Thermodynamics, Kinetics and Microstructure Modelling Thermodynamics, Kinetics and Microstructure Modelling Simon P A Gill School of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom IOP Publishing, Bristol, UK ªIOPPublishingLtd2022 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright ClearanceCentreandotherreproductionrightsorganizations. PermissiontomakeuseofIOPPublishingcontentotherthanassetoutabovemaybesought [email protected]. SimonPAGillhasassertedhisrighttobeidentifiedastheauthorofthisworkinaccordancewith sections77and78oftheCopyright,DesignsandPatentsAct1988. ISBN 978-0-7503-3147-0(ebook) ISBN 978-0-7503-3145-6(print) ISBN 978-0-7503-3148-7(myPrint) ISBN 978-0-7503-3146-3(mobi) DOI 10.1088/978-0-7503-3147-0 Version:20220301 IOPebooks BritishLibraryCataloguing-in-PublicationData:Acataloguerecordforthisbookisavailable fromtheBritishLibrary. PublishedbyIOPPublishing,whollyownedbyTheInstituteofPhysics,London IOPPublishing,TempleCircus,TempleWay,Bristol,BS16HG,UK USOffice:IOPPublishing,Inc.,190NorthIndependenceMallWest,Suite601,Philadelphia, PA19106,USA Coverimage:Surfacehardeningofsteels.Imagecredit:Leica-microsystems. To my mother. Contents Preface x About the author xi 1 Introduction 1-1 1.1 Motivation 1-1 1.2 Microstructural features 1-3 1.2.1 Crystals and grains 1-3 1.2.2 Phases and precipitates 1-4 1.2.3 Defects in crystals 1-5 1.3 Microstructure–property relationships 1-6 1.3.1 Yield stress 1-6 1.3.2 Creep strength 1-9 1.4 A framework for microstructure evolution 1-11 1.4.1 PANDAT software and TDB databases 1-11 1.4.2 A mathematical framework 1-13 References 1-13 Part I Thermodynamics and phase diagrams 2 Thermodynamic quantities 2-1 2.1 Enthalpy 2-1 2.2 Entropy 2-4 2.3 Gibb’s free energy 2-5 2.4 Phase diagrams for pure substances 2-7 References 2-8 3 Binary systems 3-1 3.1 A single phase system with two components 3-2 3.1.1 Entropy of mixing 3-2 3.1.2 Energy of mixing 3-3 3.1.3 Total Gibbs free energy 3-4 3.1.4 A simple TDB file 3-5 3.1.5 A simple binary phase diagram 3-6 3.1.6 Chemical potential 3-8 vii Thermodynamics,KineticsandMicrostructureModelling 3.2 A two phase system with two components 3-10 3.2.1 Phase diagram for case with zero excess energy 3-11 3.2.2 Equilibrium conditions in two phase regions 3-15 3.2.3 The lever rule 3-16 3.2.4 Effect of excess (mixing) energies on phase diagrams (exercise) 3-19 3.2.5 Solute partitioning and the partition coefficient 3-24 3.3 Sub-lattice models and stoichiometric phases 3-27 3.3.1 The sub-lattice model 3-27 3.3.2 Phase diagrams with stoichiometric phases 3-30 3.4 Real binary systems 3-33 References 3-37 4 Ternary systems and beyond 4-1 4.1 How to read a ternary phase diagram 4-1 4.2 A simple ternary system 4-2 4.3 Examples with four or more components 4-9 References 4-11 5 Driving force for nucleation and growth 5-1 5.1 Phase energy change for nucleation and growth 5-1 5.2 Calculating the phase energy change 5-4 5.3 The total driving force for nucleation 5-7 5.3.1 Homogeneous nucleation 5-8 5.3.2 Heterogeneous nucleation 5-9 Reference 5-13 Part II Kinetics and microstructure evolution 6 Kinetic processes 6-1 6.1 An atomic model of diffusion 6-2 6.2 Defining diffusion parameters in TDB files 6-6 6.2.1 Diffusion parameters in a unary system 6-6 6.2.2 Diffusion parameters in a binary system 6-8 6.3 Diffusion in a regular solution 6-10 6.4 Mass conservation 6-11 6.5 Determining the concentration field 6-12 viii Thermodynamics,KineticsandMicrostructureModelling 6.5.1 An example non-linear diffusion problem: carburisation 6-15 of a ferritic steel References 6-20 7 Nucleation, growth and coarsening in solids 7-1 7.1 Nucleation 7-1 7.2 Growth of a solid phase in a solid matrix 7-4 7.2.1 Interface-controlled growth 7-4 7.2.2 Diffusion-controlled growth 7-5 7.3 Coarsening 7-8 7.3.1 A globally averaged model for coarsening 7-9 7.3.2 A local mechanism for coarsening 7-11 References 7-12 8 Modelling solid–solid phase transitions 8-1 8.1 A two particle model 8-1 8.2 Population balance (or KWN) models 8-5 8.3 Massive transformations 8-12 8.4 A simplified model for phase transformations 8-14 References 8-16 9 Modelling liquid–solid phase transitions 9-1 9.1 Simple solidification models for a binary system 9-1 9.1.1 Global equilibrium 9-2 9.1.2 Scheil equation 9-3 9.1.3 Steady state growth 9-5 9.2 A phase field model for solidification 9-7 9.3 Stability of the liquid–solid interface 9-10 References 9-14 10 Exercises 10-1 References 10-4 11 Solutions 11-1 Reference 11-6 ix