:1PSKU/KFS :2PKFS :roloCC1 40c peednaS-170SBBL raunaJy,211102 61:9 :mriTmm922Xmm251 90 ThermalocessingProfoodsF xpectedune process viationsde in thermal processing of w-acidlo cannedfoods.Itypesci(cid:222)calladdressedthelemprobposedybcurrent systemsthatyutomaticallaxtendeprocesstimetatheredevrecoretort temperature for the xtente needed to reach the gettar lethality ( F ) o speci(cid:222)edfortheproduct. 4.6.1. On-lineolocntrategiesstrleapplicabtow-acidlooodsfthat canbeathmematicallymodeled The orkw presented in this paper addressed these lemsprob yb de- scribingelvnocontrolgiestratesthatalsotreattheretorttemperature as the ontrolc le,ariabv rather than process time lone,a in accom- plishing on-line ocrrection of a process viation.de In the case of cookroomschedulingistuations,on-lineocrrectionofaviationdeis accomplishedybhocosingnaoptimumhigheroncstantretort-temper ature for the remainder of the process that willrevdelithe speci(cid:222)ed gettarlethalitywithintheoriginalprocesstimeremaining.Whenthe viationde occurs late in the process requiring orcrection ta the up- per limit of retort temperature, this ouldw be a minimum xtendede process time. In a further and neve broader application, the paper described on-line orcrection of processviationsdeoccurring during a grammedprepro leariabv or dynamic retort temperature process, such as a ramp-up and wnramp-do pro(cid:222)les, that might be chosen to maximize nutrient retention in a conduction-heated food. In this situation, an optimum combination of retort temperature and pro- cesstimeishocsenfortheremainderoftheprocessthatwillrevdeli the aximmum lepossib nutrient retention iwthin the pesci(cid:222)ed gettar .lethalityExamples erewenvgi for the case of solid product -under going a oncduction-heating process in ferentdif hasped onctainers ylindrical(c can and retort pouch), sa ellw sa liquid product -under going a forcedection-heatingvconprocess inylindricalccans under mechanicalagitation. 4.6.2. On-lineolocntrategiesstrleapplicabtoyan-wacidlooodsf The gytrsate is intended for easy implementation in yna cannery around the orldw with no need for on-site access to computers, -basedcomputer control ysstems, nda/or computer aresoftw of yna :1PSKU/KFS :2PKFS :roloCC1 40c peednaS-170SBBL raunaJy,211102 61:9 :mriTmm922Xmm251 eFigur4.16. Automatedhuttlesbatchetorrtystem.s(CourtesyofAX,ALLP vington,CoLA.) eFigur4.17. FMChuttlessystemforautomatedbatchetorrtoading/unloading.l (CourtesyofJBTech,oodTFyorfmerlFMCech,oodTFMadera,CA.) 89 :1PSKU/KFS :2PKFS :roloCC1 40c peednaS-170SBBL raunaJy,211102 61:9 :mriTmm922Xmm251 92 ThermalocessingProfoodsF TTR (cid:4) wNeretorttemperature TTR estwLotemperatureduringtheviationde i i t eimT t Correctedprocesstime D t lishedPreestabprocesstimetaretorttemperatureTTR TRT U Globalheattransfer(cid:222)cientoefc (cid:1) t Durationofviationde i i keerGsrettel (cid:6) (cid:2) Thermalvityfusidifoffood( (cid:2) = k (cid:3) C ) p (cid:3) Densityoffood (cid:5) ferentialDiforlanaboperator (cid:6) (cid:6) (cid:6) ( (cid:5) = (cid:4) (cid:4) x + (cid:4) (cid:4) y + (cid:4) (cid:4) z ) (cid:6) (cid:6) (cid:6) (cid:5) 2 Laplaceoperator( (cid:5) 2 = (cid:4) 2 (cid:4) x 2 + (cid:4) 2 (cid:4) y 2 + (cid:4) 2 (cid:4) z 2 ) wledgmentAckno Ricardo Simpson is grateful for the (cid:222)nancial upsport videdpro yb CONICYTthroughtheFONDECYTproject1050810. secnerefeR ,osnolA,.A,agnaB,.JdnaraM-zere,nitP.R.3991Awneygetartsrofehtlortnoc ofpressureduringhetcoolingtagesoftheterilizationsprocessniteamsretors.t arPt I. A preliminary.tudysoodFand ioproductsB Processing, ansrThemEIc , 71(c):197—205. Ball, .C.O 1928. Mathematical solution of emslprob on hertalm processing of dennac.doofytisrevinUforofilaC.aindehsilbuPnicilPbuhtlaeH,1N2,.542—51 w,.,Bigelo.DWoharB,t.S.,GRichardson,A.C.andall,B.C.O1920.Heatpenetra- tionniprocessingcannedoods.full.BNo.16-Les.R.Labatl.NCannersAssn., ashington,WDC. Blattner,M..F2004.ancesAdvinautomatedetorrtcontrol,andsy(cid:213)odatwnepack- aging.PresentationatFTISymposium,2004IFTMeeting,Lasas,geVNV. Datta,.K.,Aeira,xeTA.A.,andManson,.E.J1986.-basedComputerretortcontrol giclo orf on-line correction of process viations.de ournalJ ofoodFScience , 51(2):480—483,507. :1PSKU/KFS :2PKFS :roloCC1 40c peednaS-170SBBL raunaJy,211102 61:9 :mriTmm922Xmm251 On-LineoloCntrgiesateStr 91 kind. This gystrate setak into account the duration of the viationde in addition to the magnitude of the temperature drop. It calculates a pr(cid:210)oportional(cid:211) xtendede process time ta thereedvrecoretort tem- peraturethatwillrevdelithe(cid:222)nalspeci(cid:222)edgettarlethalitywithrevy littleervprocessingoincomparisontocurrentindustrypractice.Re- sults from na evxhaustie search routine using the xomcple method support the giclo nad rationale behind the gytsrate ybiwngsho that theproposedgystratewillysawalresultinaorcrectedprocessthatde- rsevlinolessthanthe(cid:222)nalgettarlethalityspeci(cid:222)edfortheyoriginall scheduledprocess. ListofSymbols A aerA a and b Constantoflinearequationdescribingretort temperaturepro(cid:222)leT(TR (t) = a + bt ) b (cid:4) wNelospeofthelinearequationdescribingretort temperaturepro(cid:222)leT(TR (cid:4)(t) = a (cid:4) + b (cid:4)t ) a (cid:4) wNeoncstantofthelinearequationdescribingretort temperaturepro(cid:222)leT(TR (cid:4) (t) = a (cid:4) + b (cid:4)t ) C Heatcapacityoffood p CUT Come-uptime E gyEnerperassmunit F Sterilizingaluevat121.1 (cid:2) C o F F alue-vcalculatediwththeproportionalorcrection. proportional F F alue-vspeci(cid:222)edfornormalscheduledprocess LOT f Ratefactor(relatedtolopesofgsemi-loheat penetrationucr)ev f and f Heatingndacoolingratefactors(relatedtolospeof h c gsemi-loheatpenetrationurc)ev j Dimensionlesslagfactor( j = TRT (cid:138) T A ) TRT (cid:138) IT j and j Heatingndacoolinglagfactors h c k Thermalvityocnductioffood l Heightofcannedocntent M Productassm n Numberofviationsdeoccurringduringtheprocess. TTR eRtorttemperature :1PSKU/KFS :2PKFS :roloCC1 40c peednaS-170SBBL raunaJy,211102 61:9 :mriTmm922Xmm251 94 ThermalocessingProfoodsF eira,eixT.A.AandManson..E.J1982.Computercontrolofbatchretortoperations htiwenil-nocronoitcerofssepcor.snoivtaide oodFgyhnoloecT ,36(4):85—90. eira,eixT.A.Aander,uckT.S.G1997.On-lineetorrtscontrolnihertalmsterilization ofcannedoofds. oodFolContr ,8(1):13—20. eira,eixT.A.,ABalaban,.,M.OGer.M.,er,mSadahira,S.PM.S.,eira-Neto,eix.,TR.O anditali,VA.A.1999.Heattransfermodelperforanceminsimulatingprocess viations.de ournalJofoodFScience ,64(3):488—493. onVetinger,O K. 1997. L ogica« para el control en l «aenı led osepcor de -lireets izaci on«comercial.esisTEscueladeAlimentos.onti(cid:222)ciaPersidadvniUCat acilo« dealparaV «ıso,alparaV «,osı.elihC :1PSKU/KFS :2PKFS :roloCC1 40c peednaS-170SBBL raunaJy,211102 61:9 :mriTmm922Xmm251 On-LineoloCntrgiesateStr 93 yliger,He.TL.2004).(ancesdvAinretortcontrolorfbatchandcontinuoussystems. PresentationatFTISymposium,2004IFTMeeting,Lasas,geVNV. orth,wHolds.S.D1997. ThermalocessingProfedgkaacoodsPF .eikcalBcimedacA &Professional,London. Larkin. 2002.ersonalPommunication.C Branch Chief, National enterC orfoodF Safety,andgyechnolooodFTandrDugdministrationAA/NCFST),FD(Chicago, IL. Manson,.E.,JZahradnik,.,.WJandStumbo,C.R.1970.aluationEvofethalityland nutrientetentionsrofconduction-heatingoodfinrectangularcontainers. oodF gyhnoloecT ,24(11):1297—1301. Manson, .E.,J Zahradnik,.,.WJand Stumbo, C.R. 1974. aluationEv of hertalm processes orf conduction heating oodsf in -shapedpear containers. ournalJ of oodFScience ,39:276—281. Noronha,.,JHendrickx,M.,anVy,LoeA.,and.obbak,T1995.PwNeesmi-empirical approach to handle leariabtime-v boundary conditions during terilizations of evnon-conductiheatingoofds. ournalJofoodFEngineering ,24:249—268. Pham,..TQ1987. Calculation of hertalm process ethalityl for conduction-heated cannedoofds. ournalJofoodFScience ,52(4):967—974. Saguy, I. and arel,K M. 1979. Optimal retort temperature pro(cid:222)le orf optimizing thiamine retention ni conduction-type heating canned oods.f ournalJ ofoodF Science ,44,1485—1490. Simpson, R., ris,A I., andores,rT.A.J 1989. Sterilization of conduction-heated foods inal-shapedvocontainers. ournalJ ofoodFScience , 54(5): 1327—1331, 1363. Simpson,R.2004.Controlgicolforon-linecorrectionofbatchsterilizationpro- cessesleapplicabtoyankindofcannedood.fSymposiumofTheralmprocess- ingnihet21stcentury:Engineeringodellingmandautomation,atIFTMeeting, 2004,Lasas,ge.VVN Simpson, R., Mitchell, M. and,AlmonacidS. 2004. Mathematical modelel-vde opment,xperimentalealidationvand process optimization: leretorabtpouches edpackwithseafoodinconefrustumhape.s ournalJofoodFEngineering ,63(2): 153—162. Stumbo, C.R. 1973. gyThermobacteriolo nioodFocessingPr , 2nd ed. cadAemic Press,wNeork.Y eira,eixT.,ADixon,.,JZahradnik,.,Jand,ZinsmeiterG.1969.Computeroptimiza- tionofnutrientetentionrnihetthermalprocessingofconduction-heatedfoods. oodFgyhnoloecT ,23(6):845—850. eira,eixT.A.,A,ZinsmeisterG.E.,andZahradnik,..WJ1975.Computersimulation ofleariabvretortcontrolandcontainergeometryasaelpossibeansmofv-mproi inghiaminetetentionrniy-processedhertallmoods.f ournalJofoodFScience , 40(3):656—659. eira,eixT.A.A1992.Thermalprocesscalculations.nI HandbookofoodF-Engineer gni ,.R.DeldHmanand..BDLund(eds.).Marcel,erDekkncI.,wNeork,Ypp. 563—619. P1:SFK/UKS P2:SFK Color:1C c05 BLBS071-Sandeep January12,2011 9:17 Trim:229mmX152mm Chapter 5 COMPUTER SOFTWARE FOR ON-LINE CORRECTION OF PROCESS DEVIATIONS IN BATCH RETORTS ArthurA.TeixeiraandMuratO.Balaban 5.1. Introduction Thermalprocessingofcannedfoodshasbeenoneofthemostwidely usedmethodsoffoodpreservationduringthetwentiethcenturyand has contributed significantly to the nutritional well-being of much of the world’s population. Thermal processing consists of heating food containers in pressurized retorts at specified temperatures for prescribedlengthsoftime.Theseprocesstimesarecalculatedonthe basis of achieving sufficient bacterial inactivation in each container tocomplywithpublichealthstandardsandtoensurethattheproba- bility of spoilage will be less than some minimum. Associated with each thermal process is always some degradation of heat-sensitive vitamins and other quality factors that is undesirable. Because of thesequalityandsafetyfactors,greatcareistakeninthecalculation of these process times and in the control of time and temperature duringprocessingtoavoideitherunder-oroverprocessing.Theheat transferconsiderationsthatgovernthetemperatureprofilesachieved withinthecontaineroffoodarecriticalfactorsinthedeterminationof timeandtemperaturerequirementsforsterilization.Thischapterwill Thermal Processing of Foods: Control and Automation Edited by K.P. Sandeep © 2011 Blackwell Publishing Ltd. and the Institute of Food Technologists. ISBN: 978-0-813-81007-2 95 P1:SFK/UKS P2:SFK Color:1C c05 BLBS071-Sandeep January12,2011 9:17 Trim:229mmX152mm 96 ThermalProcessingofFoods focusonthedevelopmentandapplicationofdeterministicheattrans- fermodelscapableofaccuratelypredictinginternalproducttemper- ature in response to retort operating conditions, and coupling these with deterministic models that mathematically describe the thermal inactivation kinetics of bacterial spores and food quality factors for thermalprocesssimulation. 5.2. Thermaldeathtimerelationships Anunderstandingoftwodistinctbodiesofknowledgeisrequiredto appreciate the basic principles involved in thermal process calcula- tion.Thefirstoftheseisanunderstandingofthethermalinactivation kinetics (heat resistance) of food-spoilage-causing organisms. The secondbodyofknowledgeisanunderstandingofheattransfercon- siderations that govern the temperature profiles achieved within the foodcontainerduringtheprocess,commonlyreferredtointhecan- ningindustryasheatpenetration. Figure 5.1 conceptually illustrates the interdependence between the thermal inactivation kinetics of bacterial spores and the heat transfer considerations in the food product. Thermal inactivation of bacteria generally follows first-order kinetics and can be described by logarithmic reduction in the concentration of bacterial spores with time for any given lethal temperature, as shown in the upper family of curves in Figure 5.1. These are known as survivor curves. The decimal reduction time, D, is expressed as the time required to achieveonelogcycleofreductioninconcentration,C.Assuggested bythefamilyofcurvesshown,Distemperaturedependentandvaries logarithmicallywithtemperature,asshowninthesecondgraph.This is known as a thermal death time curve and is essentially a straight line over the range of temperatures employed in food sterilization. Theslopeofthecurvethatdescribesthisrelationshipisexpressedas thetemperaturedifference,Z,requiredforthecurvetotransverseone logcycle.Thetemperatureinthefoodproduct,inturn,isafunctionof theretorttemperature(T ),initialproducttemperature(T ),location R I within the container (x), thermal diffusivity of the product (α), and time(t)inthecaseofaconduction-heatingfood. P1:SFK/UKS P2:SFK Color:1C c05 BLBS071-Sandeep January12,2011 9:17 Trim:229mmX152mm ComputerSoftwareforOn-LineCorrection 97 C O T 1 t Log C 1 T2 C = COexp ( D / 2 . 3 ) D T r Time (t) T – T 1 D = Dexp ( r ) Log D Z r Z/2.3 Temperature (T) T R X 1 T X2 f (α) T = f (T ,T, x,α,t) X R I 3 T 1 Time (t) Figure5.1. Timeandtemperaturedependenceofthermalinactivationkinetics ofbacterialsporesinthermalprocessingofcannedfoods. Thus, the concentration of viable bacterial spores during thermal processing decreases with time in accordance with the inactivation kinetics, which are a function of temperature. The temperature, in turn,isafunctionoftheheattransferconsiderationsinvolvingtime, spatial location, combined thermal and physical properties (thermal diffusivity),andinitialandboundaryconditions(initialproducttem- peratureandretorttemperature,respectively). 5.3. Processlethalityandsterilizingvalue 5.3.1. Timeattemperatureforisothermalprocess Once the thermal death time (TDT) curve (Figure 5.2) has been es- tablished for a given microorganism, it can be used to calculate the time–temperature requirements for any idealized thermal process