ebook img

Thermal physiology of Amazonian lizards (Reptilia: Squamata) PDF

23 Pages·2017·3.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermal physiology of Amazonian lizards (Reptilia: Squamata)

RESEARCHARTICLE Thermal physiology of Amazonian lizards (Reptilia: Squamata) LuisaM.Diele-Viegas1¤a‡*,LaurieJ.Vitt2☯,BarrySinervo3☯,GuarinoR.Colli4☯,Fernanda P.Werneck5☯,DonaldB.Miles6☯,WilliamE.Magnusson5☯,JuanC.Santos7☯¤b,Carla M.Sette3☯,GabrielH.O.Caetano3‡,EmersonPontes5‡,TeresaC.S.A´vila-Pires‡1 1 MuseuParaenseEm´ılioGoeldi,Bele´m,Para´,Brazil,2 SamNobleMuseum,UniversityofOklahoma, Norman,Oklahoma,UnitedStatesofAmerica,3 UniversityofCaliforniaSantaCruz,SantaCruz,California, UnitedStatesofAmerica,4 UniversidadedeBrasilia,Brasilia,DistritoFederal,Brazil,5 InstitutoNacionalde PesquisasdaAmazoˆnia,Manaus,Amazonas,Brazil,6 OhioUniversity,Athens,Ohio,UnitedStatesof a1111111111 America,7 BrighamYoungUniversity,Provo,Utah,UnitedStatesofAmerica a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 ¤a Currentaddress:UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,RiodeJaneiro,Brazil a1111111111 ¤b Currentaddress:St.John’sUniversity,Queens,NewYork,UnitedStatesofAmerica ‡GHOCandEPalsocontributedequallytothiswork.LDVandTCSAParejointseniorauthorsonthiswork. *[email protected] Abstract OPENACCESS Citation:Diele-ViegasLM,VittLJ,SinervoB,Colli Wesummarizethermal-biologydataof69speciesofAmazonianlizards,includingmodeof GR,WerneckFP,MilesDB,etal.(2018)Thermal thermoregulationandfield-activebodytemperatures(T ).Wealsoprovidenewdataonpre- physiologyofAmazonianlizards(Reptilia: b Squamata).PLoSONE13(3):e0192834.https:// ferredtemperatures(Tpref),voluntaryandthermal-toleranceranges,andthermal-perfor- doi.org/10.1371/journal.pone.0192834 mancecurves(TPC’s)for27speciesfromninesitesintheBrazilianAmazonia.Wetested Editor:MichaelSears,ClemsonUniversity,UNITED forphylogeneticsignalandpairwisecorrelationsamongthermaltraits.Wefoundthatspe- STATES ciesgenerallycategorizedasthermoregulatorshavethehighestmeanvaluesforallthermal Received:March31,2017 traits,andbroaderrangesforTb,criticalthermalmaximum(CTmax)andoptimal(Topt)tem- peratures.SpeciesgenerallycategorizedasthermoconformershavelargerangesforT , Accepted:January16,2018 pref criticalthermalminimum(CT ),andminimumvoluntary(VT )temperaturesforperfor- min min Published:March7,2018 mance.Despitethesedifferences,ourresultsshowthatallthermalcharacteristicsoverlap Copyright:©2018Diele-Viegasetal.Thisisan betweenbothgroupsandsuggestthatAmazonianlizardsdonotfitintodiscretethermoreg- openaccessarticledistributedunderthetermsof ulatorycategories.Thetraitsareallcorrelated,withtheexceptionsof(1)T ,whichdoes theCreativeCommonsAttributionLicense,which opt permitsunrestricteduse,distribution,and notcorrelatewithCTmax,and(2)CTmin,andcorrelatesonlywithTopt.Weakphylogenetic reproductioninanymedium,providedtheoriginal signalsforT ,T andVT indicatethatthesecharactersmaybeshapedbylocalenvi- b pref min authorandsourcearecredited. ronmentalconditionsandinfluencedbyphylogeny.Wefoundthatopen-habitatspeciesper- DataAvailabilityStatement:Allrelevantdataare formwellunderpresentenvironmentalconditions,withoutexperiencingdetectablethermal withinthepaper,itsSupportingInformationfiles, stressfromhighenvironmentaltemperaturesinducedinlabexperiments.Forforest-dwell- andavailableatdoi:10.6084/m9.figshare.5293756. inglizards,weexpectwarmingtrendsinAmazoniatoinducethermalstress,astempera- Funding:Thisworkwassupportedby turessurpassthethermaltolerancesforthesespecies. Coordenac¸ãodeAperfeic¸oamentodePessoalde N´ıvelSuperior-graduatefellowshiptoLDVand financialsupporttoGRC(http://www.capes.gov.br/ ):Allowedthedevelopmentoftheresearchandthe datacollection.ConselhoNacionalde DesenvolvimentoCient´ıficoeTecnolo´gico- researchfellowshiptoTAPandfinancialsupportto FPW(475559/2013-4)(http://cnpq.br/):Allowed PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 1/23 ThermalphysiologyofAmazonianlizards thedatacollection.PVE(PesquisadorVisitante Introduction Especial)grantfromCNPq(http://cnpq.br/)–BRS: Bodytemperature(T )inectothermsinfluencesallphysiologicalandbehavioralprocesses Allowedthedevelopmentoftheresearch. b Fundac¸ãodeAmparoàPesquisadoAmazonas– [1].Consequently,maintenanceofTbwithinsuitablelimitsisessentialforectothermssurvival financialsupporttoFPWandWM(FAPEAM, [2].ThermoregulatorsactivelymaintainT withinarestrictedrangeoftemperaturesby b 062.00665/2015)(http://www.fapeam.am.gov.br/): heliothermy,i.e.,bybaskinginthesun,orbythigmothermy,i.e.,bycontactwithwarmsur- Allowedthestudydesignanddecisiontopublish. faces[3].Thermoconformersdonotactivelythermoregulate,sotheirT parallelsfluctuations PartnershipsforEnhancedEngagementin b intheenvironmentaltemperature[1,4].However,nolizardspecieshasbeenshowntobea ResearchfromtheU.S.NationalAcademyof completethermoconformer;allwillmovetoavoidunfavorableextremetemperatures.This SciencesandU.S.AgencyofInternational Development(PEERNAS/USAIDPGA- categoryisoftenusedforspeciesthatselectareaswithrelativelyuniformtemperatures,suchas 2000005316)–financialsupporttoGRCandFPW shadedforest,whereactivethermoregulationisnotneededtomaintainrelativelystablebody (http://sites.nationalacademies.org/pga/peer/index. temperatures.Usingastrictlythermoconformingstrategyrequiresthatspecieshavebroad htm):Allowedthedevelopmentoftheresearchand thermaltolerances[1],andexperiencehighvariationinT throughouttheday,seasonand thedecisiontopublish.Fundac¸ãodeAmparoà b geographicrange. PesquisadoPara´-ICAAFnumber011/2012 SISBIOTAHerpeto-Helminto–financialsupportto Inthefield,lizardsareusuallyactiveatarestrictedrangeofTb.Itiscommonlyassumed LDVandTAP(http://www.fapespa.pa.gov.br/): thatthesetemperaturesrepresenttheiractualthermalpreferences[5].However,laboratory Allowedthedatacollection.(cid:3)Fundac¸ãodeAmparoà experimentsshowthatthevarianceinT rangeobservedinnaturefortropicallizardsexceeds b PesquisadoDistritoFederal(FAPDF)-financial boththepreferredT andthevoluntaryT rangeobservedwhentheanimalsaresubjectedto supporttoGRC(http://www.fap.df.gov.br/<http:// b b thermalgradients[6–7].Consequently,tropicallizardsmayalreadybeexperiencingT ’sator www.fap.df.gov.br/>)(cid:3)-Allowedthedata b abovetheirphysiologicaloptima[8],puttingthemdangerouslyclosetotheirupperthermal collection.NationalScienceFoundation–Emerging Frontiers[grantnumber1241885,Collaborative thresholds.Theseupperthermallimitsarelikelytobeexceededinthenextfewdecadesasa Research:“QuantifyingClimate-forcedExtinction consequenceofclimatechange[9].AnalternativeinterpretationisthatpreferredT andvol- b RisksforLizards,Amphibians,Fishes,andPlants”] untaryT reflectnotonlyphysiologicallimits,butarealsotailoredtospecificactivities,suchas b –LDV,BRS,GRCandFPW(https://www.nsf.gov/): digestion,reproductionandforagingfordifferenttypesofprey[1],andthatlaboratorystudies Allowedthedatacollection,analysisandreparation donotfullyreflecttherangeofmotivationalstates.Fieldactivitytemperaturesmayvarysea- ofthemanuscript.NationalScienceFoundation– EmergingFrontiers[grantnumber241848]–BRS sonally,independentofvariationinenvironmentaltemperatures(e.g.,[10]). andDBM:Allowedthedatacollection,analysisand Theinfluenceofambienttemperatureonkeyphysiologicaltraitsisdescribedbythermal preparationofthemanuscript.ResearchCouncil performancecurves(TPC)[2].Aspecies’thermalsensitivitycanbevisualizedandquantified viaaGeorgeLynnCrossResearchProfessorship throughTPCs,whichrevealseveralimportantthermalpropertiesofectotherms.Theseinclude oftheUniversityofOklahomaandtheSamNoble theoptimaltemperature(T ),formaximalanimalperformance;thebreadthoftemperatures MuseumsupporttoLJV(http://samnoblemuseum. opt ou.edu/):Allowedthedecisiontopublish. thatresultsinaspeciesperformingat(cid:21)80%ofitsoptimalcapacity(B80);andthethermaltol- erancerange,whichisthedifferencebetweenthecriticalthermalminimumandmaximum Competinginterests:Theauthorshavedeclared temperatures(CT andCT ),i.e.,theextremetemperaturesthatanindividualcanmain- thatnocompetinginterestsexist. min max tainlocomotorfunction[11].T canvarywithinandamongspeciesandvariesamongphysi- opt ologicaltraits,accordingtothehypothesisofmultiplephysiologicaloptima[1,12].Locomotor performanceisoneofthebest-studiedtraitsinthermalphysiology,becauseitisrelatedtoDar- winianfitnessandpresumablyreflectstheabilitytoescapefrompredators,captureprey,and reproduce[13].TPCsarealsousefulinassessingextinctionriskofectotherms.Becauseglobal warmingmayalterthespatialdistributionofpreferredmicroclimates[14],animalsthatrely onbehavioralthermoregulationmayexperienceareductioninthetimeavailableforactivity duringperiodswhenpreferredmicroclimatesbecometooraretolocatewithoutoverheating [15].Restrictioninactivitytimecanresultinextirpationorextinctioniftheremainingtimeis insufficienttoperformallthenecessaryfunctionsforsuccessfulbreedingandrecruitment [16]. Amazoniaisabiogeographicregionpredictedtobestronglyaffectedbyclimatechange [17–18].ItcoversabouteightmillionsquarekilometersspreadovernineSouthAmerican countries[19].Currentestimatessuggestthatatleast210speciesoflizardsoccurintheAma- zon,althoughtheactualdiversityispoorlyknown[20–21].Observedtrendsintheregion’scli- mateincludeanoverallreductioninprecipitationandincreaseddurationandintensityof PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 2/23 ThermalphysiologyofAmazonianlizards droughts,especiallyinsouthernAmazonia[22],whereclimatechangeinteractionswithland- usechangearestronger[23–24].Recentstudiesindicatealong-termdecreasingtrendofcar- bonaccumulationinAmazoniaduetoincreasedtreeturnoverandmortalityrates[25].More- over,increaseddrynessmayresultinlarge-scalereductionsinbiomass,carbonuptakeandnet primaryproductivity[26].Somemodelssuggestthatthesechangesmayinducebiomeshiftsin Amazonia,withtheforestbeingreplacedbydriervegetationassociations,suchasseasonalfor- estsandsavannas[27].Therefore,recentandprojectedclimatetrendsinAmazoniawilllikely resultinamoreopencanopyandincreasedambienttemperatureforforest-dwellinglizards. DespitethevastnessandcomplexityofAmazonianhabitats,thermal-physiologydataforAma- zonianlizardsarelimited,withmoststudiesscatteredamongthemajorgroupsofSquamata. Mostdataarefocusedonreportsoffield-activeT andtherehavebeenfewcontrolledexperi- b mentsonpreferredoroptimalT . b Weaimtoprovidethefirstcomprehensivesummaryofthermalphysiologycharacteristics ofAmazonianlizards,whichisessentialtoenhanceourunderstandingoftheeffectsofglobal warmingoncurrentandfuturelizarddiversityinthismegadiverseregion.Wefirstcharacter- izepatternsofvariationinT ofAmazonianlizards(includingsomespeciesthatoccur bs peripherally,attheecotonebetweentheAmazonianrainforestandthesavanna-likeCerrado, anecophysiologicaltensioninterface).Wealsoprovidenewdataonthethermalbiologyof someofthesespeciesandsummarizetheinformationonlizards’modesofthermoregulation. Moreover,wenextanalyzeevolutionarytrendsamongthermalandphysiologicaltraitsby examiningtheconsistencyoftraitvariationwithphylogeny(i.e.,phylogeneticsignal)andthe correlationsamongtraitsaftercontrollingfortheinfluenceofphylogeny. Materialandmethods Literaturereview WecarriedoutaliteraturesurveyfordataonsevenphysiologicaltraitsofAmazonianlizards: field-activeT ,preferredtemperature(T ),minimumandmaximumvoluntarytempera- b pref tures(VT andVT ),criticalthermalminimumandmaximum(CT ,CT )andthe min max min max optimaltemperatureforlocomotorperformance(T ).OnlydataonT wereavailable. opt b BecausesomespecieshavedistributionsextendingbeyondAmazoniaintootherbiomes,our reviewextendedbeyondAmazonia,andincludedspeciesfromtheAtlanticRainforest,Caa- tinga,andCerradoregionsofBrazil,aswellastheLavrado,asavannaenclaveinnortheastern Roraima,Brazil.WealsoincludeddatafromlizardsoccurringintropicalforestsofCentral Americathathavesimilarecophysiologicaltraits.Specieswereclassifiedasthermoregulators orthermoconformersbasedonwhetherthestudiesindicatedtheywereheliotherms(thermo- regulators)ornon-heliotherms(definedhereasthermoconformers).Wealsoreviewedthelit- eraturetosearchforsubstrate(T )andair-temperature(T )dataassociatedwithT ,and sub air b obtained45studiesfromthelast50years,withreportedT ’sfrom62speciesoccurringin b Amazonia. Fielddata Wecompletedourdatasetwithdatacollectedbytheauthorsthroughouttheyear.First,we includedT dataoneightspeciescollectedfrom1993to1999insevenlocalitiesinAmazonia: b Estacio´nBiolo´gicadelaPontif´ıciaUniversidadCato´lica(Quito),withintheReservadePro- duccio´nFaun´ısticaCuyabeno(Sucumb´ıosProvince,Ecuador,0˚0’N,76˚10’W);Jurua´River Basin,ca.5kmnorthofPortoWalter(Acre,Brazil,8˚15’S,72˚46’W);ItuxiRiver(Amazonas, Brazil,8˚20’S,65˚43’W);30kmNWofCaracara´ı(Roraima,Brazil,2˚50’N,60˚40’W);Parque EstadualGuajara´–Mirim,ontheFormosoRiver(Rondoˆnia,Brazil,10˚19’S,72˚47’W);SEof PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 3/23 ThermalphysiologyofAmazonianlizards Fig1.Thermaltraits’samplinglocalities.Body-temperaturedatawerecollectedbetween1993and1999andthermalpreference andperformancedatawerecollectedbetween2014and2016.Lizardsareillustrativeoftheelevenfamiliesfoundinthefield. Numbersarerepresentativeofthelocalities,asfollows:1)30kmNWofCaracara´ı(Roraima,Brazil,2˚50’N,60˚40’W);2)Floresta NacionaldoAmapa´(Amapa´,Brazil,0˚55’N,51˚36’W);3)Estacio´nBiolo´gicadelaPontif´ıciaUniversidadCato´lica(Sucumb´ıos Province,Quito,Ecuador,0˚0’N,76˚10’W);4)FlorestaNacionaldeCaxiuanã(Para´,Brazil,1˚44’S,51˚27’W);5)YasuniNational Park(Ecuador,1˚5’S,75˚55’W);6)ReservaFlorestalAdolphoDucke(Manaus,Brazil,2˚57’S,59˚55’W);7)Agropecua´riaTreviso (Para´,Brazil,3˚9’S,54˚50’W);8)SEofManaus(Amazonas,Brazil,3˚20’S,59˚4’W);9)Jurua´RiverBasin(Acre,Brazil,8˚15’S,72˚ 46’W);10)ItuxiRiver(Amazonas,Brazil,8˚20’S,65˚43’W);11)CentrodePesquisasCanguc¸u(Pium,Tocantins,Brazil,9˚56’S,49˚ 47’W);12)ParqueEstadualGuajara´–Mirim(Rondoˆnia,Brazil,10˚19’S,72˚47’W);and13)LosAmigosBiologicalStation(Peru,12˚ 34’S,70˚6’W). https://doi.org/10.1371/journal.pone.0192834.g001 Manaus,onthemarginoftheAmazonRiver(Amazonas,Brazil,3˚20’S,59˚4’W);andAgrope- cua´riaTreviso,101kmSand18kmEofSantare´m,closetoCurua´-UnaRiver(Para´,Brazil,3˚ 9’S,54˚50’W)(Fig1).Forthespeciesfromtheselocalities,cloacaltemperaturesweremea- suredfromadultindividualswithMiller&Weberquickreadingcloacalthermometers(resolu- tionof0.2˚C).Literatureandempiricaldataprovideinformationonthegeneralthermal characteristicsofeachspecies,andwedonotaddresswithin-speciesvariationduetofactors suchasreproduction,digestionandinfection. Ecophysiologicaldatawerecollectedinstrictaccordancewiththerecommendationsinthe GuidefortheCareandUseofLaboratoryAnimalsoftheNationalInstitutesofHealth.The protocolwasapprovedbytheComissãodeE´ticanoUsodeAnimais(CEUA)–INPA(Permit Number:029/2014),CEUA–MPEG(PermitNumber:01/2015),andCEUAUnB(33716/ PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 4/23 ThermalphysiologyofAmazonianlizards 2016).AllcollectinginBrazilwasdoneunderpertinentIBAMA(073/94-DIFAS)andSISBIO (13324–1,49241,50381,44832–1)permits.Alleffortsweremadetominimizediscomfortto researchanimals. Wecollectedthermal-preferenceandperformancedataon27speciesbetween2014and 2016insixlocalities,fiveinAmazonia—FlorestaNacionaldoAmapa´(Amapa´,Brazil,0˚55’N, 51˚36’W),FlorestaNacionaldeCaxiuanã(Para´,Brazil,1˚44’S,51˚27’W),ReservaFlorestal AdolphoDucke(Manaus,Brazil,2˚57’S,59˚55’W);LosAmigosBiologicalStation(Peru, 12˚34’S,70˚6’W),andYasuniNationalPark(Ecuador,1˚5’S,75˚55’W),andoneintheAma- zonia-Cerradoecotone—CentrodePesquisasCanguc¸u(Pium,Tocantins,Brazil,9˚56’S,49˚ 47’W)(Fig1).Specimenswerecapturedbyactivesearchorwithpitfalltrapscheckedtwice daily.Lizardswerekeptincaptivityforaperiodofnomorethanthreedays,andwerereleased attheirsiteofcaptureafterarecoverytimeofatleastfourhoursafterthelasttrial.Whilein captivity,animalswerehousedindividuallyinplasticcontainerswithairholesandadamp clothformoisture,withoutaccesstofood.WemeasuredT ,CT ,CT ,andthermalper- pref min max formancecurvesoncaptivelizards.Table1showsthenumberofindividualsusedineachtest byspecies.Wemeasuredsnout-ventlength(SVL)to0.1mmwithaVerniercaliper.Afew voucherspecimensofeachspecieswereeuthanizedwithalethaldoseofTiopentalanesthetics, fixedin10%formalin,andpermanentlystoredin70%ethanol.Voucherspecimenswere depositedintheHerpetologicalCollectionsofMuseuParaenseEm´ılioGoeldi(MPEG),Para´, Brazil;InstitutoNacionaldePesquisasdaAmazoˆnia(INPA),Amazonas,Brazil;Universidade deBras´ılia,DistritoFederal(CHUNB),Brazil;MonteL.BeanLifeScienceMuseum,Utah, USA;andMuseodeHistoriaNaturaldelaUniversidadNacionalMayordeSanMarcos,Lima, Peru. Wecharacterizedthethermalbiologyofcapturedlizardswiththefollowingprotocol.We measuredthelizards’T byusinginfraredthermometers,focusingthelaseronthemid-por- b tionoftheanimal’sventralside,withapproximately15cmbetweenanimalandthermometer. WevalidatedtheuseofbodytemperaturesbasedoninfraredthermometerswithdataonZoo- tocavivipara,withhighcorrelationbetweencoreandsurfacetemperatures(0.85;n=34, P<0.001).Thisspeciesisofsimilarsizetomostofthelizardsinourdataset.Smallerspecies shouldpresentevenhighercorrelationsbetweencoreandsurfacetemperatures,andwedid notincludeanylargespeciesinthelaboratorytests.T andvoluntaryupper(VT )and pref max lower(VT )temperaturesweremeasuredusingathermalgradient.Lizardswereplacedfor min 2hoursinplywoodtracks1minlengthand40cmwide,withaphotothermalgradientof15– 40˚Cgeneratedacrosseachtrackusingiceatoneendandaheatinglamp~100Wfullspectrum attheother(sensu[28]).T wasmeasuredevery3–5minutes,andT wasestimatedasthe b pref meanofallT valuesrecorded.Thefirstmeasurementwasmadeafterfiveminutesoftheani- b mals’positioninginsidethetrack,toallowlizardstogetacclimatedtothetrackandreachtheir preference.VT andVT foreachindividualduringthisintervalwereestimatedbythe max min interquartilerangeofT [29].WemeasuredT forallindividualscaptured.Diurnallizards pref pref weretestedduringtheday,whilenocturnallizardsweretestedaftersunset.Afterwards,lizards werearbitrarilychosentoundergoeitherthethermaltoleranceorperformancetests. Criticaltemperaturesweremeasuredon485individualsof26species.Anindividual’sbody temperaturewasdecreasedorincreasedinachambercooledbyicepacksorheatedbyhot wateruntiltheanimallostitsrightingresponse.EachanimalwastestedforbothCT and min CT ,andheated/cooledtotheirT immediatelyafterthetests.Wealwaysmeasured max pref CT beforeCT ,sincethelastmaygettheanimalsmostimpairedandthusneedsthatthe min max animalshavealongerrecoverytime.TocalculateT ,wemeasuredlocomotor-capacity opt experimentson254individuals.Westimulatedeachindividualtorunonceat2–7randomly- assignedtemperatures(15˚,20˚,25˚,30˚,35˚,40˚and43˚C).Speciesthatonlyoccurinshady PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 5/23 ThermalphysiologyofAmazonianlizards Table1. ThermaltraitsofAmazonianlizards. Species ActP EAR T T T T VT VT CT CT T SVL SR b sub air pref min max min max opt LAR GEKKONIDAE Hemidactylusmabouia(cid:3)[75] N - 27.4(116) 25.6 24.9 27.4(10) 26.5(10) 28.7(10) 10.6(9) 36.1(9) - 50.3(10) A,L 20.6–29.6 18.9–33.8 Hemidactyluspalaichthus[76–77] N 18:00h 26.7(76) 25.4 25.2 - - - - - - 48.8(8) A,L 22:00h 24.2–33.2 PHYLLODACTYLIDAE Gymnodactylusamarali[78–79] N - 30.2(28) 26.8 26.5 - - - - - - 39.5(370) Ce 26.2–34.1 Phyllopezuspollicaris[80–81] C 13:00h 28.9(10) 29.5 28.6 - - - - - - - Ca,Ce 24:00h 27.8–36.6 Thecadactylusrapicauda(cid:3)[75,82–83] N 20:00h 26.9(80) 26.2 26 28.0(7) 26.9(7) 29.4(7) 3.1(2) 38.4(3) - 110.0(7) A 23:00h 24.2–28.6 21.8–33.8 SPHAERODACTYLIDAE Chatogekkoamazonicus(cid:3)[65] D 09:00h 27.5(36) 27.5 27.9 23.8(117) 22.08(117) 25.3(117) 9.4(37) 38.6(32) 25.8(24) 20.4(112) A 17:30h 24.6–30.2 16.1–39.5 Coleodactylusseptentrionalis[65] D 09:00h 27.4(50) - 27.4 - - - - - - 26.9(1) A 15:00h - Gonatodesannularis(cid:3)[20] D 12:30h - - - 31.8(1) 31.0(1) 32.5(1) 16.5(1) - - 33(1) A 15:30h 31–32.5 Gonatodesconcinnatus[83] D 09:30h 27.0(156) 25.5 25.9 - - - - - - 43.3(1) A 15:00h 25.2–30.3 Gonatodeshasemani[84] D 07:00h 30.6(22) 27 26.9 - - - - - - 39.9(1) A 19:00h 28.2–33.2 Gonatodeshumeralis(cid:3)[20,84–86] D 07:00h 29.2(110) 27.3 27.3 26.0(212) 24.8(212) 27.2(212) 8.7(68) 40.9(63) 26.0(66) 36.7(186) A 19:00h 24.8–30.4 15.2–33.9 DACTYLOIDAE Dactyloapunctata(cid:3)[87] D 10:00h 29.2(32) 28.1 28 27.2(4) 23.8(4) 30.7(4) 8.0(2) 39.6(2) - 77.9(5) A 17:00h 25.8–32 24.5–29.6 Dactyloatransversalis(cid:3)[87] D 08:00h 29.0(12) 26 26.3 24.1(1) 24.0(1) 24.3(1) - - - 76.5(2) A 16:00h 25.4–29.7 23.9–24.3 Noropsauratus[76] D 09:00h 33.9(36) 29.9 29.2 - - - - - - 43.9(123) A 17:30h 30.2–37.2 Noropsbrasiliensis[88] D 08:00h 30.6(46) 30.2 31 - - - - - - 65.3(36) Ce 17:00h 26.5–34.6 Noropschrysolepis(cid:3) D 09:30h - - - 29.15(26) 28.1(26) 30.16(26) 9.4(19) 39.7(19) - 46.1(13) A 16:00h 27.2–33.4 Noropsfuscoauratus(cid:3)[89] D 08:30h 28.6(86) 27 27 27.02(105) 25.75(105) 28.23(105) 8.4(48) 39.8(46) 27.8(30) 43.6(122) A 17:30h 25.7–33.8 19.2–33.1 Noropsortonii(cid:3) D 08:30h 30.3(7) 28 27.5 27.8(14) 26.9(14) 28.8(14) 9.7(4) 42.3(3) - 44.0(11) A 16:00h 27.5–31.2 22.9–33.5 Noropsplaniceps(cid:3)[90–91] D - 28.3(19) 26.1 26.2 29.1(16) 27.5(16) 29.3(16) 9.6(11) 40.3(11) - 55.7(13) A 26.3–30.8 23.1–33 Noropsscypheus[20,92–93] D - 27.3(36) 26.6 26.3 - - - - - - - A 24.8–28.8 Noropstandai[94] D 08:00h 27.7(33) 27 26.9 - - - - - - - Ce 17:00h 25.2–31.2 Noropstrachyderma[83,93] D 09:00h 27.8(31) 26.9 26.9 - - - - - - 53.1(1) A 16:00h 25.6–29.8 HOPLOCERCIDAE Enyalioideslaticeps[88] D 09:00h 25.6(6) 25.3 25.7 - - - - - - 114.0(1) A 15:00h 25–26.1 (Continued) PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 6/23 ThermalphysiologyofAmazonianlizards Table1. (Continued) Species ActP EAR T T T T VT VT CT CT T SVL SR b sub air pref min max min max opt LAR IGUANIDAE Iguanaiguana[95–96] D - 35.3(6) 28.5 28.5 - - - - - - 387.5(1) C 26.7–42.4 POLYCHROTIDAE Polychrusacutirostris[81] D 09:00h 35.0(8) 32.6 30.7 - - - - - - 125.1(1) Ca 15:00h 34.2–36.4 Polychrusmarmoratus(cid:3) D - 29.0(1) 26.1 26.2 - - - - - - 127.5(1) A TROPIDURIDAE Plicaplica(cid:3)[97–99] D 08:00h 29.1(56) 27.8 27.4 26.2(23) 25.2(23) 27.4(23) 9.3(17) 41.5(17) 27.4(10) 109.1(21) A 18:00h 25.6–33.8 18.4–33 Plicaumbra(cid:3)[83,100] D 09:30h 28.7(38) 27.6 27.6 27.2(15) 25.9(15) 28.3(15) 9.9(10) 39.7(10) - 85.0(19) A 14:00h 24.8–32.0 16.2–31.3 Stenocercusroseiventris(cid:3) D 09:00h 28.2(3) 27.6 28 - - - - - - 85.0(1) A 14:30h 26.2–32.0 Tropidurushispidus(cid:3)[99,101] D 10:30h 34.2(130) 33.1 30.3 29.1(2) 28.8(2) 30.1(2) 13.2(2) 43.1(2) - 96.8(82) A,Ce 17:00h 30.6–39.6 27.8–30.3 Tropidurusinsulanus[79,97] D - 34.5(51) 30 28.1 - - - - - - 75.2(-) Ce - Tropidurusoreadicus[102] D 08:30h 32.9(159) 30.4 28.7 - - - - - - - Ce 18:00h 32.0–38.1 Uracentronflaviceps[103] D 08:30h 31.2(22) 27.9 27.6 - - - - - - 107.3(11) A 17:30h 25–36.7 Uranoscodonsuperciliosus(cid:3) D 11:00h 27.8(24) 27.3 27.1 28.3(7) 27.0(7) 29.5(7) 11.3(5) 39.5(5) - 108.9(7) A 16:00h 24.8–30.1 26.8–33.6 SCINCIDAE Copeoglossumnigropunctatum(cid:3)[100] D 10:00h 33.2(121) 29.9 28.7 29.1(23) 28.0(23) 30.3(23) 10.4(19) 44.3(19) 27.3(11) 92.5(24) A 16:00h 28.0–37.4 22.2–33.5 Notomabuyafrenata[98,104] D 07:00h 31.8(145) 26.2 26.4 - - - - - - 56.7(56) AF 18:00h 21.7–37 Varzeabistriata[105] D 08:00h 32.9(11) - - - - - - - - 87.2(24) A 16:00h 27.6–36.8 GYMNOPHTHALMIDAE Alopoglossusangulatus(cid:3)[106] D 10:00h 27.3(10) 25.1 25.6 23.8(3) 19.9(3) 25.6(3) 9.0(2) 37.2(2) - 49.0(3) A 17:00h 25.4–33.0 20.3–27.5 Alopoglossusatriventris[20,106–108] D 09:00h 28.2(12) 25.9 26.4 - - - - - - 53(1) A 18:00h 24.9–34.0 Arthrosaurakockii(cid:3)[20] D 10:00h - - - 26.5(43) 25.3(43) 27.4(43) 10.1(29) 43.4(28) 25.2(12) 30.3(42) A 15:00h 20.0–30.1 Arthrosaurareticulata(cid:3)[20] D 09:00h 27.0(34) 25.9 26.1 24.4(39) 23.4(39) 25.6(39) 8.6(19) 36.1(19) 25.6(8) 50.7(39) A 16:30h 23.8–28.2 15.4–27.7 Cercosauraargulus(cid:3)[109] D 09:00h 29.0(13) 27.2 27.3 25.8(1) 25.6(1) 25.8(1) - - - 34.5(1) A 16:00h 26.2–30.8 25.3–28.0 Cercosauraeigenmanni(cid:3)[20,91] D 09:30h 29.7(20) 27.7 27.4 25.3(3) 24.9(3) 25.4(3) - - - 45.5(1) A 15:30h 27.6–31.9 25.0–25.7 Cercosauramanicata[109] D - 29.7(2) 28 28 - - - - - - - A Cercosauraocellata(cid:3)[20,91] D 09:30h 28.1(13) - - 28.4(3) 27.4(3) 29.6(3) - - - 52.2(2) A 15:00h 24–30.2 26.6–29.8 Cercosauraoshaughnessyi[20,83,91] D 09:00h 29.5(13) 26.7 26.7 - - - - - - 37.4(1) A 15:30h 26.2–30.8 Iphisaelegans(cid:3)[20,109] D 09:00h 28.2(1) 30.2 29.5 25.4(2) 24.6(2) 26.1(2) 3.1(1) 38.4(1) - 46.7(3) A 17:00h 21.3–29.9 (Continued) PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 7/23 ThermalphysiologyofAmazonianlizards Table1. (Continued) Species ActP EAR T T T T VT VT CT CT T SVL SR b sub air pref min max min max opt LAR Leposomaguianense(cid:3)[20] D 09:00h - - - 25.6(26) 23.6(26) 28.0(26) 10.4(15) 37.3(11) - 28.5(25) A 17:00h 20.8–28.6 Leposomaosvaldoi(cid:3)[20] D 09:30h - - - 24.3(11) 23.1(11) 25.8(11) 9.9(9) 36.4(8) - 29.6(11) A 15:30h 20.5–32.4 Leposomapercarinatum(cid:3)[20] D 08:00h 29.7(8) 26.7 26.6 24.1(49) 22.3(49) 25.8(49) 9.0(30) 38.7(30) 28.8(17) 32.3(32) A 17:00h 28.2–31.8 13.4–31.9 Micrablepharusmaximiliani[95,98,102] D 10:00h 29.1(4) - - - - - - - - 36(1) Ce 18:00h Potamitesecpleopus[20,110] D 08:30h 27.0(63) 25.5 26 - - - - - - 61.8(1) A 18:00h 23.8–31.8 Potamitesjuruazensis[110] D 08:30h 26.4(8) 26.1 26 - - - - - - 41.6(1) A 16:30h 25.4–27.8 Tretioscincusagilis(cid:3)[20] D 09:00h - - - 27.8(10) 26.8(10) 29.4(10) 9.3(7) 40.2(7) - 52.2(15) A 14:00h 23.5–33.0 TEIIDAE A Ameivaameiva(cid:3)[111–112] D 10:00h 37.4(283) 32.2 30.3 29.2(68) 27.7(67) 30.4(67) 11.0(47) 46.1(45) 34.5(20) 127.7(68) A 16:00h 26.2–41.7 18.5–38.3 Ameivaparecis[113] D 09:00h 38.2(54) 34.8 30.9 - - - - - - 64.5(1) A 13:00h 31.0–42.0 Cnemidophoruscryptus(cid:3)[113] D 09:30h 39.4(11) 37.4 32.3 27.6(40) 26.7(40) 28.4(40) 8.4(20) 50.1(20) 30.5(20) 65.4(40) A 16:00h 34.6–44.4 14.5–32 Cnemidophorusgramivagus[79,113] D 09:00h 37.6(42) - - - - - - - - 56(1) A 14:00h 30.4–40.0 Cnemidophoruslemniscatus[76] D 09:00h 37.6(96) 37.2 31.6 - - - - - - 64.2(1) A 16:00h 29.1–40.7 Crocodilurusamazonicus[114] D 11:00h 31.2(30) 30.4 27.6 - - - - - - 220.0(2) A 16:00h 27.4–35.0 Dracaenaguianensis[114] D - 32.2(1) 29 29 - - - - - - 330(1) A Kentropyxaltamazonica[77] D 09:30h 36.0(66) 30.9 29.4 - - - - - - 85(1) A 15:30h 28–41.2 Kentropyxcalcarata(cid:3)[47] D 10:00h 34.7(99) 30.6 29 34.2(97) 32.9(97) 35.6(97) 11.9(31) 41.7(30) - 100.8(145) A 16:00h 28.7–41.0 23.3–39.1 Kentropyxpelviceps[83,115] D 10:00h 35.1(143) 29.9 28.6 - - - - - - 104.3(32) A 16:00h 26–40.5 Kentropyxstriata[76,116] D 09:00h 35.7(111) 30.3 29.5 - - - - - - 91.6(110) L 17:00h 28.8–41.0 Salvatormerianae[81] D 09:00h 35.0(8) 32.6 31.2 - - - - - - - Ca 15:00h 34.2–36.4 Tupinambislongilineus(cid:3) D - 35.5(3) 29.8 30 - - - - - - 196.0(1) A 33.5–37.2 Tupinambisquadrilineatus(cid:3) D - 37.2(1) - - - - - - - - - A Tupinambisteguixin[76,117] D 09:30h 33.2(11) 30.4 28.9 - - - - - - 362.1(8) L 15:30h 26.1–37.2 Numberofanalyzedspecimensinparenthesisaftermeanvalues.Speciesinboldareconsiderheliothermsinliterature.Numbersinbracketsarethereferencesforthe dataobtainedfromliterature,andasterisks((cid:3))representsnewlydataprovidedinthisstudy.ActP=Activityperiod(D=Diurnal,N=Nocturnal,C=Cathemeral); EAR=EarliestActivityRecord;LAR=LatestActivityRecord;T =bodytemperature(meanandrange);T =substratetemperature(mean);T =airtemperature b sub air (mean);T =preferredtemperature(meanandrange);VT =minimumvoluntarytemperature;VT =maximumvoluntarytemperature;CT =critical pref min max min thermalminimum;CT =criticalthermalmaximum;T =optimaltemperature;SVL=snout-ventlength;SR=studyregion(A=Amazonianrainforest; max opt AF=BrazilianAtlanticForest;C=CentralAmerica;Ca=BrazilianCaatinga;Ce=BrazilianCerrado;L=BrazilianLavrado). https://doi.org/10.1371/journal.pone.0192834.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 8/23 ThermalphysiologyofAmazonianlizards environmentsmaysufferatextremetemperatures,andsuchspecieswererunat20˚,25˚,30˚ and35˚C.Lizardswereallowedtorecoveratleastfourhoursbetweentrials.Duringtherecov- eryperiod,wemonitoredtheirT andactivityinsidetheircontainersatleastonceeveryhour, b inordertoassesstheirhealthandwell-beingafterthestresstests.Weonlyreleasedtheanimals afterweassessedthattheyhadrecoveredtheirnormalactivitypattern.Noanimaldiedpriorto theendoftheexperiments. Tomeasureperformance,theexperimentermanuallystimulatedlizardstorunarounda circulartrack[30].Atrackwitha4mcircumferencewasusedforlizardswithSVL(cid:21)50mm, andatrackwith1mcircumferencewasusedforlizardsSVL<50mm.Eachtrialendedwhen thelizardreachedexhaustionandwasunabletorightitselfwhenplacedinasupineposition. Animalperformancewascalculatedasthevoluntarydistancetraveled(numberoftimes aroundthetrackxtrackcircumference).T wasthebodytemperaturethatyieldedthehigh- opt estvalueoflocomotorperformance.WedeterminedT fromthethermalperformance opt curves. Analysis WeusedthestatisticalsoftwareenvironmentR3.3.3[31]forallcalculations.Dependence betweenthermalphysiologyparametersofaprioriclassificationofthermoregulation modes,SVL,familiesandspecieswereanalyzedbysimplestepwiseregressionandone-way analysisofvariance.ShapiroandLevene’stestswereused,respectively,totestassumptions ofnormalityandhomogeneityofvarianceforparametricvariables.WeusedthePearson correlationcoefficienttodeterminethecorrelationbetweenT ,T andT .Forcompara- b sub air tiveanalyses,weusedthechronogramforSquamataestimatedbyZheng&Wiens[32], whichincludedallofthespeciesforwhichwewereabletoassemblethermophysiological traits.PhylogeneticsignalwascalculatedbasedonBlomberg’sK[33],whichisanevolution- arymodel-basedmetricofphylogenetic-signalstrength.AK-valueofoneindicatesthat thedistributionoftraitvaluesfollowstheexpectationofBrownianmotionmodelofevolu- tionalongthetree[33].Thisindicatesthattraitvarianceamongspeciesaccumulatesin directproportiontotheirdivergencetime,asmeasuredbythebranchlengthsseparating theminaphylogenetictree[34–35].ValuesofK<1indicatethattraitsarelessconserved thanexpected,anindicationofadaptiveevolution,whereasvaluesofK>1indicatethattrait valuesaremoreconservedthanexpectedbyBrownianmotionevolution.Weusedphytools [36]tocalculateBlomberg’sKandtomeasurethephylogeneticpairwisecorrelations betweenallthermaltraits. TPC’sweregeneratedforeachspeciesusingthepackagesggplot2[37],grid[31],mgcv[38] andproc[39]todoaGeneralizedAdditiveMixedModeling(GAMM)[40].Thesemodelsuse additivenonparametricfunctionstomodelcovariateeffectswhileaccountingforoverdisper- sionandcorrelation,byaddingrandomeffectstotheadditivepredictor[41].Akaike’sInfor- mationCriterion(AIC)andBayesianInformationCriterion(BIC)wereusedtoselectthebest correlationstructurepriortoestimatingtheTPC.AICmeasuresthequalityoffitofthemodel, penalizedbymodelcomplexity,andBICadditionallyconsidersthenumberofobservations includedinthemodel[42].Lizardperformanceatdifferenttemperatureswastheresponse andindividualwasincludedasarandomeffect.Theextremesofthecurvewerefixedatthe averageCT andCT valuesforthatspecies.Wetestedseveralcorrelationstructuresto min max selectthebestfitincluding:temporalcorrelationstructures(autoregressiveprocess[corAR1], continuousautoregressiveprocess[corCAR1],andautoregressivemovingaverageprocess [corARMA])andspatialresidualcorrelationstructures(Gaussianspatialcorrelation[cor- Gaus],exponentialspatialcorrelationstructure[corExp],rationalquadraticsspatial PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 9/23 ThermalphysiologyofAmazonianlizards Table2. Numberofspecimensandtaxausedassourceofdatareportedhereforthefirsttime. No.specimens No.species No.families T 80 8 5 b T /VR 1010 27 9 pref PhysiologicalPerformance 254 10 6 ThermalToleranceRange(CT ,CT ) 485 26 8 min max T =bodytemperature;T =preferredtemperature;VR=voluntaryrange b pref https://doi.org/10.1371/journal.pone.0192834.t002 correlation[corRatio]andsphericalspatialcorrelation[corSpher]).Wechosethecorrelation structurethatyieldedthelowestAICandBICvalues[42]. Results Weobtainedthermaldatafor69lizardspeciesfromelevenfamilies(Table1),includingnew dataonfield-activeT ,T ,thermalperformanceandtolerancefrom27species(Table2). b pref Amongallspecieswithphysiologicaldata,64arediurnal,oneiscathemeral,andfournoctur- nal.Basedontheliterature,38speciesareclassifiedasthermoconformers,while31are thermoregulators. Lizards’bodytemperaturewaspositivelycorrelatedwithenvironmentaltemperature(T b andT r=0.80,P<0.01;T andT :r=0.67,P<0.05).Sevenspeciesgenerallyclassifiedas sub: b air thermoconformershadT /T higherthanT ,suggestingthatthesespeciesdonotgainaddi- sub air b tionalheatfromtheenvironment,butmaybethermoregulatingbyselectinglowertempera- turesorusingevaporativecooling.Aone-wayANOVArevealedsignificantdifferencesinall physiologicaltraitsinrelationtoaprioriclassificationofthermoregulationmode,SVL,family, andspecies.Fig2showstherangeoftemperaturesforeachevaluatedtraitforeachthermoreg- ulationmode.Speciesgenerallyclassifiedasthermoregulatorshadhighermeanvaluesforall thermaltraitsthanthosegenerallyclassifiedasthermoconformers,aswellaslargervariation inT ,CT andT .VariationinT ,VT andCT waslowerinspeciesclassifiedas b max opt pref min min thermoregulatorsandgreaterinspeciesclassifiedasthermoconformers,thoughmeanvalues wererelativelysimilar(Fig3).Inspiteofthesedifferences,ourresultsshowanoverlapinmost thermaltraitsbetweenspeciesclassifiedasthermoregulatorsandthoseclassifiedasthermo- conformers,withsomelizardsconsideredthermoregulatorshavingrangesoftemperatures similartoothersidentifiedasthermoconformers.Thus,adichotomousclassificationofther- moregulationmodemaynotbesatisfactory. Wealsofoundphylogeneticpairwisecorrelationsbetweenallthermaltraitsevaluated(T , b T ,VT ,VT ,CT ,CT ,andT ),exceptbetween(1)T andCT ,and(2) pref min max min max opt opt max CT ,whichonlycorrelateswithT (Table3).Thus,selectionononethermalcharacteristic min opt affectstheevolutionofallthoseconsideredhere,except,possibly,inthetwocasesmentioned above.WedetectedsignificantdeparturesfromBrownianmotionevolutionforT (K=0.64, b P=0.0001),T (K=0.49,P=0.04),andVT (K=0.5,P=0.01),butnotfortheotherther- pref min maltraits(VT ,K=0.39,P=0.21;CT ,K=0.49,P=0.12;CT ,K=0.50,P=0.079; max min max T ,K=0.74,P=0.17).LizardsinthefamilyTeiidaearecomprisedonlyofspeciesclassified opt asthermoregulators,andhadthehighestvaluesforallthreethermaltraits.ThelowestT was b foundinonespeciesofHoplocercidae(forest-dwellinglizards),andthelowestVT was min observedinGekkonidae,bothfamiliescontainingonlyspeciesclassifiedasthermoconformers. GekkonidaeandDactyloidaepresentedthelowestT .AlthoughDactyloidaeisamixed pref family,theonlydactyloidspeciesclassifiedasthermoregulatorinthisstudyhasnoT pref dataavailable.Thus,allT measurementsforthisfamilyarefromspeciesclassifiedas pref PLOSONE|https://doi.org/10.1371/journal.pone.0192834 March7,2018 10/23

Description:
protocol was approved by the Comissão de Ética no Uso de Animais (CEUA)–INPA (Permit. Number: .. environments may suffer at extreme temperatures, and such species were run at 20˚, 25˚, 30˚ and 35˚C. logeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.