ebook img

Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon PDF

189 Pages·1971·3.405 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon

H. Kroepelin K.-K. Neumann K.-U. Hoffmann R. Kuthe Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon Diagramme zur Chemie und Thermodynamik yon Hochtemperaturplasmen fur Luft, Luft mit Kohlenstoff, Kohlenstoff-Wasserstoff-Gemische und Argon Pergamon Press · Vieweg Oxford · Edinburgh · New York Toronto · Sidney · Braunschweig Pergamon Press Ltd., Headington Hill Hall, Oxford Pergamon Press (Scotland) Ltd., 2 & 3 Teviot Place, Edinburgh 1 Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523 Pergamon of Canada Ltd., 207 Queen's Quay West, Toronto 1 Pergamon Press (Aust.) Pty. Ltd., 19a Boundary Street, Rushcutters Bay, N. S.W. 2011, Australia Vieweg + Sohn GmbH, Burgplatz 1, Braunschweig ISBN 08 017581 3 (Pergamon) ISBN 3 528 08306 9 (Vieweg) No part of this publication may be reproduced, stored in a retrieval system or transmitted mechanical, photocopying, recording or otherwise, without prior permission of the Copyright holder. 1971 Alle Rechte vorbehalten Copyright © 1971 by Friedr. Vieweg + Sohn GmbH, Verlag, Braunschweig Library of Congress Catalog Card No. 74-150704 Satz: Friedr. Vieweg + Sohn GmbH, Braunschweig Druck: E. Hunold, Braunschweig Buchbinder: W. Langelüddecke, Braunschweig Umschlaggestaltung: Peter Morys, Wolfenbüttel Printed in Germany Vorwort Im Laufe der Jahre sind in meinem Institut viele Werte für thermische Plasmen im Gleichgewichtszustand errechnet worden. Wir hielten es für geboten, diese Werte für die Konzentration der Komponenten als Funk- tion von Temperatur und Druck, Enthalpie, freie Enthalpie, Entropie usw. zu vervollständigen und in Form von Kurventafeln zu veröffent- lichen. Wir hoffen, damit den an diesem Gebiet Interessierten eigene Rechenarbeit zu ersparen. Die Kurven sind im Original meist in der Größe bis DIN A 1 gezeichnet und dann auf einheitliches Format ver- kleinert worden. Wer die Originalzeichnungen benötigt, kann Pausen davon bei uns anfordern. Ich habe allen im Laufe der Jahre auf diesem Gebiet tätigen Mitarbeitern zu danken. Es waren dies in zeitücher Reihenfolge: Prof. Dr. E. Winter, sowie die Doktoren K.-K. Neumann, R. Kuthe, D. E. Kipping, H. Piel· ruck, E. T. T. Hasibuan, P. Kalthoff, F. Weigang, K-U. Hoffmann und R. Hoffmann. Das Hauptverdienst am Zustandekommen dieses Buches hat Dr. K. -K Neumann. Die Zeichnungen wurden von Frau E. Galler sorgfältig ausge- führt. Sie hat auch die mühsame Arbeit der Retusche der Drucknegative zusammen mit Fräulein K. Zieling unternommen. Nur die anfängliche Unterstützung seitens des Herrn Bundesministers für wissenschaftliche Forschung und die langjährige der Fraunhofer- Gesellschaft sowie die Mithilfe des Rechenzentrums der T. U. Braun- schweig (Prof. Dr. H. Herrmann) machten es möglich, die umfangreichen Arbeiten zum guten Ende zu bringen. Braunschweig, im Juni 1970 H. Kroepelin V Preface For many years we have been interested in chemical equilibria at high temperatures, and in the course of our work we have collected together much thermodynamic data, e. g. enthalpies, free enthalpies, entropies and so forth. We feel that this material should be published and thus be made available to other researchers in plasma physics and chemistry. Our results were originally presented in diagrams in the format DIN Al (approximately 84 x 59 cm). Although these diagrams have been here reduced to the size of this book, full-size copies of the original diagrams can be supplied, if needed, by the Chemical Technology Department of the Technical University of Braunschweig. I should like to take this opportunity to thank all my colleagues who have worked with me in this field since 1956: through the years these were Prof. E. Winter, and Drs. K.-K. Neumann, R. Kuthe, D. E. Kipping, H. Pie truck, E. T. T. Hasibuan, P. Kalthoff, F. Weigang, K.-U. Hoffman and R. Hoffmann. Special thanks are due to Dr. K.-K. Neumann who contributed much to this book. Mrs. E. Gatter very carefully prepared the diagrams and was assisted by Miss K. Zieling in the most tedious task of retouching the nega- tives. Our research was made possible by the sponsorship of the Ministry of Scientific Research of the Federal Republic of Germany and by the Fraunhofer-Gesellschaft. We are indebted to Prof. H. Herrmann, Head of the Computing Department at the Technical University of Braunschweig, for his assistance. Braunschweig, June 1970 H. Kroepelin VI Zum Geleit Durch seine Theorie der thermischen Ionisation und Anregung hat M. N. Saha vor einem halben Jahrhundert gezeigt, wie man in das Ge- biet der Gasplasmen, als des vierten Aggregatzustandes der Materie rechnerisch vordringen kann. Aber erst mit der Entwicklung neuzeitiger Rechenanlagen konnten die sehr umfangreichen Rechenprogramme mit erträglichem Aufwand bewältigt werden. Nur dadurch wurde es möglich, das experimentell schwer zugängliche Verhalten hochtempe- rierter Gasplasmen systematisch zu untersuchen und vorauszusagen. Der Arbeitskreis um Professor Dr. H. Kroepelin im Institut für Chemische Technologie der Technischen Universität Braunschweig befaßt sich seit anderthalb Jahrzehnten experimentell und theoretisch mit dem Ver- halten von Kohlenwasserstoffen im elektrischen Lichtbogen, d.h. im Gasplasmazüstand. In der vorliegenden Monographie wird ein Teilergeb- nis dieser umfangreichen Untersuchungen der Öffentlichkeit übergeben. Das mit großer Sorgfalt erarbeitete Material gibt Auskunft über die Eigenschaften von Plasmen im Gleichgewicht, die aus Kohlenwasser- stoffen, Luft ohne Argon, reinem Argon und Luft mit Kohlenstoff bei verschiedenen Drucken, Temperaturen und Molenbrüchen entstehen können. Zur Speicherung der Informationen wurde die diagrammatische Dar- stellung gewählt, welche im Vergleich mit Zahlentafeln raumsparend und übersichtlich ist. Das schätzt man unter anderem bei der Unter- suchung von Zustandsänderungen, wo man mit wenigen Linienzügen einen besseren Überblick über den Verlauf gewinnen kann, als das mit reinen Zahlenangaben möglich ist. Mag auch die aufgewendete Mühe allein nur bedingt für den Wert eines Werkes bestimmend sein, so sei dennoch die außerordentliche Leistung der Mitarbeiter, vor allem von Dr. K. -K. Neumann hervorgehoben, die zur Vollendung der vorliegenden Monographie aufzubringen war. Durch die zunehmende Bedeutung der Gasplasmen in der Technik dürfte aber auch der Kreis derer wachsen, die an den Ergebnissen der vorliegen- den Arbeit interessiert sind und sie zu schätzen wissen werden, wodurch schon allein deren Wert steigen dürfte. Stuttgart, im Juni 1970 F. Bosnjakovié VII Preface Half a century ago, M. N. Saha provided, in his theory of thermal ioniza- tion and excitation, a method by which gas plasmas could be explored mathematically as the fourth state of matter. However, only with the development of modern computers could the complex numerical calcula- tions involved be successfully carried out. In this way, it has become pos- sible to estimate and predict the behaviour of high temperature gas plasma in states not easily investigated experimentally. During the last fifteen years, a team working under Professor H. Kroepelin at the Chemical Technology Department of the Technical University of Braunschweig has been studying, both experimentally and theoretically, the behaviour of hydrocarbons in an electric arc, i. e. in gas plasma state. Some of the results of this extensive work have been summarized in the present monograph. This carefully prepared material provides information relating to the pro- perties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form, since this was considered not only to be more economical of space and the reader's time, but also to provide a clearer picture of the plasma processes investigated. Although the effort spent on a book cannot necessarily serve as a criterion for its value, the tremendous amount of work done by the contributors, and in particular by Dr. K.-K. Neumann, deserves mention. Gas plasmas enjoy a growing importance in modern technology. It is likely that this will increase the number of readers interested in and appreciating the results presented in this monograph. Stuttgart, June 1970 F. BoSnjakovié νπι I. Introduction High temperature plasmas are becoming more important The thermodynamic data for the mixtures considered were today both in science and technology. In the study of computed frpm the calculated equilibria (see explanation plasma processes, a knowledge of the characteristics of below). The properties included are enthalpy, entropy, free these plasmas, and in particular their thermodynamic energy, density, the compressibility factor, the degree of properties, is important. ionization, and the ratio of the effective specific heats. Thermodynamic equilibrium was assumed for the thermo- The thermodynamic diagrams, which are presented in this plasmas considered. That is, stationary non-equilibrium book, are the results of our calculations. We have limited conditions, such as those found in the corona of the sun ourselves to a temperature range in which the plasma is or in gas nebula, were eliminated. Changes in conditions essentially molecule-free and up to 100000 K. Computa- whose rates were of the same order of magnitude as those tions for higher temperatures are basically the same so of the related chemical reactions were also eliminated. long as the temperatures are below the electron gas region, Interactions between the particles, such as the Van-der-Waals i. e., as long as ionization has not ceased (see Hund [1936]). forces or Coulomb forces for the ions, were neglected (exceptions to this are indicated below). In the majority of calculations, equilibrium with the black body radiation The equilibrium constants for ionization equilibrium are contained in the plasma was assumed. Results calculated calculated from tabulated values for the ionization energies, for a hypothetical, "radiation-free" plasma are also reported. electron activation energies, and the related summed angular momenta for the neutral atoms and ions. The Calculations were made at constant total pressure ; tempera- values for mixtures are based on these calculations. The ture values and total composition of the mixtures were calculations for such simultaneous equilibria (for multi- assumed. The equilibrium compositions stated throughout component mixtures) require extensive numerical computa- are on a volume basis. The Joule was used throughout as tions. a measure of energy. English by P. B. Ledermann and I. F. Miller, Polytechnic Institute of Brooklyn. Kuthe/Neumann 1 1. Einleitung Hochtemperatur-Plasmen gewinnen heute in Wissenschaft Aus den Eingabedaten und den errechneten Gleichgewichts- und Technik zunehmend an Bedeutung. Für die Erfor- zusammensetzungen (siehe zum Begriff der Gleichgewichte- schung und die technische Beherrschung von Vorgängen, Zusammensetzung weiter unten) haben wir dann thermodyna- an denen Plasmen beteiligt sind, ist die Kenntnis der Ei- mische Daten für die verschiedenen von uns betrachteten genschaften dieser Plasmen, insbesondere ihrer thermody- Gemische ausgerechnet : Enthalpie, Entropie, freie Enthalpie, namischen Zustandseigenschaften, wichtig. Dichte, Kompressibilitätsfaktor, Ionisierungsgrad, Verhältnis der effektiven spezifischen Wärmen. Wir haben für die von uns betrachteten thermischen Plasmen In dieser Schrift teilen wir Ergebnisse einiger von uns durch- stabiles thermodynamisches Gleichgewicht vorausgesetzt, geführter thermodynamischer Berechnungen für thermische d. h. es werden sowohl stationäre Nichtgleichgewichtszu- Plasmen in Diagrammform mit. Wir beschränken uns dabei stände ausgeschlossen, wie sie z. B. in der Sonnenkorona und auf den Temperaturbereich, in dem das Plasma praktisch in Gasnebeln vorkommen, als auch Zustandsänderungen, molekülfrei ist und teilen Rechenergebnisse mit bis zu ei- deren Geschwindigkeiten in die Größenordnung der Reak- ner Temperatur von 100 000 K. Am Rechenansatz ändert tionsgeschwindigkeiten der betreffenden chemischen Reak- sich für noch höhere Temperaturen grundsätzlich nichts, tionen kommen. Wir vernachlässigen femer Wechselwirkungs- solange man nicht in das Zustandsgebiet des Elektronen- kräfte zwischen den Teilchen, wie van der Waals-Kräfte gases kommt, d. h. solange die Ionisation noch nicht abge- oder die Coulomb-Kräfte der Ionen (Ausnahme hierzu siehe schlossen ist (siehe dazu Hund [1936]). weiter unten). Bei der Mehrzahl der Berechnungen haben wir Gleichgewicht mit der im Plasma eingeschlossenen Wir haben, ausgehend von tabellierten Werten für die Ioni- schwarzen Strahlung angenommen. Daneben teilen wir auch sierungsenergien und für die elektronischen Anregungsener- Rechenergebnisse für ein hypothetisches „strahlungsfreies" gien und die dazugehörigen Drehimpulse für neutrale Atome Plasma mit. und Atomionen, die Gleichgewichtskonstanten für die Ioni- Wir haben durchgehend für konstanten Gesamtdruck ge- sierungsgleichgewichte ausgerechnet und daraus die Zusam- rechnet und daneben Temperaturwerte und die Elemen- mensetzung für Gemische, die aus mehreren chemischen tarzusammensetzung des Gemisches vorgegeben. Die Gleich- Elementen aufgebaut sind. Die Berechnung solcher Simul- gewichtszusammensetzung beschreiben wir mit Rauman- tangleichgewichte für Vielkomponentengemische erfordert teilen. Als Energiemaß wurde durchgehend das Joule ver- umfangreiche numerische Berechnungen. wendet. 13 II. Theoretical Basis Calculations were made using a system of equations derived In our method of calculation for "radiation-free" plasmas from quantized Boltzmann statistics. This was supplement- as well as for plasmas where radiation is considered the ed for the radiation portion by addition of Bose statistics. Eggert-Saha equation applies (Eggert [1919], Saha [1921]. This equation is applicable when both elementary plasma The particles of matter are a non-degenerate gas in the ionization and recombination processes (namely, those due region considered (the thermal energy of the ions and to collision and radiation) occur. It is also valid if only electrons is large compared to the reference energy at zero collision processes and no photon induced processes take temperature). The theory of relativity does not enter into place. On the other hand it is valid if only photon induced the calculations at temperatures considered (velocity of the processes and no collision ionization or recombination electrons is small compared to the velocity of light). There takes place (Elwert [1952a]). The equation is no longer is no condensed phase in the mixtures at the temperatures applicable when plasma generated radiation escapes without and pressures considered. radiation induced ionization taking place (Knoche [1961]), Equilibria were calculated as if the plasma had reached a situation which often results in lower measurements in thermodynamic equilibrium, i. e., the calculations are based laboratory generated plasmas. The equation is inapplicable on a model in which equilibrium exists between the particles when collision ionization and radiation recombination occur, and the surrounding black body radiation. This theoretically as for example in the sun's corona (Elwert [1952b]). The important boundary condition cannot be realized under Eggert-Saha equation is also inapplicable when the tempera- terrestrial conditions. The plasma would have to absorb ture acting on the plasma - also, eventually "diluted-radia- and emit radiation continously throughout the whole tion" (analogous to grey radiation) - is greater than the spectral region while at the same time absorbing incident temperature of the plasma ; this occurs in gas clouds (Elwert radiation of any wavelength. The mean free path of the [1952a]). The three previously discussed cases do not fall photons would then have to be small compared to the within the limits for the plasmas calculated, namely, plasmas dimensions of the plasma. in which radiation is in equilibrium and those in which Equilibrium values between particles, without consideration particles are in thermodynamic equilibrium and in which no of any radiation, are presented only for argon-free air. Such radiation occurs. a stationary condition based on a totally thermodynamic In a few expanded thermal plasmas the thermodynamic point of view can exist in many plasmas. The plasma equilibrium can also be disturbed by diffusion of the charge considered is one in which ionization and recombination carrier, or heat conduction processes (Frie and Maecker take place only through collision processes and equilibrium [1961], [1962]. If these disturbances are large, such plasmas exists in the sense that in a given time period the number will deviate from the calculated values. of ionizations and recombinations are equal. Interactions with the radiation field do not exist in these plasmas; this The validity of the ideal gas law is assumed after Finkelnburg can be achieved in practice with very small expansions or and Maecker [1956]indicated the reasonableness of this very low density plasmas. Even an expanded plasma can assumption for the thermal plasma region. Therefore, despite approach these conditions more closely than a model which the coulomb effects, at high temperatures the translational considers black body radiation, when the plasma being movement of the particles can be calculated based on an ideal considered contains only particles which absorb radiation gas. The interaction effects must not, in comparison, be of a few wave lengths. Small additions of gas impurities e. g., neglected in the computation of the partition function. The expansions for these partition functions must be argon in air, would cause the plasma to appreciably depart truncated after a specified term to prevent them taking from this idealized model (Knorr [1958]). on an infinite value. The formula of Unsoeld [1948] was The radiation in the temperature region considered is used to calculate the limit to which the partition function almost entirely terminal and recombination radiation. For was always summed : practical applications, it is important to note that the percent of the radiation absorbed reaches 99 % when the Eg = E - 5,615 . lu"3 (Z2 . r · Ng)^ (1) ion eff e thickness of the plasma layer is 26 times as large as the mean free absorption wavelength. (Saenger [1957]). where Ei = ionization work in cm"1 ; E = activation on g The properties of real plasmas will Ue between the extremes energy of the highest term included in the computation in calculated for the two cases. This is true when the intensity cm"1 ; re = volume fraction of the electrons ; Ng = total of the radiation is less than the black body radiation at the particle number ; Zeff = effective nuclear charge. temperature of the plasma and all other equilibrium condi- This equation is only really applicable for hydrogen. A tions are present. It is not unusual in real plasmas for other small error in the computation of the function will not properties besides the radiation not to be in equilibrium. influence the final result significantly because the contribu- In these instances other methods of calculation based on tion of the partition function to the ionization constant non-equilibrium thermodynamics must be used. is of the order of magnitude of only several percent. 2 In the actual calculation, the fact that not all possible terms denser and hotter the plasma. The bandwidths are larger for the electron excitation have been used has a somewhat the higher the electron level, so that above a certain level, greater influence on the value of the partition function than the bands overlap and the width of the pattern becomes the summation. The quantum numbers are established, but greater than the distance of the true series limit continuum. the excitation energies are not. These latter values can only Electrons in these bands behave more like free electrons be crudely estimated by comparison with other species. than bound electrons. Further, it is possible that during a Therefore, these terms have been neglected. collision an electron from a highly energized ion wanders to a neighbor (tunnel effect). This exchange imparts to the The work of ionization for isolated particles, which are in electrons, below the ionization threshold, properties of the an infinite volume, are tabulated. The ionization energy can free electron. For example, these electrons form a conducting be lowered as a result of the microfield surrounding each plasma, although in these calculations they are not considered particle. The work of ionization can be lowered by the to be free electrons. Traving [1960] discusses this question Stark effect, which is related to the principle quantum thoroughly. numbers, and the quantum-mechanical tunnel effect. The various values presented for the amount of decrease To calculate the statistical weights, the idea of Russell- in the ionization work as a function of other plasma para- Saunders coupling was used for all terms. For high energy meters are still very much in dispute. Ecker and Kroell [1962] levels, which are close together, this scheme is often in- present rules which result in smaller decreases than those applicable. The error introduced into the present computa- presented ; they take strong issue with contrary points of tions, however, is very small. view. The ionization energies were not decreased in these As normally, the nuclear spin portion of the partition computations. function was not included as the spin energy contribution Closely related to the question of the lowering of the is practically always constant until very high temperatures ionization potential is the question of which electrons are reached. Spin energy may be considered by multiplying should be taken as "free electrons". In our computations, the partition function by characteristic factors for each every electron is considered to be bound, that is, relative chemical element and adding a value to the entropy. to one ion, at an energy level that is lower than the ioni- zation energy for an isolated ion. However, the discrete The necessary initial values (ionization energy, electron quantum levels of the bound electrons are spread out into activation energy and the related angular momentum) were energy bands. This charge in quantum levels is stronger the taken from the tables of Moore [1949 etc.]). 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.