ebook img

Thermalization and confinement in strongly coupled gauge theories PDF

0.39 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermalization and confinement in strongly coupled gauge theories

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2016 CCQCN-2016-118 CCTP-2016-1 Imperial/TP/2015/CR/01 6 1 0 2 Thermalization and confinement in strongly coupled gauge the- n ories a J 8 TakaakiIshii1,2,EliasKiritsis1,3,andChristopherRosen1,4 ] 1CreteCenterforTheoreticalPhysics,UniversityofCrete,Heraklion71003,Greece h 2UniversityofColorado,Boulder,CO80309,USA t - 3UniversityofParisDiderot,SorbonneParisCité,APC,ParisF-75205,France p 4ImperialCollege,LondonSW72AZ,UK e h [ Abstract.Quantumfieldtheoriesofstronglyinteractingmattersometimeshaveauseful 1 holographicdescriptionintermsofthevariablesofagravitationaltheoryinhigherdimen- v sions. Thisdualitymapstimedependentphysicsinthegaugetheorytotimedependent 7 solutions of the Einstein equations in the gravity theory. In order to better understand 4 9 theprocessbywhich“realworld”theoriessuchasQCDbehaveoutofthermodynamic 1 equilibrium,westudytimedependentperturbationstostatesinamodelofaconfining, 0 stronglycoupledgaugetheoryviaholography. Operationally,thisinvolvessolvingaset . of non-linear Einstein equations supplemented with specific time dependent boundary 1 conditions. Theresultingsolutionsallowonetocommentonthetimescalebywhichthe 0 6 perturbed states thermalize, as well as to quantify the properties of the final state as a 1 functionoftheperturbationparameters.Wecommentontheinfluenceofthedualgauge : theory’s confinement scale on these results, as well as the appearance of a previously v anticipateduniversalscalingregimeinthe“abruptquench”limit. i X r a 1 Introduction Thedynamicalpropertiesofstronglyinteractingmatterareinterestingbothbecauserelativelylittleis currentlyknownaboutthem,aswellasthefactthattheyareincreasinglyaccessibleinthelaboratory andlarge-scaleexperimentsliketheheavyioncollisionsatRHICandLHC.Onestandardmethodfor calculatinginstronglycoupledfieldtheoriesistoregularizethetheoryonalattice. Thismethodhow- everreliesonaEuclideanformulationofthefieldtheory,andhenceitisratherdifficulttomakecontact withreal-timedynamics. Findingawayaroundthisobstacletakesspecialimportanceinthecontext of ongoing programs in the relativistic heavy ion collisions. At the energy scales currently accessi- ble,thehot,densematterproducedinsuchcollisionsofheavynucleibehavesasastronglyinteracting plasmaandthusnoveltheoreticalapproachesareneededtocharacterizeitsdynamicalproperties.One suchapproachisbasedonaholographicdualitybetweengaugetheoriesandstringtheoriesillustrated infigure1. Thisapproachwasemployedin[1]tomodelthedynamicalresponseofaconfininggauge theoryatstrongcoupling,andthatworkprovidesthefoundationfortheseproceedings. EPJWebofConferences Figure1. Cartoondepictionofholographicallydualthermalizationprocesses. Onthetop,astronglycoupled fieldtheoryisdrivenoutofequilibriumbyanexternalprobe,andatlatetimesmayattainthermalequilibrium. Onthebottom,thedualprocessisunderstoodasaperturbationofagravitationaltheoryinonehigherdimension, andlatetimethermalequilibrationcorrespondstoblackholeformationinthebulk. 2 Thermalization in Holography Beforedevelopingtheholographicmodelinanydetail, itisusefultoorientoneselfwithsomevery generalexpectationsfromthefieldtheoryperspective. Givenanystronglycoupledmedium,auseful characterizationofitspropertiesisprovidedbyitsresponsetoavarietyofexternalperturbations. If thedynamicsofthemediumcanbecapturedbyaquantumfieldtheoryeffectivelydescribedbythe LagrangianL ,thentheapplicationofaperturbationbyalocaloperatorOinamannerdescribed QFT bythesource f isaccomplishedbyaddingtotheLagrangian 0 L →L + f O. (1) QFT QFT 0 In the special case that the source is isotropic in space and changes only in time, the probe will do workonthesystemasdictatedbythefollowingWardidentity: ∇t(cid:104)T (cid:105)= f˙(cid:104)O(cid:105). (2) tt 0 Herethe“dot”denotesapartialderivativewithrespecttotimeandT isthestress-energytensor. Theresponseofthesystemtothetimedependentperturbationcanbemeasuredinanyofanumber ofdifferentways, andthesedifferentmethodsgenericallyelucidatedifferentaspectsofthesystem’s response. A particularly natural measure is provided by the various one point functions of gauge invariantoperatorsofthefieldtheory. Byexaminingthedependenceoftheseexpectationvalueson time, one can access both the endpoint of the dynamical evolution, as well as the route the system takestoarrivethere. One scenario that will be of particular importance in the present work arises when the late time behaviorofthesystemisindependentoftime,andthevariousonepointfunctionstaketheform (cid:104)O(t→∞)(cid:105)∼trρO, (3) where ρ is a thermal distribution. If this is the case, then the endpoint of the evolution is a thermal state,andtheequilibrationprocessiscalled“thermalization”. For strongly coupled field theories with a holographic dual the thermalization process can alter- natively be described in terms of weakly coupled geometric variables. These are the bulk fields of ICNFP2015 Figure2. Typicalresponseofaholographicsystemtoatime-dependentperturbation. Theverticalaxisisthe expectationvalueofthescalaroperatordeterminedbythebehaviorofthescalarneartheboundary,whiletime is along the horizontal axis. After a time τ the system is driven out of equilibrium, and may pass through anynumberofnon-linearregimesT before“ringingdown”tothermalequilibriumwithacharacteristictime NL scale T . The ring-down regime is anticipated from the well-known fact that black branes respond to small RD (linearized)perturbationsmuchlikeasystemofdampedoscillators(inset). a gravitational theory in one higher dimension. In terms of these variables, thermalization in a 3+1 dimensionalfieldtheoryisunderstoodfromthedualviewpointashorizonformationina4+1dimen- sionaltheorywithgravity. Theformulationofthedynamicalprocessintermsofthedualgravitytheoryprovidesadvantages both in terms of computation and intuition. In figure 2, a generic expectation for the dynamical evolutionofaholographiconepointfunctionissketched. Tocharacterizethisevolution,itisuseful to imagine dividing the response into different regimes each controlled by any of an assortment of different “characteristic” time scales. For instance, if one imagines varying the source f over a 0 timescaleτ,thenτisroughlythecharacteristictimescalegoverningtheamountoftimetakentodrive thesystemoutofequilibrium. Thesubsequentnon-equilibriumsystemwillevolveaccordingtothe non-linear gravitational equations of motion, and thus it could be possible that the system will pass throughahighlynon-linearregime,T .Thistimescalecouldconceivablybefurthersubdividedinto NL anynumberofdistinctregimes. If a horizon forms in the bulk, it is natural to expect that a “ring-down” regime T defines the RD system’s near-equilibrium behavior for the dual theory to thermalize at late times. This expectation isbasedonthefactthatthelinearizedresponseofthefinalstateblackbranetosmallperturbationsis controlledbythelowestlying(mostreal)quasi-normalmodeinthespectrumatlatetimes. As a consequence of the preceding discussion, it is sensible to define a thermalization time as simply the sum of all the characteristic time scales defining the dynamic evolution except the time scalecharacterizingtheapplicationoftheexternalsource, T =T +...+T . (4) THERM NL RD Thusdefined,thethermalizationtimedependsonlyontheout-of-equilibriumresponseandrelaxation ofthestronglycoupledmatter.Inthemajorityofholographicexamplesofthermalizationinastrongly coupled field theory found in the literature, the thermalization time appears to be dominated by the ring-downregime,i.eT ≈T . THERM RD EPJWebofConferences Figure3. Examplesofgravitationalsystemsholographicallydualtoconfininggaugetheories. Inthehardwall model(left)thegeometryisartificiallycutoffatsomeradialpositionz=z ,hereshownasabrickwall.Inbulk 0 theorieswithscalarmatterliketheEinstein-Dilatontheories(right),itispossibletoengineerapotentialforthe scalarwhicheffectivelyshieldsprobesfromreachingarbitrarilyfarintothethroat. 3 Confinement in Holography Onefeatureabsentfrommanypreviousholographicinvestigationsofthermalizationisthepresence ofaconfinementscaleanalogoustotheΛ ofquantumchromodynamics. Itisnaturaltowonderif QCD theexistenceofsuchanadditionalcharacteristicenergyscalecouldalterthedynamicalresponseof thetheoryinimportantways,perhapsleadingtothermalizationprocessesinthedualfieldtheorythat lieoutsidetheomnipresentring-downregime. The introduction of confinement to holographic gauge theories has a long history [2, 3], and is bynowafamiliaraspectofgauge/gravityduality. Confinementinanygaugetheorycanbeidentified withan“arealaw”behavioroftheWilsonloopW, (cid:104)W(cid:105)∼e−Fs·TL (5) where F istheQCDstringtension,andTListheareaoftheWilsonloopdescribingtheseparation s by length L of a quark anti-quark pair propagating for time T. In a holographic theory, the Wilson loophasadualdescriptionintermsofacertainminimalsurfacedroopingintothebulkgeometry. It canbeshown[3]thattoobtainthedesiredarealawbehavioroftheboundarytheoryWilsonloop,the bulkgeometrymustobeycertainrequirements. Forexample,ifthebulkstringframemetriciswritten as (cid:16) (cid:17) ds2 =e2A(z) −dt2+d(cid:126)x2+dz2 (6) where z is the radial coordinate orthogonal to the boundary theory directions, then the dual Wilson loop will only exhibit area law behavior if the warp factor A(z) achieves a minimum at some radial coordinatez ,andifA(z )isfinite. 0 0 Thus, roughly speaking, gravitational theories dual to confining gauge theories are “capped” in theradialdirection. Themechanismforcappingthegeometrycanbeeitherabrupt,asinthecaseof theso-calledhardwallmodel,orgentleperhapswiththeaidofotherbulkfields. Thesepossibilities areillustratedandexplainedinmoredetailinfigure3. Holographicthermalizationinthehard-wallmodelwasexploredinitiallyin[4,5]. Theprimary resultwasthattheintroductionofaconfinementscaleindeedleadstoamorecomplexthermalization processes. Morespecifically, aclassofperturbationswereidentifiedthatneverthermalize[4]. This ICNFP2015 canbeunderstoodasaconsequenceofthefollowingsimpleargument:iftheperturbationtothehard- wallgeometrycarriessufficientenergydensitytoproduceablackbranewithhorizonabove(closerto theboundarythan)theharwallatz ,thentheperturbationisindifferenttotheexistenceofthewalland 0 willthermalizeinatimeT ≈ T . Iftheassociatedenergydensityislower, theperturbation THERM RD willscatterfromthehard-wallandreturntotheboundarywhereitscattersoncemore. Thisprocess appears to repeat for as long as the numerical routines of [5] were able to run. Recently, analogous calculations were performed in the AdS soliton background [6] which is qualitatively similar to the hardwall in that there is a mass gap for black brane formation in the bulk. There too perturbations were identified which appear to scatter indefinitely, while others lead to collapse and black-brane formation. 4 Dynamical Quenches in a Confining Gauge Theory Clearly,animportantnextstepistodeterminewhetherornotsomethingsimilarcanhappeninmore realisticholographicmodelsofconfininggaugetheories. Anexampleofonesuchclassofmodelsis theEinstein-Dilatonclass,whosesolutionsminimizeanactionoftheform (cid:90) (cid:32) (cid:33) (cid:90) 1 √ 4 1 √ S = d5x −g R− (∂ϕ)2+V(ϕ) − d4x −γK +S . (7) 2κ2 3 κ2 CT ∂ The first term in this action describes the interactions of a scalar field ϕ coupled to gravity, subject to the scalar potential V, while the second term is the familiar Gibbons-Hawking-York boundary term. The final term denotes a collection of bulk counterterms that must be added to the action to regularize the action on-shell, and allows for the computation of holographically renormalized correlationfunctions. In a “top down” holographic model, the scalar potential V would be fully determined by the symmetries of an underlying supergravity theory. Top down models often have the advantage of providing a gravitational theory whose bulk fields are dual to explicitly identifiable operators in a known boundary gauge theory. Constructing such models with the desired dual physics is typically hardwork,however,anditisoftenconsiderablymorepragmatictoemploya“bottomup”approach. Inabottomupmodel,thescalarpotentialcanbearbitrarilytunedtoinducethedesireddualphysics. Thefreedomtotunethispotentialcomesatthecostofrigor,asonesubsequentlyforfeitstheability to make detailed claims about the name and operator content of the dual field theory. Nonetheless, inthepresentcase,wewilladoptabottomupperspectiveandchooseV suchthatthedualboundary gaugetheoryisconfiningatlowtemperaturesandsuchthatsolutionswithnon-zeroscalarcorrespond torelevantdeformationsbyadimensionthreescalaroperator(fordetails,see[1]). Anexampleofa scalarpotentialthatrealizesthesefeaturesisgivenby 12(1+aϕ2)1/4cosh4ϕ−bϕ2 V(ϕ)= 3 (8) L2 withtheparameterchoice(a,b)=(1/500,10009/1500)andLtheAdSscale. Thesolutionstothisbulktheorydescribethevariousphasesavailabletothedualfieldtheory. At zerotemperature,thedualgravitationalsolutionisahorizon-lessgeometrywitharunningscalarand afairlyinnocuousnakedsingularityinthebottomofthethroat. Ideally,onewouldliketoperturbthis geometrybyvaryingthesourceforthedualscalaroperatorintime. Thiswouldroughlycorrespond to driving the system out of its ground state by altering the coupling of a dimension three scalar operator. Inpractice,therapidlydivergingbulkscalargreatlycomplicatesthenumericalanalysisand itisnecessarytointroduceanIRcutoffdeepinthethroatregionofthegeometry. EPJWebofConferences Figure4.Plotofthetemperatureoftheblackholesolutionscaledbythecriticaltemperatureasafunctionofthe valueofthescalaratthehorizon,λ /λ . Atλ = λ thereisthefirstorderphasetransitionbetweenthelarge H c H c blackholeandthethermalgassolutionwhichdoesnothaveahorizon,whilethesmallblackholeco-existsasa thermodynamicallydisfavoredsolutionwithasmallhorizon. Asensiblemeansforintroducingsuchacutoffcanbefoundinanotherbranchofsolutionstothe bulkaction. Aparticularlywellsuitedbranchcontainsthe“smallblackhole”solutions,whichshield thesingularitybehindaverysmallhorizon. Thesesolutionsprovideinitialstatecandidatesinwhich allbulkfieldsarewellbehavedbetweentheUVboundaryandthehorizonintheIR.Inthiswaythe smallhorizon regulatesthe IR,butnot withoutintroducing somedrawbacks. First, theintroduction ofahorizonintheinitialstateobviouslyrendersanyinformationrelatedtohorizonformationbeyond the reach of our computations. Second, the small black holes along this branch are never the ther- modynamicallypreferredsolutionsinthedualfieldtheory. Nonetheless,theyhavetheadvantageof retainingmuchoftheflavorofthezerotemperaturesolution(notablyascalarwhichgrowsrapidlyin theIR)whileshieldingthenumericalmethodsfromtheexistenceoftheIRsingularity. Infigure4the finitetemperaturesolutionstothemodel(7)areshown,parametrizedbythevalueofthescalarλ=eϕ atthehorizon. Thesmallblackholesarethebranchtotherightoftheminimumtemperaturesolution. Ourcomputationalstrategywillbeasfollows: beginningfromasmallblackholeinitialstate,we turnonatimedependentsourcefortheboundaryscalaroperatoroftheform (cid:18) (cid:19) f0(t)= f˜0 1+δ˜e−2vτ˜22 , (9) which can be tuned by varying δ˜ and τ˜. This change in the scalar at the boundary propagates into thebulk,backreactingonthegeometry. Thisdynamicalprocessisfullydescribedbythenon-linear Einsteinequations,whosecausaltimeevolutionmustbesolvednumericallystepbystepintimeuntil afinalsteadystatesolutionhasbeenobtained. Ateachboundarytime,astandardapplicationofthe holographicdictionaryallowsonetoreadofftheone-pointfunctionsofthestress-energytensorand scalaroperatorinthedualgaugetheory. EvolvingthesolutionsusingtheEinsteinequationsisdifficultandrequiresanassortmentofnu- mericalmethodstailoredtothegravitationalproblem. Whilevariousnumericalschemeshavefound successinthegravitationalliterature,wehavefoundthecharacteristicformulationparticularlycon- venient. Thisformulationhaspreviouslybeenusedwithsuccessinavarietyofholographiccomputa- tions,startingwiththeimportantworkof[7].Inthissetup,theEinsteinequationsarerecastasanested collectionofordinarydifferentialequationsthatcanbesolvedinserieswhensupplementedwithsome initialdata. Independentofthechoiceofscheme,onemustalsodecidewhichnumericaltechniques ICNFP2015 Figure5. Timeevolutionof(cid:104)T (cid:105)forlargeamplitude(left)andsmallamplitude(right)quenchesinthesmall tt blackholeinitialstate. arebestsuitedtoperformtheactualintegrationoftheequationsofmotion. Oneoption,whichhasre- ceivedmuchattentioninthenumericalholographyliterature,arethepseudo-spectralmethods. Under certain circumstances, these methods offer excellent convergence properties and are comparatively inexpensive computationally. These benefits are, unfortunately, somewhat compromised in the case that the bulk fields contain non-analytic behavior within the computational domain. Therefore, we found it best to utilize an assortment of finite difference schemes to integrate our solutions into the bulkandforwardintime. Upon successful evolution of the Einstein equations, the system’s response reveals an energy densitywhichchangesmarkedlyonthetimescaleofthequenchτ˜,followedbyarapidequilibration toitsfinalstatevalue. Someexamplesofthisevolutionareplottedinfigure5. Byconstruction,this rapidchangesatisfiestheWardidentity(2)inthepresenceofthetimedependentsourceoftheform (9). Indeed,boththeWardidentitygoverningthedivergenceoftheboundarystressenergytensoras wellastheWardidentityrelatingthetraceofthisstresstensortoclassicalandanomalousconformal symmetry breaking terms are guaranteed to hold in any solution to the gravitational equations of motion. Tobetterunderstandtherapidapproachoftheperturbedsystemtothermalequilibrium,itisuseful tolookinmoredetailatthelatetimebehaviorofthesystem. Infigure6thetimedependenceofthe scalaronepointfunctionisplottedonalogarithmicscale. Onenotesimmediatelythatafterashort time(againcontrolledbythequenchwidthτ˜),thesystemoscillateswithawelldefinedfrequencyω ∗ whilesimultaneouslyapproachingitsequilibriumvalueexponentiallywithdecayconstantΓ. Thisis exactly as one would expect from a linear system controlled by an excited mode of the form ω = 1 ω −iΓ.Evidently,evenintheconfiningmodelof(7-8)thethermalizationtimeseemstobedominated ∗ bythelinearregime,T ≈T . THERM RD The decay width Γ is given by the imaginary part of the lowest lying scalar quasi-normal mode of the system’s final state black hole. In figure 7 we quantify this by plotting Γ as a function of temperature for several thermal states of our holographic theory. As anticipated, linear scaling of Γ withtemperatureappearsintheconformal(smallscalar)limit,anddeviationsfromthisbehaviorare already evident at the first order phase transition where T = T . These deviations become larger as c onemovesfurtherontothesmallblackholebranch. InthiswayΓquantitativelycapturesthedegree oftheconformalsymmetrybreakinginthepresenceofthenontrivialconfiningscalarpotential(8). Outsideofthermalizationtimes,theholographicapproachcanalsoprovidesomeinsightintothe dependence of the final state on parameters of the perturbation. In figure 8 the final state energy densityisplottedasafunctionofquenchdurationwithfixed(large)amplitude,andasafunctionof EPJWebofConferences Figure6. Genericlate-timebehaviorofthemagnitudeofaone-pointfunction’sdeviationfromitsequilibrium value. Afterthequenchtime∼ τ˜ theresponseequilibratesmuchlikeadampedoscillator. Thedampedoscilla- tionscorrespondtotheexcitationsofthegravitationalsystem’slowestlyingquasi-normalmode. Figure7. ThetemperaturedependenceofthedecaywidthΓforthelowest-lyingscalarquasi-normalmodein severalstatesofourtheory. Thebluecirclesarelargeblack-braneswhosetemperatureisanintegermultipleof T . TheorangesquarescorrespondtotheminimumtemperatureblackbraneatT = T (top)andthesmallest c 0 blackholeweperturbinourstudyatλ /λ = 3.23(bottom). TheratioΓ/πT approaches1.75953(thedashed H c line)athightemperatures,whichcoincideswiththeexpectedvalueforperturbationsofAdS Schwarzschildby 5 adimension3scalaroperator[8]. quench amplitude at fixed (short) duration. The most important feature shown is the appearance of simplepowerlawscalingregimes. Combiningtheresultsofthetwoplots,onefindsthatinthelimit ofabruptquenches(wherethequenchwidthismuchsmallerthanallotherdimensionfulscales) (cid:32)δ˜(cid:33)2 (cid:104)T (cid:105) ∼ . (10) tt FINAL τ˜ In fact this simple scaling relation was already anticipated on very general grounds, and is a special case of the universal scaling formula in [9] for a dimension three scalar operator. That this scalingshouldbeuniversalreadilyfollowsfromthefactthatforveryfastquenches,theperturbation doesnothavetimetopropagatefarfromtheboundarybeforethequenchconcludes. Sincethenear ICNFP2015 Figure8.Finalstateenergydensity(cid:104)T (cid:105)asafunctionofquenchparameters.Intheleftplotthequenchamplitude tt isheldfixed,whileintherightplotthequenchdurationisfixed. boundaryregionofmanyholographicallyrelevantspacetimesisasymptoticallyAdS,abruptquenches areindifferenttotheIRfeaturesofthegeometrydistinguishingdifferentholographicspacetimes. 5 Discussion Oneofthemostimportantlessonstobeextractedfromourresultsisthedominationofthethermal- izationtimebythelinearregime,eveninthepresenceofaconfinementscaleintheholographicgauge theory. Indeed, in every quench that we have managed to evolve in this system, the thermalization timeappearstobecontrolledentirelybythelowestlyingquasinormalmodeofthefinalstateblack brane. Itisconceivablethatthisisdueinlargeparttotheinitialstatethatwehavechosentoperturb. AsaconsequenceofthepreviouslydiscussedIRfeaturesofverysmallblackholesinthismodel,our numericalstabilitysuffersasthesizeoftheinitialstateblackbraneshrinks. Ontheotherhand,itis sensibletoexpectthattheconfinementscalebecomesimportanttothecharacteristicsofthedynamical responsewhenitisthedominantenergyscaleintheproblem. Currently,thesmallestblackholethat wecanreliablyperturbhasanenergydensitycomparabletotheconfinementscale: (cid:104)T (cid:105)/f 4 ∼O(1). tt 0 Thus,itisperhapsnotentirelysurprisingthatthedynamicalresponseofthesystemdoesnotappear topassthroughanyregimecontrolledbythisenergyscaleinourcomputations. Ultimately,itwouldbeofgreatinteresttoperturbinitialstateswith(cid:104)T (cid:105)/f 4 (cid:28)1,orbetteryetthe tt 0 zerotemperaturesolutionitself. Itiswithinthissettingthatoneexpectstheresponsetothequenchto bemostsensitivetothedivergingscalarpotentialinthebulk,andthustotheconfinementscaleofthe dualboundarytheory. Understandingtowhatextentthisscalarpotentialissimilartothehardwallin itsabilitytoinducescatteringsolutionswhichnevercollapseinthebulkisperhapsthemostobvious avenue to pursue. Should such scattering solutions exist, identifying the boundary in the space of quenchparametersthatseparatesperturbationswhichleadtohorizonformationfromthosewhichdo notwouldpermitascalinganalysisanalogoustothatperformedinthewellknowncaseofChoptuik phenomena[10]. Last, it may prove interesting to investigate the features of other probes sensitive to the quench dynamicsinthisholographictheory. Someobviouscontendersarevariousnon-localprobessuchas Wilson loops, entanglement entropy, and two point functions of large dimension operators. These operatorsallsharethefeaturethattheirholographiccomputationinvolvesthestudyofworldlinesor worldsheetsthatsagintothebulkspacetime. Astheseparationofboundaryoperatorsincreases,these surfacesgenericallydrooplowerintheradial(holographic)direction. Inthisway,theseprobesmay EPJWebofConferences provide insights into the equilibration of the dual field theory at different length scales, potentially offeringamoredetailedunderstandingoftheprocess. Acknowledgements ThisworkwassupportedinpartbyEuropeanUnion’sSeventhFrameworkProgrammeundergrantagreements (FP7-REGPOT-2012-2013-1) no 316165, the EU program “Thales" MIS 375734 and was also cofinanced by theEuropeanUnion(EuropeanSocialFund, ESF)andGreeknationalfundsthroughtheOperationalProgram “EducationandLifelongLearning"oftheNationalStrategicReferenceFramework(NSRF)under“Fundingof proposalsthathavereceivedapositiveevaluationinthe3rdand4thCallofERCGrantSchemes". Theworkof T.I.wassupportedinpartbytheDepartmentofEnergy,DOEawardNo.de-sc0008132. TheworkofC.R.was supportedinpartbytheEuropeanResearchCouncilundertheEuropeanUnion’sSeventhFrameworkProgramme (FP7/2007-2013),ERCGrantagreementADG339140. References [1] T.Ishii,E.Kiritsis,C.Rosen,JHEP08,008(2015),1503.07766 [2] E.Witten,Adv.Theor.Math.Phys.2,505(1998),hep-th/9803131 [3] Y.Kinar,E.Schreiber,J.Sonnenschein,Nucl.Phys.B566,103(2000),hep-th/9811192 [4] B. Craps, E. Kiritsis, C. Rosen, A. Taliotis, J. Vanhoof, H.b. Zhang, JHEP 02, 120 (2014), 1311.7560 [5] B. Craps, E.J. Lindgren, A. Taliotis, J. Vanhoof, H.b. Zhang, Phys. Rev. D90, 086004 (2014), 1406.1454 [6] B.Craps,E.J.Lindgren,A.Taliotis,JHEP12,116(2015),1511.00859 [7] P.M.Chesler,L.G.Yaffe,Phys.Rev.Lett.102,211601(2009),0812.2053 [8] A.Nunez,A.O.Starinets,Phys.Rev.D67,124013(2003),hep-th/0302026 [9] A.Buchel,R.C.Myers,A.vanNiekerk,Phys.Rev.Lett.111,201602(2013),1307.4740 [10] M.W.Choptuik,Phys.Rev.Lett.70,9(1993)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.