrealdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 ExampleofafeasibleeVRP-NLsolution . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6 Piecewiselinearapproximationforthechargingfunction. . . . . . . . . . . . . . . . . . . 39 4.1 GeneralstructureofILS+HC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Piecewiselinearchargingfunctionandfixed-routefortheFRVCP . . . . . . . . . . . . . 51 4.3 Piecewise linear approximation for different types of CS charging an EV with a battery of 16kWh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4 Percentageoftherouteswith/withoutvisitstoCSsbyinstancesize. . . . . . . . . . . . . 59 4.5 AnalysisofthenumberofvisitstoCSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.6 Histogram of the average battery level (in % of the total battery capacity) after a mid-route charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1 Average fixed (i.e., the fixed cost of each technician), variable (i.e., the sum of the total travel cost, fixed charging cost and parking cost), and total cost for each instance for each fleetcomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Average emission (in Kg CO per Km) and maximum number of visited CSs in a solution 2 ofeachinstanceforeachfleetcomposition. . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 AveragegapbetweenthecostofthesolutionswithandwithouttheoptionofvisitingtheCSs 83 5.4 FactorsexplainingtheincrementonthecostwhenthevisitstotheCSsareforbidden . . . 83 9
Description: