RESEARCHARTICLE Thermal physiology of Amazonian lizards (Reptilia: Squamata) LuisaM.Diele-Viegas1¤a‡*,LaurieJ.Vitt2☯,BarrySinervo3☯,GuarinoR.Colli4☯,Fernanda P.Werneck5☯,DonaldB.Miles6☯,WilliamE.Magnusson5☯,JuanC.Santos7☯¤b,Carla M.Sette3☯,GabrielH.O.Caetano3‡,EmersonPontes5‡,TeresaC.S.A´vila-Pires‡1 1 MuseuParaenseEm´ılioGoeldi,Bele´m,Para´,Brazil,2 SamNobleMuseum,UniversityofOklahoma, Norman,Oklahoma,UnitedStatesofAmerica,3 UniversityofCaliforniaSantaCruz,SantaCruz,California, UnitedStatesofAmerica,4 UniversidadedeBrasilia,Brasilia,DistritoFederal,Brazil,5 InstitutoNacionalde PesquisasdaAmazoˆnia,Manaus,Amazonas,Brazil,6 OhioUniversity,Athens,Ohio,UnitedStatesof a1111111111 America,7 BrighamYoungUniversity,Provo,Utah,UnitedStatesofAmerica a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 ¤a Currentaddress:UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,RiodeJaneiro,Brazil a1111111111 ¤b Currentaddress:St.John’sUniversity,Queens,NewYork,UnitedStatesofAmerica ‡GHOCandEPalsocontributedequallytothiswork.LDVandTCSAParejointseniorauthorsonthiswork. *[email protected] Abstract OPENACCESS Citation:Diele-ViegasLM,VittLJ,SinervoB,Colli Wesummarizethermal-biologydataof69speciesofAmazonianlizards,includingmodeof GR,WerneckFP,MilesDB,etal.(2018)Thermal thermoregulationandfield-activebodytemperatures(T ).Wealsoprovidenewdataonpre- physiologyofAmazonianlizards(Reptilia: b Squamata).PLoSONE13(3):e0192834.https:// ferredtemperatures(Tpref),voluntaryandthermal-toleranceranges,andthermal-perfor- doi.org/10.1371/journal.pone.0192834 mancecurves(TPC’s)for27speciesfromninesitesintheBrazilianAmazonia.Wetested Editor:MichaelSears,ClemsonUniversity,UNITED forphylogeneticsignalandpairwisecorrelationsamongthermaltraits.Wefoundthatspe- STATES ciesgenerallycategorizedasthermoregulatorshavethehighestmeanvaluesforallthermal Received:March31,2017 traits,andbroaderrangesforTb,criticalthermalmaximum(CTmax)andoptimal(Topt)tem- peratures.SpeciesgenerallycategorizedasthermoconformershavelargerangesforT , Accepted:January16,2018 pref criticalthermalminimum(CT ),andminimumvoluntary(VT )temperaturesforperfor- min min Published:March7,2018 mance.Despitethesedifferences,ourresultsshowthatallthermalcharacteristicsoverlap Copyright:©2018Diele-Viegasetal.Thisisan betweenbothgroupsandsuggestthatAmazonianlizardsdonotfitintodiscretethermoreg- openaccessarticledistributedunderthetermsof ulatorycategories.Thetraitsareallcorrelated,withtheexceptionsof(1)T ,whichdoes theCreativeCommonsAttributionLicense,which opt permitsunrestricteduse,distribution,and notcorrelatewithCTmax,and(2)CTmin,andcorrelatesonlywithTopt.Weakphylogenetic reproductioninanymedium,providedtheoriginal signalsforT ,T andVT indicatethatthesecharactersmaybeshapedbylocalenvi- b pref min authorandsourcearecredited. ronmentalconditionsandinfluencedbyphylogeny.Wefoundthatopen-habitatspeciesper- DataAvailabilityStatement:Allrelevantdataare formwellunderpresentenvironmentalconditions,withoutexperiencingdetectablethermal withinthepaper,itsSupportingInformationfiles, stressfromhighenvironmentaltemperaturesinducedinlabexperiments.Forforest-dwell- andavailableatdoi:10.6084/m9.figshare.5293756. inglizards,weexpectwarmingtrendsinAmazoniatoinducethermalstress,astempera- Funding:Thisworkwassupportedby turessurpassthethermaltolerancesforthesespecies. Coordenac¸ãodeAperfeic¸oamentodePessoalde N´ıvelSuperior-graduatefellowshiptoLDVand financialsupporttoGRC(http://www.capes.gov.br/ ):Allowedthedevelopmentoftheresearchandthe datacollection.ConselhoNacionalde DesenvolvimentoCient´ıficoeTecnolo´gico- researchfellowshiptoTAPandfinancialsupportto FPW(475559/2013-4)(http://cnpq.br/):Allowed PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 1/23 ThermalphysiologyofAmazonianlizards thedatacollection.PVE(PesquisadorVisitante Introduction Especial)grantfromCNPq(http://cnpq.br/)–BRS: Bodytemperature(T )inectothermsinfluencesallphysiologicalandbehavioralprocesses Allowedthedevelopmentoftheresearch. b Fundac¸ãodeAmparoàPesquisadoAmazonas– [1].Consequently,maintenanceofTbwithinsuitablelimitsisessentialforectothermssurvival financialsupporttoFPWandWM(FAPEAM, [2].ThermoregulatorsactivelymaintainT withinarestrictedrangeoftemperaturesby b 062.00665/2015)(http://www.fapeam.am.gov.br/): heliothermy,i.e.,bybaskinginthesun,orbythigmothermy,i.e.,bycontactwithwarmsur- Allowedthestudydesignanddecisiontopublish. faces[3].Thermoconformersdonotactivelythermoregulate,sotheirT parallelsfluctuations PartnershipsforEnhancedEngagementin b intheenvironmentaltemperature[1,4].However,nolizardspecieshasbeenshowntobea ResearchfromtheU.S.NationalAcademyof completethermoconformer;allwillmovetoavoidunfavorableextremetemperatures.This SciencesandU.S.AgencyofInternational Development(PEERNAS/USAIDPGA- categoryisoftenusedforspeciesthatselectareaswithrelativelyuniformtemperatures,suchas 2000005316)–financialsupporttoGRCandFPW shadedforest,whereactivethermoregulationisnotneededtomaintainrelativelystablebody (http://sites.nationalacademies.org/pga/peer/index. temperatures.Usingastrictlythermoconformingstrategyrequiresthatspecieshavebroad htm):Allowedthedevelopmentoftheresearchand thermaltolerances[1],andexperiencehighvariationinT throughouttheday,seasonand thedecisiontopublish.Fundac¸ãodeAmparoà b geographicrange. PesquisadoPara´-ICAAFnumber011/2012 SISBIOTAHerpeto-Helminto–financialsupportto Inthefield,lizardsareusuallyactiveatarestrictedrangeofTb.Itiscommonlyassumed LDVandTAP(http://www.fapespa.pa.gov.br/): thatthesetemperaturesrepresenttheiractualthermalpreferences[5].However,laboratory Allowedthedatacollection.(cid:3)Fundac¸ãodeAmparoà experimentsshowthatthevarianceinT rangeobservedinnaturefortropicallizardsexceeds b PesquisadoDistritoFederal(FAPDF)-financial boththepreferredT andthevoluntaryT rangeobservedwhentheanimalsaresubjectedto supporttoGRC(http://www.fap.df.gov.br/<http:// b b thermalgradients[6–7].Consequently,tropicallizardsmayalreadybeexperiencingT ’sator www.fap.df.gov.br/>)(cid:3)-Allowedthedata b abovetheirphysiologicaloptima[8],puttingthemdangerouslyclosetotheirupperthermal collection.NationalScienceFoundation–Emerging Frontiers[grantnumber1241885,Collaborative thresholds.Theseupperthermallimitsarelikelytobeexceededinthenextfewdecadesasa Research:“QuantifyingClimate-forcedExtinction consequenceofclimatechange[9].AnalternativeinterpretationisthatpreferredT andvol- b RisksforLizards,Amphibians,Fishes,andPlants”] untaryT reflectnotonlyphysiologicallimits,butarealsotailoredtospecificactivities,suchas b –LDV,BRS,GRCandFPW(https://www.nsf.gov/): digestion,reproductionandforagingfordifferenttypesofprey[1],andthatlaboratorystudies Allowedthedatacollection,analysisandreparation donotfullyreflecttherangeofmotivationalstates.Fieldactivitytemperaturesmayvarysea- ofthemanuscript.NationalScienceFoundation– EmergingFrontiers[grantnumber241848]–BRS sonally,independentofvariationinenvironmentaltemperatures(e.g.,[10]). andDBM:Allowedthedatacollection,analysisand Theinfluenceofambienttemperatureonkeyphysiologicaltraitsisdescribedbythermal preparationofthemanuscript.ResearchCouncil performancecurves(TPC)[2].Aspecies’thermalsensitivitycanbevisualizedandquantified viaaGeorgeLynnCrossResearchProfessorship throughTPCs,whichrevealseveralimportantthermalpropertiesofectotherms.Theseinclude oftheUniversityofOklahomaandtheSamNoble theoptimaltemperature(T ),formaximalanimalperformance;thebreadthoftemperatures MuseumsupporttoLJV(http://samnoblemuseum. opt ou.edu/):Allowedthedecisiontopublish. thatresultsinaspeciesperformingat(cid:21)80%ofitsoptimalcapacity(B80);andthethermaltol- erancerange,whichisthedifferencebetweenthecriticalthermalminimumandmaximum Competinginterests:Theauthorshavedeclared temperatures(CT andCT ),i.e.,theextremetemperaturesthatanindividualcanmain- thatnocompetinginterestsexist. min max tainlocomotorfunction[11].T canvarywithinandamongspeciesandvariesamongphysi- opt ologicaltraits,accordingtothehypothesisofmultiplephysiologicaloptima[1,12].Locomotor performanceisoneofthebest-studiedtraitsinthermalphysiology,becauseitisrelatedtoDar- winianfitnessandpresumablyreflectstheabilitytoescapefrompredators,captureprey,and reproduce[13].TPCsarealsousefulinassessingextinctionriskofectotherms.Becauseglobal warmingmayalterthespatialdistributionofpreferredmicroclimates[14],animalsthatrely onbehavioralthermoregulationmayexperienceareductioninthetimeavailableforactivity duringperiodswhenpreferredmicroclimatesbecometooraretolocatewithoutoverheating [15].Restrictioninactivitytimecanresultinextirpationorextinctioniftheremainingtimeis insufficienttoperformallthenecessaryfunctionsforsuccessfulbreedingandrecruitment [16]. Amazoniaisabiogeographicregionpredictedtobestronglyaffectedbyclimatechange [17–18].ItcoversabouteightmillionsquarekilometersspreadovernineSouthAmerican countries[19].Currentestimatessuggestthatatleast210speciesoflizardsoccurintheAma- zon,althoughtheactualdiversityispoorlyknown[20–21].Observedtrendsintheregion’scli- mateincludeanoverallreductioninprecipitationandincreaseddurationandintensityof PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 2/23 ThermalphysiologyofAmazonianlizards droughts,especiallyinsouthernAmazonia[22],whereclimatechangeinteractionswithland- usechangearestronger[23–24].Recentstudiesindicatealong-termdecreasingtrendofcar- bonaccumulationinAmazoniaduetoincreasedtreeturnoverandmortalityrates[25].More- over,increaseddrynessmayresultinlarge-scalereductionsinbiomass,carbonuptakeandnet primaryproductivity[26].Somemodelssuggestthatthesechangesmayinducebiomeshiftsin Amazonia,withtheforestbeingreplacedbydriervegetationassociations,suchasseasonalfor- estsandsavannas[27].Therefore,recentandprojectedclimatetrendsinAmazoniawilllikely resultinamoreopencanopyandincreasedambienttemperatureforforest-dwellinglizards. DespitethevastnessandcomplexityofAmazonianhabitats,thermal-physiologydataforAma- zonianlizardsarelimited,withmoststudiesscatteredamongthemajorgroupsofSquamata. Mostdataarefocusedonreportsoffield-activeT andtherehavebeenfewcontrolledexperi- b mentsonpreferredoroptimalT . b Weaimtoprovidethefirstcomprehensivesummaryofthermalphysiologycharacteristics ofAmazonianlizards,whichisessentialtoenhanceourunderstandingoftheeffectsofglobal warmingoncurrentandfuturelizarddiversityinthismegadiverseregion.Wefirstcharacter- izepatternsofvariationinT ofAmazonianlizards(includingsomespeciesthatoccur bs peripherally,attheecotonebetweentheAmazonianrainforestandthesavanna-likeCerrado, anecophysiologicaltensioninterface).Wealsoprovidenewdataonthethermalbiologyof someofthesespeciesandsummarizetheinformationonlizards’modesofthermoregulation. Moreover,wenextanalyzeevolutionarytrendsamongthermalandphysiologicaltraitsby examiningtheconsistencyoftraitvariationwithphylogeny(i.e.,phylogeneticsignal)andthe correlationsamongtraitsaftercontrollingfortheinfluenceofphylogeny. Materialandmethods Literaturereview WecarriedoutaliteraturesurveyfordataonsevenphysiologicaltraitsofAmazonianlizards: field-activeT ,preferredtemperature(T ),minimumandmaximumvoluntarytempera- b pref tures(VT andVT ),criticalthermalminimumandmaximum(CT ,CT )andthe min max min max optimaltemperatureforlocomotorperformance(T ).OnlydataonT wereavailable. opt b BecausesomespecieshavedistributionsextendingbeyondAmazoniaintootherbiomes,our reviewextendedbeyondAmazonia,andincludedspeciesfromtheAtlanticRainforest,Caa- tinga,andCerradoregionsofBrazil,aswellastheLavrado,asavannaenclaveinnortheastern Roraima,Brazil.WealsoincludeddatafromlizardsoccurringintropicalforestsofCentral Americathathavesimilarecophysiologicaltraits.Specieswereclassifiedasthermoregulators orthermoconformersbasedonwhetherthestudiesindicatedtheywereheliotherms(thermo- regulators)ornon-heliotherms(definedhereasthermoconformers).Wealsoreviewedthelit- eraturetosearchforsubstrate(T )andair-temperature(T )dataassociatedwithT ,and sub air b obtained45studiesfromthelast50years,withreportedT ’sfrom62speciesoccurringin b Amazonia. Fielddata Wecompletedourdatasetwithdatacollectedbytheauthorsthroughouttheyear.First,we includedT dataoneightspeciescollectedfrom1993to1999insevenlocalitiesinAmazonia: b Estacio´nBiolo´gicadelaPontif´ıciaUniversidadCato´lica(Quito),withintheReservadePro- duccio´nFaun´ısticaCuyabeno(Sucumb´ıosProvince,Ecuador,0˚0’N,76˚10’W);Jurua´River Basin,ca.5kmnorthofPortoWalter(Acre,Brazil,8˚15’S,72˚46’W);ItuxiRiver(Amazonas, Brazil,8˚20’S,65˚43’W);30kmNWofCaracara´ı(Roraima,Brazil,2˚50’N,60˚40’W);Parque EstadualGuajara´–Mirim,ontheFormosoRiver(Rondoˆnia,Brazil,10˚19’S,72˚47’W);SEof PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 3/23 ThermalphysiologyofAmazonianlizards Fig1.Thermaltraits’samplinglocalities.Body-temperaturedatawerecollectedbetween1993and1999andthermalpreference andperformancedatawerecollectedbetween2014and2016.Lizardsareillustrativeoftheelevenfamiliesfoundinthefield. Numbersarerepresentativeofthelocalities,asfollows:1)30kmNWofCaracara´ı(Roraima,Brazil,2˚50’N,60˚40’W);2)Floresta NacionaldoAmapa´(Amapa´,Brazil,0˚55’N,51˚36’W);3)Estacio´nBiolo´gicadelaPontif´ıciaUniversidadCato´lica(Sucumb´ıos Province,Quito,Ecuador,0˚0’N,76˚10’W);4)FlorestaNacionaldeCaxiuanã(Para´,Brazil,1˚44’S,51˚27’W);5)YasuniNational Park(Ecuador,1˚5’S,75˚55’W);6)ReservaFlorestalAdolphoDucke(Manaus,Brazil,2˚57’S,59˚55’W);7)Agropecua´riaTreviso (Para´,Brazil,3˚9’S,54˚50’W);8)SEofManaus(Amazonas,Brazil,3˚20’S,59˚4’W);9)Jurua´RiverBasin(Acre,Brazil,8˚15’S,72˚ 46’W);10)ItuxiRiver(Amazonas,Brazil,8˚20’S,65˚43’W);11)CentrodePesquisasCanguc¸u(Pium,Tocantins,Brazil,9˚56’S,49˚ 47’W);12)ParqueEstadualGuajara´–Mirim(Rondoˆnia,Brazil,10˚19’S,72˚47’W);and13)LosAmigosBiologicalStation(Peru,12˚ 34’S,70˚6’W). https://doi.org/10.1371/journal.pone.0192834.g001 Manaus,onthemarginoftheAmazonRiver(Amazonas,Brazil,3˚20’S,59˚4’W);andAgrope- cua´riaTreviso,101kmSand18kmEofSantare´m,closetoCurua´-UnaRiver(Para´,Brazil,3˚ 9’S,54˚50’W)(Fig1).Forthespeciesfromtheselocalities,cloacaltemperaturesweremea- suredfromadultindividualswithMiller&Weberquickreadingcloacalthermometers(resolu- tionof0.2˚C).Literatureandempiricaldataprovideinformationonthegeneralthermal characteristicsofeachspecies,andwedonotaddresswithin-speciesvariationduetofactors suchasreproduction,digestionandinfection. Ecophysiologicaldatawerecollectedinstrictaccordancewiththerecommendationsinthe GuidefortheCareandUseofLaboratoryAnimalsoftheNationalInstitutesofHealth.The protocolwasapprovedbytheComissãodeE´ticanoUsodeAnimais(CEUA)–INPA(Permit Number:029/2014),CEUA–MPEG(PermitNumber:01/2015),andCEUAUnB(33716/ PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 4/23 ThermalphysiologyofAmazonianlizards 2016).AllcollectinginBrazilwasdoneunderpertinentIBAMA(073/94-DIFAS)andSISBIO (13324–1,49241,50381,44832–1)permits.Alleffortsweremadetominimizediscomfortto researchanimals. Wecollectedthermal-preferenceandperformancedataon27speciesbetween2014and 2016insixlocalities,fiveinAmazonia—FlorestaNacionaldoAmapa´(Amapa´,Brazil,0˚55’N, 51˚36’W),FlorestaNacionaldeCaxiuanã(Para´,Brazil,1˚44’S,51˚27’W),ReservaFlorestal AdolphoDucke(Manaus,Brazil,2˚57’S,59˚55’W);LosAmigosBiologicalStation(Peru, 12˚34’S,70˚6’W),andYasuniNationalPark(Ecuador,1˚5’S,75˚55’W),andoneintheAma- zonia-Cerradoecotone—CentrodePesquisasCanguc¸u(Pium,Tocantins,Brazil,9˚56’S,49˚ 47’W)(Fig1).Specimenswerecapturedbyactivesearchorwithpitfalltrapscheckedtwice daily.Lizardswerekeptincaptivityforaperiodofnomorethanthreedays,andwerereleased attheirsiteofcaptureafterarecoverytimeofatleastfourhoursafterthelasttrial.Whilein captivity,animalswerehousedindividuallyinplasticcontainerswithairholesandadamp clothformoisture,withoutaccesstofood.WemeasuredT ,CT ,CT ,andthermalper- pref min max formancecurvesoncaptivelizards.Table1showsthenumberofindividualsusedineachtest byspecies.Wemeasuredsnout-ventlength(SVL)to0.1mmwithaVerniercaliper.Afew voucherspecimensofeachspecieswereeuthanizedwithalethaldoseofTiopentalanesthetics, fixedin10%formalin,andpermanentlystoredin70%ethanol.Voucherspecimenswere depositedintheHerpetologicalCollectionsofMuseuParaenseEm´ılioGoeldi(MPEG),Para´, Brazil;InstitutoNacionaldePesquisasdaAmazoˆnia(INPA),Amazonas,Brazil;Universidade deBras´ılia,DistritoFederal(CHUNB),Brazil;MonteL.BeanLifeScienceMuseum,Utah, USA;andMuseodeHistoriaNaturaldelaUniversidadNacionalMayordeSanMarcos,Lima, Peru. Wecharacterizedthethermalbiologyofcapturedlizardswiththefollowingprotocol.We measuredthelizards’T byusinginfraredthermometers,focusingthelaseronthemid-por- b tionoftheanimal’sventralside,withapproximately15cmbetweenanimalandthermometer. WevalidatedtheuseofbodytemperaturesbasedoninfraredthermometerswithdataonZoo- tocavivipara,withhighcorrelationbetweencoreandsurfacetemperatures(0.85;n=34, P<0.001).Thisspeciesisofsimilarsizetomostofthelizardsinourdataset.Smallerspecies shouldpresentevenhighercorrelationsbetweencoreandsurfacetemperatures,andwedid notincludeanylargespeciesinthelaboratorytests.T andvoluntaryupper(VT )and pref max lower(VT )temperaturesweremeasuredusingathermalgradient.Lizardswereplacedfor min 2hoursinplywoodtracks1minlengthand40cmwide,withaphotothermalgradientof15– 40˚Cgeneratedacrosseachtrackusingiceatoneendandaheatinglamp~100Wfullspectrum attheother(sensu[28]).T wasmeasuredevery3–5minutes,andT wasestimatedasthe b pref meanofallT valuesrecorded.Thefirstmeasurementwasmadeafterfiveminutesoftheani- b mals’positioninginsidethetrack,toallowlizardstogetacclimatedtothetrackandreachtheir preference.VT andVT foreachindividualduringthisintervalwereestimatedbythe max min interquartilerangeofT [29].WemeasuredT forallindividualscaptured.Diurnallizards pref pref weretestedduringtheday,whilenocturnallizardsweretestedaftersunset.Afterwards,lizards werearbitrarilychosentoundergoeitherthethermaltoleranceorperformancetests. Criticaltemperaturesweremeasuredon485individualsof26species.Anindividual’sbody temperaturewasdecreasedorincreasedinachambercooledbyicepacksorheatedbyhot wateruntiltheanimallostitsrightingresponse.EachanimalwastestedforbothCT and min CT ,andheated/cooledtotheirT immediatelyafterthetests.Wealwaysmeasured max pref CT beforeCT ,sincethelastmaygettheanimalsmostimpairedandthusneedsthatthe min max animalshavealongerrecoverytime.TocalculateT ,wemeasuredlocomotor-capacity opt experimentson254individuals.Westimulatedeachindividualtorunonceat2–7randomly- assignedtemperatures(15˚,20˚,25˚,30˚,35˚,40˚and43˚C).Speciesthatonlyoccurinshady PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 5/23 ThermalphysiologyofAmazonianlizards Table1. ThermaltraitsofAmazonianlizards. Species ActP EAR T T T T VT VT CT CT T SVL SR b sub air pref min max min max opt LAR GEKKONIDAE Hemidactylusmabouia(cid:3)[75] N - 27.4(116) 25.6 24.9 27.4(10) 26.5(10) 28.7(10) 10.6(9) 36.1(9) - 50.3(10) A,L 20.6–29.6 18.9–33.8 Hemidactyluspalaichthus[76–77] N 18:00h 26.7(76) 25.4 25.2 - - - - - - 48.8(8) A,L 22:00h 24.2–33.2 PHYLLODACTYLIDAE Gymnodactylusamarali[78–79] N - 30.2(28) 26.8 26.5 - - - - - - 39.5(370) Ce 26.2–34.1 Phyllopezuspollicaris[80–81] C 13:00h 28.9(10) 29.5 28.6 - - - - - - - Ca,Ce 24:00h 27.8–36.6 Thecadactylusrapicauda(cid:3)[75,82–83] N 20:00h 26.9(80) 26.2 26 28.0(7) 26.9(7) 29.4(7) 3.1(2) 38.4(3) - 110.0(7) A 23:00h 24.2–28.6 21.8–33.8 SPHAERODACTYLIDAE Chatogekkoamazonicus(cid:3)[65] D 09:00h 27.5(36) 27.5 27.9 23.8(117) 22.08(117) 25.3(117) 9.4(37) 38.6(32) 25.8(24) 20.4(112) A 17:30h 24.6–30.2 16.1–39.5 Coleodactylusseptentrionalis[65] D 09:00h 27.4(50) - 27.4 - - - - - - 26.9(1) A 15:00h - Gonatodesannularis(cid:3)[20] D 12:30h - - - 31.8(1) 31.0(1) 32.5(1) 16.5(1) - - 33(1) A 15:30h 31–32.5 Gonatodesconcinnatus[83] D 09:30h 27.0(156) 25.5 25.9 - - - - - - 43.3(1) A 15:00h 25.2–30.3 Gonatodeshasemani[84] D 07:00h 30.6(22) 27 26.9 - - - - - - 39.9(1) A 19:00h 28.2–33.2 Gonatodeshumeralis(cid:3)[20,84–86] D 07:00h 29.2(110) 27.3 27.3 26.0(212) 24.8(212) 27.2(212) 8.7(68) 40.9(63) 26.0(66) 36.7(186) A 19:00h 24.8–30.4 15.2–33.9 DACTYLOIDAE Dactyloapunctata(cid:3)[87] D 10:00h 29.2(32) 28.1 28 27.2(4) 23.8(4) 30.7(4) 8.0(2) 39.6(2) - 77.9(5) A 17:00h 25.8–32 24.5–29.6 Dactyloatransversalis(cid:3)[87] D 08:00h 29.0(12) 26 26.3 24.1(1) 24.0(1) 24.3(1) - - - 76.5(2) A 16:00h 25.4–29.7 23.9–24.3 Noropsauratus[76] D 09:00h 33.9(36) 29.9 29.2 - - - - - - 43.9(123) A 17:30h 30.2–37.2 Noropsbrasiliensis[88] D 08:00h 30.6(46) 30.2 31 - - - - - - 65.3(36) Ce 17:00h 26.5–34.6 Noropschrysolepis(cid:3) D 09:30h - - - 29.15(26) 28.1(26) 30.16(26) 9.4(19) 39.7(19) - 46.1(13) A 16:00h 27.2–33.4 Noropsfuscoauratus(cid:3)[89] D 08:30h 28.6(86) 27 27 27.02(105) 25.75(105) 28.23(105) 8.4(48) 39.8(46) 27.8(30) 43.6(122) A 17:30h 25.7–33.8 19.2–33.1 Noropsortonii(cid:3) D 08:30h 30.3(7) 28 27.5 27.8(14) 26.9(14) 28.8(14) 9.7(4) 42.3(3) - 44.0(11) A 16:00h 27.5–31.2 22.9–33.5 Noropsplaniceps(cid:3)[90–91] D - 28.3(19) 26.1 26.2 29.1(16) 27.5(16) 29.3(16) 9.6(11) 40.3(11) - 55.7(13) A 26.3–30.8 23.1–33 Noropsscypheus[20,92–93] D - 27.3(36) 26.6 26.3 - - - - - - - A 24.8–28.8 Noropstandai[94] D 08:00h 27.7(33) 27 26.9 - - - - - - - Ce 17:00h 25.2–31.2 Noropstrachyderma[83,93] D 09:00h 27.8(31) 26.9 26.9 - - - - - - 53.1(1) A 16:00h 25.6–29.8 HOPLOCERCIDAE Enyalioideslaticeps[88] D 09:00h 25.6(6) 25.3 25.7 - - - - - - 114.0(1) A 15:00h 25–26.1 (Continued) PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 6/23 ThermalphysiologyofAmazonianlizards Table1. (Continued) Species ActP EAR T T T T VT VT CT CT T SVL SR b sub air pref min max min max opt LAR IGUANIDAE Iguanaiguana[95–96] D - 35.3(6) 28.5 28.5 - - - - - - 387.5(1) C 26.7–42.4 POLYCHROTIDAE Polychrusacutirostris[81] D 09:00h 35.0(8) 32.6 30.7 - - - - - - 125.1(1) Ca 15:00h 34.2–36.4 Polychrusmarmoratus(cid:3) D - 29.0(1) 26.1 26.2 - - - - - - 127.5(1) A TROPIDURIDAE Plicaplica(cid:3)[97–99] D 08:00h 29.1(56) 27.8 27.4 26.2(23) 25.2(23) 27.4(23) 9.3(17) 41.5(17) 27.4(10) 109.1(21) A 18:00h 25.6–33.8 18.4–33 Plicaumbra(cid:3)[83,100] D 09:30h 28.7(38) 27.6 27.6 27.2(15) 25.9(15) 28.3(15) 9.9(10) 39.7(10) - 85.0(19) A 14:00h 24.8–32.0 16.2–31.3 Stenocercusroseiventris(cid:3) D 09:00h 28.2(3) 27.6 28 - - - - - - 85.0(1) A 14:30h 26.2–32.0 Tropidurushispidus(cid:3)[99,101] D 10:30h 34.2(130) 33.1 30.3 29.1(2) 28.8(2) 30.1(2) 13.2(2) 43.1(2) - 96.8(82) A,Ce 17:00h 30.6–39.6 27.8–30.3 Tropidurusinsulanus[79,97] D - 34.5(51) 30 28.1 - - - - - - 75.2(-) Ce - Tropidurusoreadicus[102] D 08:30h 32.9(159) 30.4 28.7 - - - - - - - Ce 18:00h 32.0–38.1 Uracentronflaviceps[103] D 08:30h 31.2(22) 27.9 27.6 - - - - - - 107.3(11) A 17:30h 25–36.7 Uranoscodonsuperciliosus(cid:3) D 11:00h 27.8(24) 27.3 27.1 28.3(7) 27.0(7) 29.5(7) 11.3(5) 39.5(5) - 108.9(7) A 16:00h 24.8–30.1 26.8–33.6 SCINCIDAE Copeoglossumnigropunctatum(cid:3)[100] D 10:00h 33.2(121) 29.9 28.7 29.1(23) 28.0(23) 30.3(23) 10.4(19) 44.3(19) 27.3(11) 92.5(24) A 16:00h 28.0–37.4 22.2–33.5 Notomabuyafrenata[98,104] D 07:00h 31.8(145) 26.2 26.4 - - - - - - 56.7(56) AF 18:00h 21.7–37 Varzeabistriata[105] D 08:00h 32.9(11) - - - - - - - - 87.2(24) A 16:00h 27.6–36.8 GYMNOPHTHALMIDAE Alopoglossusangulatus(cid:3)[106] D 10:00h 27.3(10) 25.1 25.6 23.8(3) 19.9(3) 25.6(3) 9.0(2) 37.2(2) - 49.0(3) A 17:00h 25.4–33.0 20.3–27.5 Alopoglossusatriventris[20,106–108] D 09:00h 28.2(12) 25.9 26.4 - - - - - - 53(1) A 18:00h 24.9–34.0 Arthrosaurakockii(cid:3)[20] D 10:00h - - - 26.5(43) 25.3(43) 27.4(43) 10.1(29) 43.4(28) 25.2(12) 30.3(42) A 15:00h 20.0–30.1 Arthrosaurareticulata(cid:3)[20] D 09:00h 27.0(34) 25.9 26.1 24.4(39) 23.4(39) 25.6(39) 8.6(19) 36.1(19) 25.6(8) 50.7(39) A 16:30h 23.8–28.2 15.4–27.7 Cercosauraargulus(cid:3)[109] D 09:00h 29.0(13) 27.2 27.3 25.8(1) 25.6(1) 25.8(1) - - - 34.5(1) A 16:00h 26.2–30.8 25.3–28.0 Cercosauraeigenmanni(cid:3)[20,91] D 09:30h 29.7(20) 27.7 27.4 25.3(3) 24.9(3) 25.4(3) - - - 45.5(1) A 15:30h 27.6–31.9 25.0–25.7 Cercosauramanicata[109] D - 29.7(2) 28 28 - - - - - - - A Cercosauraocellata(cid:3)[20,91] D 09:30h 28.1(13) - - 28.4(3) 27.4(3) 29.6(3) - - - 52.2(2) A 15:00h 24–30.2 26.6–29.8 Cercosauraoshaughnessyi[20,83,91] D 09:00h 29.5(13) 26.7 26.7 - - - - - - 37.4(1) A 15:30h 26.2–30.8 Iphisaelegans(cid:3)[20,109] D 09:00h 28.2(1) 30.2 29.5 25.4(2) 24.6(2) 26.1(2) 3.1(1) 38.4(1) - 46.7(3) A 17:00h 21.3–29.9 (Continued) PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 7/23 ThermalphysiologyofAmazonianlizards Table1. (Continued) Species ActP EAR T T T T VT VT CT CT T SVL SR b sub air pref min max min max opt LAR Leposomaguianense(cid:3)[20] D 09:00h - - - 25.6(26) 23.6(26) 28.0(26) 10.4(15) 37.3(11) - 28.5(25) A 17:00h 20.8–28.6 Leposomaosvaldoi(cid:3)[20] D 09:30h - - - 24.3(11) 23.1(11) 25.8(11) 9.9(9) 36.4(8) - 29.6(11) A 15:30h 20.5–32.4 Leposomapercarinatum(cid:3)[20] D 08:00h 29.7(8) 26.7 26.6 24.1(49) 22.3(49) 25.8(49) 9.0(30) 38.7(30) 28.8(17) 32.3(32) A 17:00h 28.2–31.8 13.4–31.9 Micrablepharusmaximiliani[95,98,102] D 10:00h 29.1(4) - - - - - - - - 36(1) Ce 18:00h Potamitesecpleopus[20,110] D 08:30h 27.0(63) 25.5 26 - - - - - - 61.8(1) A 18:00h 23.8–31.8 Potamitesjuruazensis[110] D 08:30h 26.4(8) 26.1 26 - - - - - - 41.6(1) A 16:30h 25.4–27.8 Tretioscincusagilis(cid:3)[20] D 09:00h - - - 27.8(10) 26.8(10) 29.4(10) 9.3(7) 40.2(7) - 52.2(15) A 14:00h 23.5–33.0 TEIIDAE A Ameivaameiva(cid:3)[111–112] D 10:00h 37.4(283) 32.2 30.3 29.2(68) 27.7(67) 30.4(67) 11.0(47) 46.1(45) 34.5(20) 127.7(68) A 16:00h 26.2–41.7 18.5–38.3 Ameivaparecis[113] D 09:00h 38.2(54) 34.8 30.9 - - - - - - 64.5(1) A 13:00h 31.0–42.0 Cnemidophoruscryptus(cid:3)[113] D 09:30h 39.4(11) 37.4 32.3 27.6(40) 26.7(40) 28.4(40) 8.4(20) 50.1(20) 30.5(20) 65.4(40) A 16:00h 34.6–44.4 14.5–32 Cnemidophorusgramivagus[79,113] D 09:00h 37.6(42) - - - - - - - - 56(1) A 14:00h 30.4–40.0 Cnemidophoruslemniscatus[76] D 09:00h 37.6(96) 37.2 31.6 - - - - - - 64.2(1) A 16:00h 29.1–40.7 Crocodilurusamazonicus[114] D 11:00h 31.2(30) 30.4 27.6 - - - - - - 220.0(2) A 16:00h 27.4–35.0 Dracaenaguianensis[114] D - 32.2(1) 29 29 - - - - - - 330(1) A Kentropyxaltamazonica[77] D 09:30h 36.0(66) 30.9 29.4 - - - - - - 85(1) A 15:30h 28–41.2 Kentropyxcalcarata(cid:3)[47] D 10:00h 34.7(99) 30.6 29 34.2(97) 32.9(97) 35.6(97) 11.9(31) 41.7(30) - 100.8(145) A 16:00h 28.7–41.0 23.3–39.1 Kentropyxpelviceps[83,115] D 10:00h 35.1(143) 29.9 28.6 - - - - - - 104.3(32) A 16:00h 26–40.5 Kentropyxstriata[76,116] D 09:00h 35.7(111) 30.3 29.5 - - - - - - 91.6(110) L 17:00h 28.8–41.0 Salvatormerianae[81] D 09:00h 35.0(8) 32.6 31.2 - - - - - - - Ca 15:00h 34.2–36.4 Tupinambislongilineus(cid:3) D - 35.5(3) 29.8 30 - - - - - - 196.0(1) A 33.5–37.2 Tupinambisquadrilineatus(cid:3) D - 37.2(1) - - - - - - - - - A Tupinambisteguixin[76,117] D 09:30h 33.2(11) 30.4 28.9 - - - - - - 362.1(8) L 15:30h 26.1–37.2 Numberofanalyzedspecimensinparenthesisaftermeanvalues.Speciesinboldareconsiderheliothermsinliterature.Numbersinbracketsarethereferencesforthe dataobtainedfromliterature,andasterisks((cid:3))representsnewlydataprovidedinthisstudy.ActP=Activityperiod(D=Diurnal,N=Nocturnal,C=Cathemeral); EAR=EarliestActivityRecord;LAR=LatestActivityRecord;T =bodytemperature(meanandrange);T =substratetemperature(mean);T =airtemperature b sub air (mean);T =preferredtemperature(meanandrange);VT =minimumvoluntarytemperature;VT =maximumvoluntarytemperature;CT =critical pref min max min thermalminimum;CT =criticalthermalmaximum;T =optimaltemperature;SVL=snout-ventlength;SR=studyregion(A=Amazonianrainforest; max opt AF=BrazilianAtlanticForest;C=CentralAmerica;Ca=BrazilianCaatinga;Ce=BrazilianCerrado;L=BrazilianLavrado). https://doi.org/10.1371/journal.pone.0192834.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 8/23 ThermalphysiologyofAmazonianlizards environmentsmaysufferatextremetemperatures,andsuchspecieswererunat20˚,25˚,30˚ and35˚C.Lizardswereallowedtorecoveratleastfourhoursbetweentrials.Duringtherecov- eryperiod,wemonitoredtheirT andactivityinsidetheircontainersatleastonceeveryhour, b inordertoassesstheirhealthandwell-beingafterthestresstests.Weonlyreleasedtheanimals afterweassessedthattheyhadrecoveredtheirnormalactivitypattern.Noanimaldiedpriorto theendoftheexperiments. Tomeasureperformance,theexperimentermanuallystimulatedlizardstorunarounda circulartrack[30].Atrackwitha4mcircumferencewasusedforlizardswithSVL(cid:21)50mm, andatrackwith1mcircumferencewasusedforlizardsSVL<50mm.Eachtrialendedwhen thelizardreachedexhaustionandwasunabletorightitselfwhenplacedinasupineposition. Animalperformancewascalculatedasthevoluntarydistancetraveled(numberoftimes aroundthetrackxtrackcircumference).T wasthebodytemperaturethatyieldedthehigh- opt estvalueoflocomotorperformance.WedeterminedT fromthethermalperformance opt curves. Analysis WeusedthestatisticalsoftwareenvironmentR3.3.3[31]forallcalculations.Dependence betweenthermalphysiologyparametersofaprioriclassificationofthermoregulation modes,SVL,familiesandspecieswereanalyzedbysimplestepwiseregressionandone-way analysisofvariance.ShapiroandLevene’stestswereused,respectively,totestassumptions ofnormalityandhomogeneityofvarianceforparametricvariables.WeusedthePearson correlationcoefficienttodeterminethecorrelationbetweenT ,T andT .Forcompara- b sub air tiveanalyses,weusedthechronogramforSquamataestimatedbyZheng&Wiens[32], whichincludedallofthespeciesforwhichwewereabletoassemblethermophysiological traits.PhylogeneticsignalwascalculatedbasedonBlomberg’sK[33],whichisanevolution- arymodel-basedmetricofphylogenetic-signalstrength.AK-valueofoneindicatesthat thedistributionoftraitvaluesfollowstheexpectationofBrownianmotionmodelofevolu- tionalongthetree[33].Thisindicatesthattraitvarianceamongspeciesaccumulatesin directproportiontotheirdivergencetime,asmeasuredbythebranchlengthsseparating theminaphylogenetictree[34–35].ValuesofK<1indicatethattraitsarelessconserved thanexpected,anindicationofadaptiveevolution,whereasvaluesofK>1indicatethattrait valuesaremoreconservedthanexpectedbyBrownianmotionevolution.Weusedphytools [36]tocalculateBlomberg’sKandtomeasurethephylogeneticpairwisecorrelations betweenallthermaltraits. TPC’sweregeneratedforeachspeciesusingthepackagesggplot2[37],grid[31],mgcv[38] andproc[39]todoaGeneralizedAdditiveMixedModeling(GAMM)[40].Thesemodelsuse additivenonparametricfunctionstomodelcovariateeffectswhileaccountingforoverdisper- sionandcorrelation,byaddingrandomeffectstotheadditivepredictor[41].Akaike’sInfor- mationCriterion(AIC)andBayesianInformationCriterion(BIC)wereusedtoselectthebest correlationstructurepriortoestimatingtheTPC.AICmeasuresthequalityoffitofthemodel, penalizedbymodelcomplexity,andBICadditionallyconsidersthenumberofobservations includedinthemodel[42].Lizardperformanceatdifferenttemperatureswastheresponse andindividualwasincludedasarandomeffect.Theextremesofthecurvewerefixedatthe averageCT andCT valuesforthatspecies.Wetestedseveralcorrelationstructuresto min max selectthebestfitincluding:temporalcorrelationstructures(autoregressiveprocess[corAR1], continuousautoregressiveprocess[corCAR1],andautoregressivemovingaverageprocess [corARMA])andspatialresidualcorrelationstructures(Gaussianspatialcorrelation[cor- Gaus],exponentialspatialcorrelationstructure[corExp],rationalquadraticsspatial PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 9/23 ThermalphysiologyofAmazonianlizards Table2. Numberofspecimensandtaxausedassourceofdatareportedhereforthefirsttime. No.specimens No.species No.families T 80 8 5 b T /VR 1010 27 9 pref PhysiologicalPerformance 254 10 6 ThermalToleranceRange(CT ,CT ) 485 26 8 min max T =bodytemperature;T =preferredtemperature;VR=voluntaryrange b pref https://doi.org/10.1371/journal.pone.0192834.t002 correlation[corRatio]andsphericalspatialcorrelation[corSpher]).Wechosethecorrelation structurethatyieldedthelowestAICandBICvalues[42]. Results Weobtainedthermaldatafor69lizardspeciesfromelevenfamilies(Table1),includingnew dataonfield-activeT ,T ,thermalperformanceandtolerancefrom27species(Table2). b pref Amongallspecieswithphysiologicaldata,64arediurnal,oneiscathemeral,andfournoctur- nal.Basedontheliterature,38speciesareclassifiedasthermoconformers,while31are thermoregulators. Lizards’bodytemperaturewaspositivelycorrelatedwithenvironmentaltemperature(T b andT r=0.80,P<0.01;T andT :r=0.67,P<0.05).Sevenspeciesgenerallyclassifiedas sub: b air thermoconformershadT /T higherthanT ,suggestingthatthesespeciesdonotgainaddi- sub air b tionalheatfromtheenvironment,butmaybethermoregulatingbyselectinglowertempera- turesorusingevaporativecooling.Aone-wayANOVArevealedsignificantdifferencesinall physiologicaltraitsinrelationtoaprioriclassificationofthermoregulationmode,SVL,family, andspecies.Fig2showstherangeoftemperaturesforeachevaluatedtraitforeachthermoreg- ulationmode.Speciesgenerallyclassifiedasthermoregulatorshadhighermeanvaluesforall thermaltraitsthanthosegenerallyclassifiedasthermoconformers,aswellaslargervariation inT ,CT andT .VariationinT ,VT andCT waslowerinspeciesclassifiedas b max opt pref min min thermoregulatorsandgreaterinspeciesclassifiedasthermoconformers,thoughmeanvalues wererelativelysimilar(Fig3).Inspiteofthesedifferences,ourresultsshowanoverlapinmost thermaltraitsbetweenspeciesclassifiedasthermoregulatorsandthoseclassifiedasthermo- conformers,withsomelizardsconsideredthermoregulatorshavingrangesoftemperatures similartoothersidentifiedasthermoconformers.Thus,adichotomousclassificationofther- moregulationmodemaynotbesatisfactory. Wealsofoundphylogeneticpairwisecorrelationsbetweenallthermaltraitsevaluated(T , b T ,VT ,VT ,CT ,CT ,andT ),exceptbetween(1)T andCT ,and(2) pref min max min max opt opt max CT ,whichonlycorrelateswithT (Table3).Thus,selectionononethermalcharacteristic min opt affectstheevolutionofallthoseconsideredhere,except,possibly,inthetwocasesmentioned above.WedetectedsignificantdeparturesfromBrownianmotionevolutionforT (K=0.64, b P=0.0001),T (K=0.49,P=0.04),andVT (K=0.5,P=0.01),butnotfortheotherther- pref min maltraits(VT ,K=0.39,P=0.21;CT ,K=0.49,P=0.12;CT ,K=0.50,P=0.079; max min max T ,K=0.74,P=0.17).LizardsinthefamilyTeiidaearecomprisedonlyofspeciesclassified opt asthermoregulators,andhadthehighestvaluesforallthreethermaltraits.ThelowestT was b foundinonespeciesofHoplocercidae(forest-dwellinglizards),andthelowestVT was min observedinGekkonidae,bothfamiliescontainingonlyspeciesclassifiedasthermoconformers. GekkonidaeandDactyloidaepresentedthelowestT .AlthoughDactyloidaeisamixed pref family,theonlydactyloidspeciesclassifiedasthermoregulatorinthisstudyhasnoT pref dataavailable.Thus,allT measurementsforthisfamilyarefromspeciesclassifiedas pref PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 10/23
Description: