ebook img

Thermopower of Kondo Effect in Single Quantum Dot Systems with Orbital at Finite Temperatures PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermopower of Kondo Effect in Single Quantum Dot Systems with Orbital at Finite Temperatures

7 0 0 2 n a J ThermopowerofKondoEffectinSingleQuantumDotSystemswithOrbital 2 2 atFiniteTemperatures ] l R.Sakanoa,1,T.Kitaa andN.Kawakamia,b l a aDepartmentofAppliedPhysics,OsakaUniversity,Suita,Osaka565-0871, Japan h bDepartmentofPhysics,KyotoUniversity,Kyoto606-8502, Japan - s e m . Abstract t a m WeinvestigatethethermopowerduetotheorbitalKondoeffectinasinglequantumdotsystembymeansofthenoncrossing - approximation. It is elucidated how the asymmetry of tunneling resonance due to the orbital Kondo effect affects the d thermopowerundergate-voltageandmagnetic-fieldcontrol. n o c Keywords: quantumdot,Kondoeffect,transport [ PACS:73.23.-b,73.63.Kv,71.27.+a,75.30.Mb 1 v 3 1. Introduction tunneling resonance around the Fermi level. So far, a 3 few theoretical studies have been done on the ther- 5 1 TheKondoeffectduetomagneticimpurityscatter- mopowerinQDsystems[9,10,11,12,13,14,15,16].Are- 0 inginmetalsisawellknownandwidely studiedphe- cent observation of the thermopower due to the spin 7 nomenon[1].Theeffecthasrecentlyreceivedmuchre- KondoeffectinalateralQDsystem[17]naturallymo- 0 newedattentionsinceitwasfoundthattheKondoef- tivatesustotheoreticallyexplorethistransportquan- / at fect significantly influences the conductance in quan- tityinmoredetail.Here,wediscusshowtheasymme- m tum dot (QD) systems [2]. A lot of tunable parame- try of tunneling resonance due to the orbital Kondo ters in QD systems have made it possible to system- effectaffectsthethermopowerundergate-voltageand - d aticallyinvestigateelectroncorrelations.Inparticular, magnetic-field control. By employing the noncrossing n high symmetry in shape of QDs gives rise to the or- approximation(NCA)fortheAndersonmodelwithfi- o bitalproperties, which hasstimulated extensivestud- nite Coulomb repulsion, we especially investigate the c : iesontheconductanceduetotheorbitalKondoeffect KondoeffectofQDforseveralelectron-chargeregions. v [3,4,5,6,7,8].Thethermopowerwestudyin thispaper i X is another important transport quantity, which gives r complementary information on the density of states 2. ModelandCalculation a to the conductance measurement: the thermopower can sensitively probe the asymmetric nature of the Let us consider a single QD system with N- degenerateorbitalsinequilibrium,asshowninFig.1. 1 E-mail:[email protected] TheenergylevelsoftheQDareassumedtobe PreprintsubmittedtoPhysicaE 6February2008 πT ∂f(ε) dot L11= Γ dερσl(ε) − , (7) h Z „ ∂ε « Xσl πT ∂f(ε) L12= Γ dεερσl(ε) − , (8) lead D lead h Z „ ∂ε « e orb Xσl d D orb where ρσl(ε) is the density of states for the electrons with spin σ and orbital l in the QD and f(ε) is the Fig. 1. Energy-level scheme of a single QD system with Fermidistributionfunction.Inordertoobtainthether- threeorbitalscoupledtotwoleads. mopoweritisnecessarytoevaluateρσl(ε). We exploit the NCA method to treat the Hamil- εσl=εd+l∆orb, (1) tonian (2) [18,19]. The NCA is a self-consistent per- l=−(Norb−1)/2,−(Norb−3)/2,··· ,(Norb−1)/2 turbation theory, which summarizes a specific series of expansions in the hybridization V. This method is whereεd denotesthecenteroftheenergylevelsandσ known to give physically sensible results at tempera- (l)representsspin(orbital)indexandNorb represents tures around or higher than the Kondo temperature. thedegreeoftheorbitaldegeneracy.Theenergy-level TheNCAbasicequationscanbeobtainedintermsof splitting between the orbitals ∆orb is induced in the coupledequationsfortheself-energiesΣm(z)ofthere- presence of magnetic field B; ∆orb ∝ B. In addition, solventsRm(z)=1/[z−εm−Σm(z)], the Zeeman splitting is assumed to be much smaller Γ σl 2 σl 2 than the orbital splitting, so that we can ignore the Σm(z)= Mm′m + Mmm′ Zeeman effect. In practice, this type of orbital split- π Xm′ Xσl »“ ” “ ” – tinghasbeenexperimentallyrealized asFock-Darwin × dεRm′(z+ε)f(ε), (9) statesinverticalQDsystemsorclockwiseandcounter- Z clockwisestatesincarbonnanotubeQDsystems.Our where the index m specifies the eigenstates of Hd QDsystem is described bythemultiorbital Anderson and the mixing width is Γ = πρcV2. The coefficients impuritymodel, Mmσlm′ are determined by the expansion coefficients of the Fermion operator d†σl = mm′Mmσlm′|mihm′|. H=Hl+Hd+Ht (2) We compute the density of statPes by this method to Hl= εkσlc†kσlckσl, (3) investigatethethermopower. Xkσl Hd= εσld†σldσl+U nσlnσ′l′ Xkσl σlX=6 σ′l′ 3. Results −J Sdl·Sdl′, (4) Xl=6 l′ 3.1. Gatevoltagecontrol Ht=V c†kσldσl+H.c. , (5) Xkσ “ ” ThethermopowerfortwoorbitalsisshowninFig.2 asa function of theenergylevel εd (gate-voltage con- where U is the Coulomb repulsion and J(> 0) repre- trol).TherearefourCoulombpeaksaround−εd/U ∼ sentstheHundcouplingintheQD. 0,1,2,3 at high temperatures (see the inset of Fig. Thenon-equilibriumGreen’sfunctiontechniqueal- 2(a)).Asthetemperaturedecreases,thethermopower lows us to study general transport properties, which in the region of −1 < εd/U < 0(−3 < εd/U < −2) gives the expression for the T-linear thermopower as with nd ∼ 1(3) is dominated by the SU(4) Kondo ef- [14], fect.Thethermopowerhasnegativevaluesintheregion −1 < εd/U < 0, implying that the effective tunnel- S =−(1/eT)(L12/L11), (6) ingresonance,suchastheKondoresonance,islocated abovetheFermilevel.Atlowenoughtemperatures,the withthelinearresponsecoefficients, SU(4) Kondo effect is enhanced with decrease of en- 2 (a) 1.2 0.6 e) 00..48 kkkkkBBBBBTTTTT=====00000.....0001246800GGGGG e) 00..24 kkkkkBBBBBTTTTT=====00000.....1000008642GGGGG 1/ 0 1/ 0 S/( h) 2 S/( -0.4 2e/ -0.2 2 -0.8 G/( 0 -0.4 -3 -2 -1 0 -1.2 -0.6 -3 -2 -1 0 -1 -0.5 0 (b) 1.2 ed/U ed/U J=0G 0.8 JJ==00..2400GG Fig. 3. The thermopower due to the ordinary spin Kondo J=0.60G effectasafunctionofthedotlevel.WesetU =6Γ. 0.4 J=0.80G e) 1/ 0 S/( 0 -0.4 -0.8 e) -0.2 1/ -1.2-3 -2 ed/U -1 0 S/( -0.4 kkkkkBBBBBTTTTT=====00000.....2100000864GGGGG Fig. 2. The thermopower for the two orbital QD system -0.6 0 0.2 0.4 0.6 0.8 1 withfiniteCoulombrepulsionU =8Γasafunctionofthe energy level of the QD. (a) The temperature dependence D orb/G forJ =0.Theinsetshowstheconductanceasafunctionof Fig.4. ThethermopowerforthetwoorbitalQDsystem,in t(hbe)TdohtelHevuenlda-tcokuBpTlin=g0d.e2p0eΓnd(CenocuelofmorbkrBesTon=an0c.0e4pΓe.aks). caseofεd=−U/2,asafunctionoforbitalsplitting∆orb. WesetU =8Γ. level,whichcausesthesignchangeofthethermopower. ergy leveldown toεd/U =−1/2, which resultsin the enhancementofthethermopower.However,ifthetem- Aroundεd/U =−3/2,evensmallperturbationscould easilychangethesignofthethermopoweratlowtem- peratureofthesystemislargerthantheSU(4)Kondo peratures.Notethatthesepropertiesarequitesimilar temperature, the Kondo effect is suppressed and the to those for the ordinary spin Kondo effect shown in thermopower has a minimum in the regime −1/2 < Fig. 3, because the filling is near half in both cases. εd/U < 0. As the energy level further decreases, the ForlargeHundcouplingsJ,thetripletKondoeffectis SU(4)Kondoeffectandtheresultingthermopowerare realized and the resulting Kondo temperature is very bothsuppressed.NotethattheHundcouplinghardly small, so that the thermopower shown in Fig. 2(b) is affects the thermopower because of nd ∼ 1 in this dramaticallysuppressed. regime,asshowninFig.2(b).Sincetheregionof−3< εd/U < −2 can be related to −1 < εd/U < 0 via an electron-holetransformation,wecandirectlyapplythe 3.2. Magneticfieldcontrol abovediscussionsontheSU(4)Kondoeffecttothefor- merregionbychangingthesignofthethermopower. Let us now analyze the effects of orbital-splitting Let usnow turn totheregion of −2< εd/U < −1, causedbymagneticfields.Thecomputedthermopower where nd ∼ 2. At J = 0, the Kondo effect due to for εd/U = −1/2 is shown in Fig. 4 as a function six-folddegeneratestatesoccurs.Althoughtheresult- of the orbital splitting ∆orb. It is seen that magnetic ingKondoeffectisstronglyenhancedaroundεd/U = fields dramatically suppress the thermopower, which −3/2inthiscase,thethermopowerisalmostzerobe- iscausedbythefollowingmechanism.Inthepresence causetheKondoresonanceislocatedjustattheFermi of magnetic fields, the Kondo effect changes from the level.Therefore,whenthedotlevelischanged,theposi- SU(4)orbitaltypetotheSU(2)spintypebecausethe tionoftheKondoresonanceisshiftedacrosstheFermi orbitaldegeneracyislifted.Asaconsequence,theres- 3 onancepeakapproachestheFermilevelandtheeffec- thepresenceofmagneticfields. tive Kondo temperature is reduced, so that the ther- For εd/U ∼ −3/2, where nd ∼ 2, the Kondo effect mopoweratfinitetemperaturesisreducedinthepres- duetosix-folddegeneratestatesoccursforJ =0.How- enceofmagneticfields. ever,thethermopowerisstronglyreducedbecausethe Notethat,inourmodel,magneticfieldschangethe resonance peak is located nearthe Fermilevel. When lowestenergylevelεσ−21 from−U/2to−(U+∆orb)/2. the Hund coupling is large, the triplet Kondo effect Accordingly,thepeakpositionoftherenormalizedres- is dominant. The resulting small Kondo temperature onance shifts downward across the Fermi level (down suppresses the thermopower around εd/U ∼ −3/2 at toalittlebelowtheFermilevel).Thus,thelargeneg- finitetemperatures. In this region, magnetic fields do ative thermopower changes to a small positive one as notaffecttheasymmetryoftheresonancepeakandthe the magnetic field increases at low temperatures. In resulting thermopower remains almost zero because strong fields,theeffectiveKondoresonance islocated thefillingisfixed. aroundtheFermilevelwithsymmetricshape,sothat evensmallperturbationscouldgiverisetoalargevalue ofthermopowerwitheithernegativeorpositivesign. Finallyabriefcommentisinorderforotherchoices oftheparameters.Thethermopowerforεd/U =−5/2 AcknowledgementWethankS.Tarucha,A.C.Hew- showssimilarmagnetic-fielddependencetotheεd/U = son, A. Oguri and S. Amaha for valuable discussions. −1/2caseexceptthatitssignischanged.Forεd/U = RS was supported by the Japan Society for the Pro- −3/2, the thermopower is almost zero and indepen- motionofScience. dentof magnetic fields,because theKondoresonance is pinned at theFermi level and gradually disappears withincreaseofmagneticfields. References [1] A.C.Hewson,TheKondoProblemtoHeavyFermions 4. Summary (CambridgeUniversityPress,Cambridge,1997). [2] D.Goldhaber-Gordon,etal.,Nature,391(1998)156. Wehavestudiedthethermopowerforthetwo-orbital [3] S.Sasaki,etal.,Nature,405(2000)764. QDsystemundergate-voltageandmagnetic-fieldcon- trol.Inparticular,makinguseoftheNCAmethodfor [4] M.Eto,etal.,Phys.Rev.Lett.85(2000)1306. theAndersonmodelwithfiniteCoulombrepulsion,we [5] S.Sasaki,etal.,Phys.Rev.Lett.93(2004)17205. have systematically investigated the low-temperature [6] P.Jarillo-Herrero,etal.,Nature,434(2005)484. properties for several electron-charge regions. It has [7] M.-S.Choi,etal.,Phys.Rev.Lett.95(2005)067204. beenelucidatedhowtheasymmetricnatureofthereso- [8] R.Sakano,etal.,Phys.Rev.B73(2006)155332. nanceduetotheorbitalKondoeffectcontrolsthemag- [9] C.W.J.Beenakker,Phys.Rev.B46(1992)9667. nitudeandthesignofthethermopoweratlowtemper- atures. [10]D.Boese,etal.,Euro.Phys.Lett.56(2001)576. Forεd/U ∼−1/2(εd/U ∼−5/2),wherend ∼1(3), [11]M.Turek,etal.,Phys.Rev.B65(2002)115332. the SU(4) Kondo effect is dominant and the corre- [12]T.-S.Kim,etal.,Phys.Rev.Lett.88(2002)136601. spondingthermopowerisenhanced.Thesetworegions [13]K.A.Matveev,etal.,Phys.Rev.B66(2002)45301. are related to each other via an electron-hole trans- [14]B.Dong,etal.,J.Phys.C14(2002)11747. formation, which gives rise to an opposite sign of the [15]M.Krawiec,etal.,Phys.Rev.B73(2006)75307. thermopower. In addition, magnetic fields change the KondoeffecttoanSU(2)type,resultingintwomajor [16]A. Donabidowicz, etal., preprint, cond-mat/0701217, (2007). effects:theeffectiveresonancepositionapproachesthe Fermi level and the Kondo temperature is decreased. [17]R.Scheibner,etal.,Phys.Rev.Lett.95(2005)176602. Therefore,thereductionofthethermopoweroccursin [18]N.E.Bickers,Rev.Mod.Phys.59,(1987)845. 4 [19] Th.Pruschke,etal.,Z.Phys.74(1989)439. [20] W.Izumida,etal.,Phys.Rev.Lett.87(2001)216803. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.