ebook img

Thermodynamics: an engineering approach PDF

963 Pages·2005·21.369 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermodynamics: an engineering approach

Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity Conversion Ratios 1-3 Systems and Control Volumes 1-4 Properties of a System Continuum 1-5 Density and Specific Gravity 1-6 State and Equilibrium The State Postulate 1-7 Processes and Cycles The Steady-Flow Process 1-8 Temperature and the Zeroth Law of Thermodynamics Temperature Scales The International Temperature Scale of 1990 (ITS-90) 1-9 Pressure Variation of Pressure with Depth 1-10 The Manometer Other Pressure Measurement Devices 1-11 The Barometer and Atmospheric Pressure 1-12 Problem-Solving Technique Step 1: Problem Statement Step 2: Schematic Step 3: Assumptions and Approximations Step 4: Physical Laws Step 5: Properties Step 6: Calculations Step 7: Reasoning, Verification, and Discussion Engineering Software Packages A Remark on Significant Digits Summary References and Suggested Reading Problems Chapter 2 Energy Conversion and General Energy Analysis 2-1 Introduction 2-2 Forms of Energy Some Physical Insight to Internal Energy Mechanical Energy More on Nuclear Energy 2-3 Energy Transfer by Heat Historical Background on Heat 2-4 Energy Transfer by Work Electrical Work 2-5 Mechanical Forms of Work Shaft Work Spring Work Work Done on Elastic Solid Bars Work Associated with the Stretching of a Liquid Film Work Done to Raise or to Accelerate a Body Nonmechanical Forms of Work 2-6 The First Law of Thermodynamics Energy Balance Energy Change of a System, ∆E system Mechanisms of Energy Transfer, E and E in out 2-7 Energy Conversion Efficiencies 2-8 Energy and Environment Ozone and Smog Acid Rain The Greenhouse Effect: Global Warming and Climate Change Topic of Special Interest: Mechanisms of Heat Transfer Summary References and Suggested Reading Problems Chapter 3 Properties of Pure Substances 3-1 Pure Substance 3-2 Phases of a Pure Substance 3-3 Phase-Change Processes of Pure Substances Compressed Liquid and Saturated Liquid Saturated Vapor and Superheated Vapor Saturation Temperature and Saturation Pressure Some Consequences of T and P Dependence sat sat 3-4 Property Diagrams for Phase-Change Processes 1 The T-v Diagram 2 The P-v Diagram Extending the Diagrams to Include the Solid Phase 3 The P-T Diagram The P-v-T Surface 3-5 Property Tables Enthalpy—A Combination Property 1a Saturated Liquid and Saturated Vapor States 1b Saturated Liquid–Vapor Mixture 2 Superheated Vapor 3 Compressed Liquid Reference State and Reference Values 3-6 The Ideal-Gas Equation of State Is Water Vapor an Ideal Gas? 3-7 Compressibility Factor—A Measure of Deviation from Ideal-Gas Behavior 3-8 Other Equations of State Van der Waals Equation of State Beattie-Bridgeman Equation of State Benedict-Webb-Rubin Equation of State Virial Equation of State Topic of Special Interest Vapor Pressure and Phase Equilibrium Summary References and Suggested Reading Problems Chapter 4 Energy Analysis of Closed Systems 4-1 Moving Boundary Work Polytropic Process 4-2 Energy Balance for Closed Systems 4-3 Specific Heats 4-4 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases Specific Heat Relations of Ideal Gases 4-5 Internal Energy, Enthalpy, and Specific Heat of Solids and Liquids Internal Energy Changes Enthalpy Changes Topic of Special Interest: Thermodynamic Aspects of Biological Systems Summary References and Suggested Reading Problems Chapter 5 Mass and Energy Analysis of Control Volumes 5-1 Conservation of Mass Mass and Volume Flow Rates Conservation of Mass Principle Mass Balance for Steady-Flow Processes Special Case: Incompressible Flow 5-2 Flow Work and the Energy of a Flowing Fluid Total Energy of a Flowing Fluid Energy Transport by Mass 5-3 Energy Analysis of Steady-Flow Systems Energy Balance 5-4 Some Steady-Flow Engineering Devices 1 Nozzles and Diffusers 2 Turbines and Compressors 3 Throttling Valves 4a Mixing Chambers 4b Heat Exchangers 5 Pipe and Duct Flow 5-5 Energy Analysis of Unsteady-Flow Processes Mass Balance Energy Balance Topic of Special Interest: General Energy Equation Summary References and Suggested Reading Problems Chapter 6 The Second Law of Thermodynamics 6-1 Introduction to the Second Law 6-2 Thermal Energy Reservoirs 6-3 Heat Engines Thermal Efficiency Can We Save Q ? out The Second Law of Thermodynamics: Kelvin–Planck Statement 6-5 Refrigerators and Heat Pumps Coefficient of Performance Heat Pumps The Second Law of Thermodynamics: Clausius Statement Equivalence of the Two Statements 6-6 Perpetual-Motion Machines 6-7 Reversible and Irreversible Processes Irreversibilities Internally and Externally Reversible Processes 6-8 The Carnot Cycle The Reversed Carnot Cycle 6-9 The Carnot Principles 6-10 The Thermodynamic Temperature Scale 6-11 The Carnot Heat Engine The Quality of Energy Quantity versus Quality in Daily Life 6-12 The Carnot Refrigerator and Heat Pump Topics of Special Interest: Household Refrigerators Summary References and Suggested Reading Problems Chapter 7 Entropy 7-1 Entropy A Special Case: Internally Reversible Isothermal Heat Transfer Processes 7-2 The Increase of Entropy Principle Some Remarks about Entropy 7-3 Entropy Change of Pure Substances 7-4 Isentropic Processes 7-5 Property Diagrams Involving Entropy 7-6 What Is Entropy? Entropy and Entropy Generation in Daily Life 7-7 The T ds Relations 7-8 Entropy Change of Liquids and Solids 7-9 The Entropy Change of Ideal Gases Constant Specific Heats (Approximate Analysis) Variable Specific Heats (Exact Analysis) Isentropic Processes of Ideal Gases Constant Specific Heats (Approximate Analysis) Variable Specific Heats (Exact Analysis) Relative Pressure and Relative Specific Volume 7-10 Reversible Steady-Flow Work Proof that Steady-Flow Devices Deliver the Most and Consume the Least Work when the Process Is Reversible 7-11 Minimizing the Compressor Work Multistage Compression with Intercooling 7-12 Isentropic Efficiencies of Steady-Flow Devices Isentropic Efficiency of Turbines Isentropic Efficiencies of Compressors and Pumps Isentropic Efficiency of Nozzles 7-13 Entropy Balance Entropy Change of a System, ∆S system Mechanisms of Entropy Transfer, S and S in out 1 Heat Transfer 2 Mass Flow Entropy Generation, S gen Closed Systems Control Volumes Entropy Generation Associated with a Heat Transfer Process Topics of Special Interest: Reducing the Cost of Compressed Air Summary References and Suggested Reading Problems Chapter 8 Exergy: A Measure of Work Potential 8-1 Exergy: Work Potential of Energy Exergy (Work Potential) Associated with Kinetic and Potential Energy 8-2 Reversible Work and Irreversibility 8-3 Second-Law Efficiency, η II 8-4 Exergy Change of a System Exergy of a Fixed Mass: Nonflow (or Closed System) Exergy Exergy of a Flow Stream: Flow (or Stream) Exergy 8-5 Exergy Transfer by Heat, Work, and Mass Exergy Transfer by Heat Transfer, Q Exergy Transfer by Work, W Exergy Transfer by Mass, m 8-6 The Decrease of Exergy Principle and Exergy Destruction Exergy Destruction 8-7 Exergy Balance: Closed Systems 8-8 Exergy Balance: Control Volumes Exergy Balance for Steady-Flow Systems Reversible Work, W rev Second-Law Efficiency of Steady-Flow Devices, η II Topics of Special Interest: Second-Law Aspects of Daily Life Summary References and Suggested Reading Problems Chapter 9 Gas Power Cycles 9-1 Basic Considerations in the Analysis of Power Cycles 9-2 The Carnot Cycle and Its Value in Engineering 9-3 Air-Standard Assumptions 9-4 An Overview of Reciprocating Engines 9-5 Otto Cycle: The Ideal Cycle for Spark-Ignition Engines 9-6 Diesel Cycle: The Ideal Cycle for Compression-Ignition Engines 9-7 Stirling and Ericsson Cycles 9-8 Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines Development of Gas Turbines Deviation of Actual Gas-Turbine Cycles from Idealized Ones 9-9 The Brayton Cycle with Regeneration 9-10 The Brayton Cycle with Intercooling, Reheating, and Regeneration 9-11 Ideal Jet-Propulsion Cycles Modifications to Turbojet Engines 9-12 Second-Law Analysis of Gas Power Cycles Topics of Special Interest: Saving Fuel and Money by Driving Sensibly Summary References and Suggested Reading Problems Chapter 10 Vapor and Combined Power Cycles 10-1 The Carnot Vapor Cycle 10-2 Rankine Cycle: The Ideal Cycle for Vapor Power Cycles Energy Analysis of the Ideal Rankine Cycle 10-3 Deviation of Actual Vapor Power Cycles from Idealized Ones 10-4 How Can We Increase the Efficiency of the Rankine Cycle? Lowering the Condenser Pressure (Lowers T ) low,av Superheating the Steam to High Temperatures (Increases T ) high,av Increasing the Boiler Pressure (Increases T ) high,av 10-5 The Ideal Reheat Rankine Cycle 10-6 The Ideal Regenerative Rankine Cycle Open Feedwater Heaters Closed Feedwater Heaters 10-7 Second-Law Analysis of Vapor Power Cycles 10-8 Cogeneration 10-9 Combined Gas–Vapor Power Cycles Topics of Special Interest: Binary Vapor Cycles Summary References and Suggested Reading Problems Chapter 11 Refrigeration Cycles 11-1 Refrigerators and Heat Pumps 11-2 The Reversed Carnot Cycle 11-3 The Ideal Vapor-Compression Refrigeration Cycle 11-4 Actual Vapor-Compression Refrigeration Cycle 11-5 Selecting the Right Refrigerant 11-6 Heat Pump Systems 11-7 Innovative Vapor-Compression Refrigeration Systems Cascade Refrigeration Systems Multistage Compression Refrigeration Systems Multipurpose Refrigeration Systems with a Single Compressor Liquefaction of Gases 11-8 Gas Refrigeration Cycles 11-9 Absorption Refrigeration Systems Topics of Special Interest: Thermoelectric Power Generation and Refrigeration Systems Summary References and Suggested Reading Problems Chapter 12 Thermodynamic Property Relations 12-1 A Little Math—Partial Derivatives and Associated Relations Partial Differentials Partial Differential Relations 12-2 The Maxwell Relations 12-3 The Clapeyron Equation 12-4 General Relations for du, dh, ds, C, and C v p Internal Energy Changes Enthalpy Changes Entropy Changes Specific Heats C and C v p 12-5 The Joule-Thomson Coefficient 12-6 The ∆h, ∆u, and ∆s of Real Gases Enthalpy Changes of Real Gases Internal Energy Changes of Real Gases Entropy Changes of Real Gases Summary References and Suggested Reading

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.