THERMAL-HYDRAULIC ANALYSIS OF GAS- COOLED REACTOR CORE FLOWS AMIR KESHMIRI JULY 2010 A Thesis Submitted to the University of Manchester for the Degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences School of Mechanical, Aerospace and Civil Engineering (MACE), The University of Manchester, Manchester, M60 1QD, United Kingdom. 2 Dedicated to the Loving Memory of My Sister, Arezoo ... LIST OF CONTENTS LIST OF CONTENTS __________________________________________________ 4 LIST OF FIGURES ____________________________________________________ 7 LIST OF TABLES ____________________________________________________ 18 ABSTRACT _________________________________________________________ 20 DECLARATION _____________________________________________________ 22 COPYRIGHT STATEMENT____________________________________________ 23 THE AUTHOR_______________________________________________________ 24 ACKNOWLEDGEMENTS _____________________________________________ 25 NOMENCLATURE ___________________________________________________ 27 1 INTRODUCTION ________________________________________________ 32 1.1 COMPUTATIONAL FLUID DYNAMICS _______________________________ 32 1.2 TURBULENCE MODELLING SCHEMES_______________________________ 33 1.3 ADVANCED GAS-COOLED NUCLEAR REACTORS ______________________ 36 1.3.1 Mixed Convection under Post-Trip Conditions ____________________ 37 1.3.2 Thermal-Hydraulics of the Fuel Elements ________________________ 38 1.4 OBJECTIVES OF THE PRESENT STUDY_______________________________ 41 1.5 OUTLINE OF THE THESIS_________________________________________ 43 2 LITERATURE REVIEW___________________________________________ 47 2.1 PRELIMINARY REMARKS ________________________________________ 47 2.2 MIXED CONVECTION HEAT TRANSFER IN VERTICAL FLOWS_____________ 48 2.2.1 Introduction________________________________________________ 48 2.2.2 Experimental Works_________________________________________ 49 2.2.3 Numerical Works ___________________________________________ 51 2.3 RIB-ROUGHENED SURFACES _____________________________________ 59 2.3.1 Introduction________________________________________________ 59 2.3.2 Experimental Works_________________________________________ 60 2.3.3 Numerical Works ___________________________________________ 64 2.4 AGR FUEL ELEMENTS__________________________________________ 72 2.4.1 Introduction________________________________________________ 72 2.4.2 Experimental Works_________________________________________ 73 3 MATHEMATICAL MODELLING OF TURBULENCE __________________ 80 3.1 PRELIMINARY REMARKS ________________________________________ 80 3.2 NAVIER-STOKES EQUATIONS_____________________________________ 81 3.3 REYNOLDS-AVERAGED NAVIER-STOKES (RANS) EQUATIONS___________ 82 3.4 EDDY VISCOSITY MODELS (EVMS)________________________________ 84 3.4.1 Introduction________________________________________________ 84 3.4.2 Zero-Equation Models _______________________________________ 86 3.4.3 One-Equation Models________________________________________ 87 3.4.4 Two-Equation Models________________________________________ 88 3.5 NEAR-WALL TREATMENTS ______________________________________ 91 3.5.1 Introduction________________________________________________ 91 4 List of Contents 5 3.5.2 Low-Reynolds-Number Models ________________________________ 94 3.5.3 Wall Functions _____________________________________________ 99 3.6 MODEL FORMULATIONS________________________________________ 103 3.6.1 Launder-Sharma k-ε Model (CONVERT) _______________________ 103 3.6.2 Lien-Chen-Leschziner k-ε Model (STAR-CD) ___________________ 104 3.6.3 Wilcox k-ω Model__________________________________________ 106 3.6.4 Standard k-ω-SST Model (STAR-CD & Code_Saturne)____________ 107 3.6.5 The v2-f Model (STAR-CD)__________________________________ 110 3.6.6 Manchester v2-f Model (Code_Saturne)_________________________ 112 3.6.7 Cotton-Ismael k-ε-S Model (CONVERT) _______________________ 114 3.6.8 Suga Non-Linear k-ε Model (CONVERT & STAR-CD)____________ 116 4 THEORETICAL FORMULATION__________________________________ 121 4.1 PRELIMINARY REMARKS _______________________________________ 121 4.2 DISCRETIZATION _____________________________________________ 121 4.2.1 Introduction_______________________________________________ 121 4.2.2 Finite Volume Method ______________________________________ 122 4.3 BOUNDARY LAYER APPROXIMATIONS_____________________________ 124 4.4 BOUSSINESQ APPROXIMATION___________________________________ 125 4.5 BUOYANCY PRODUCTION TERM _________________________________ 126 4.6 TURBULENT HEAT FLUX MODELLING _____________________________ 127 4.7 DESCRIPTION OF THE CODES USED _______________________________ 129 4.7.1 In-house Code: CONVERT __________________________________ 129 4.7.2 Commercial Code: STAR-CD ________________________________ 132 4.7.3 Industrial Code: Code_Saturne________________________________ 138 5 VERTICAL HEATED PIPE________________________________________ 143 5.1 PRELIMINARY REMARKS _______________________________________ 143 5.2 CASE DESCRIPTION ___________________________________________ 145 5.2.1 Introduction_______________________________________________ 145 5.2.2 Mesh and Numerical Details__________________________________ 146 5.3 RESULTS OF LOCAL NUSSELT NUMBER AND FRICTION COEFFICIENT _____ 150 5.3.1 Forced Convection _________________________________________ 151 5.3.2 CONVERT; Ascending and Descending Flow____________________ 153 5.3.3 Cross-Code Comparison; Ascending Flow_______________________ 156 5.4 MEAN FLOW AND TURBULENCE PROFILES__________________________ 158 5.4.1 Results of the Launder-Sharma Model (CONVERT)_______________ 159 5.4.2 Results of the Cotton-Ismael Model (CONVERT)_________________ 167 5.4.3 Results of the Suga Model (CONVERT and STAR-CD)____________ 172 5.4.4 Results of the Lien-Chen-Leschziner k-ε Model (STAR-CD)________ 177 5.4.5 Results of the v2-f Model (STAR-CD)__________________________ 178 5.4.6 Results of the k-ω-SST Model (STAR-CD and Code_Saturne)_______ 179 5.5 NUSSELT NUMBER DEVELOPMENT _______________________________ 181 5.5.1 Streamwise Development of Nu and c for Case (C) _______________ 181 f 5.5.2 The Experiments of Polyakov and Shindin_______________________ 183 5.6 EFFECTS OF THE REYNOLDS NUMBER _____________________________ 184 5.7 SUMMARY __________________________________________________ 186 6 2-DIMENSIONAL RIB-ROUGHENED SURFACES ___________________ 222 6.1 PRELIMINARY REMARKS _______________________________________ 222 6.2 CASE DESCRIPTION ___________________________________________ 224 List of Contents 6 6.2.1 Two-Dimensional Channel Approximation ______________________ 224 6.2.2 Numerical Procedures_______________________________________ 225 6.2.3 Geometry and Grids ________________________________________ 225 6.3 PRELIMINARY RESULTS ________________________________________ 227 6.3.1 Preliminary Remarks________________________________________ 227 6.3.2 Sensitivity Tests ___________________________________________ 229 6.4 RESULTS FOR DISCRETE EFFECTS ________________________________ 235 6.4.1 Effects of Turbulence Models_________________________________ 235 6.4.2 Effects of Rib Profile _______________________________________ 242 6.4.3 Effects of Near-Wall Treatment _______________________________ 246 6.4.4 Effects of Mesh Type _______________________________________ 249 6.5 RESULTS FOR CONTINUOUS EFFECTS______________________________ 252 6.5.1 Effects of Pitch-to-Rib Height Ratio (P/k) _______________________ 252 6.5.2 Effects of Rib Height (k/H)___________________________________ 256 6.5.3 Effects of Rib Width (b/k)____________________________________ 260 6.5.4 Effects of Reynolds Number__________________________________ 262 6.6 SUMMARY __________________________________________________ 265 7 3-DIMENSIONAL AGR FUEL ELEMENTS__________________________ 322 7.1 PRELIMINARY REMARKS _______________________________________ 322 7.2 CASE DESCRIPTION ___________________________________________ 324 7.3 RESULTS ___________________________________________________ 327 7.4 SUMMARY __________________________________________________ 335 8 CONCLUSIONS AND FUTURE WORK_____________________________ 352 8.1 PRELIMINARY REMARKS _______________________________________ 352 8.2 CONCLUSIONS _______________________________________________ 353 8.2.1 Mixed Convection Heat Transfer ______________________________ 353 8.2.2 2D Rib-Roughened Channels _________________________________ 356 8.2.3 3D AGR Fuel Element ______________________________________ 359 8.3 FUTURE WORK_______________________________________________ 360 8.3.1 Mixed Convection Heat Transfer ______________________________ 360 8.3.2 2D Rib-Roughened Channels _________________________________ 361 8.3.3 3D AGR Fuel Element ______________________________________ 362 BIBLIOGRAPHY____________________________________________________ 364 APPENDIX A_______________________________________________________ 376 APPENDIX B_______________________________________________________ 378 APPENDIX C_______________________________________________________ 381 Total word count: 73,000 LIST OF FIGURES Figure 1.1 – Schematic of an AGR. (Adapted from http://www.ecology.at.) _______ 44 Figure 1.2 – Schematic of an AGR fuel element. (Adapted from CORE, 1999.)_____ 44 Figure 1.3 – Trends of Nusselt number impairment and enhancement for ascending and descending mixed convection flows. ______________________________________ 45 Figure 1.4 – An early design of AGR fuel pins with transverse ribs.______________ 45 Figure 1.5 – Regimes of the mean flow over rod roughness (a) Skimming flow (d-type) (b) Un-reattached flow (k-type) (c) Reattached flow (k-type).___________________ 46 Figure 1.6 – A 2-dimensional representation of AGR fuel elements.______________ 46 Figure 2.1 – Schematic diagram of ascending mixed convection flow.____________ 77 Figure 2.2 – Range of Buoyancy influence encompassed by mixed convection data._ 78 Figure 2.3 – Range of heat loading parameter encompassed by mixed convection data. ____________________________________________________________________ 78 Figure 2.4 – Schematic diagram of a rib-roughened surface.____________________ 79 Figure 2.5 – Schematics of transverse-ribbed, multi-start ribbed and longitudinally finned fuel pins (from Wilkie, 1983b) _____________________________________ 79 Figure 3.1 – Variation of the mixing length with distance from the wall. __________ 87 Figure 3.2 – Schematic of various wall regions and layers in a boundary layer (adapted from Iacovides, 2006). _________________________________________________ 93 Figure 3.3 – Near-wall treatment approaches; (a) Low-Reynolds number approach (b) Wall Function approach._______________________________________________ 100 Figure 4.1 – A typical cell centred with node P and neighbour cell centred with node N. ___________________________________________________________________ 141 Figure 4.2 – CONVERT solution sequence.________________________________ 141 Figure 4.3 – Definition of ‘Symmetry’ and ‘Cyclic’ boundary conditions. ________ 141 Figure 4.4 – Node labelling convention for flux discretization._________________ 142 Figure 4.5 – Definition of the standard wall function in STAR-CD. _____________ 142 Figure 5.1 – Schematic diagram of an ascending mixed convection flow._________ 188 Figure 5.2 – CONVERT solution sequence.________________________________ 188 Figure 5.3 – Schematic of the mesh used in STAR-CD and Code_Saturne. _______ 189 Figure 5.4 – Results for fully-developed forced convection. (The computations using Manchester v2-f model and LES were carried out by F. Billard and Y. Addad, 7 List of Figures 8 respectively, and are also reported in Billard et al., 2008, Addad and Laurence, 2008 and Keshmiri et al., 2008a; b). __________________________________________ 189 Figure 5.5 – Heat transfer impairment and enhancement in ascending and descending mixed convection flows using CONVERT. ________________________________ 190 Figure 5.6 – Friction coefficient impairment and enhancement in ascending and descending mixed convection flows using CONVERT._______________________ 191 Figure 5.7 – Cross-code comparison of heat transfer impairment and enhancement in ascending mixed convection flows. ______________________________________ 192 Figure 5.8 – Cross-code comparison of friction coefficient impairment and enhancement in ascending mixed convection flows. ____________________________________ 193 Figure 5.9 – Mean flow and turbulence profiles obtained using the Launder-Sharma model in CONVERT. _________________________________________________ 194 Figure 5.10 – Budgets of the turbulent kinetic energy [m2/s3] obtained using the Launder-Sharma model in CONVERT (a) case A (b) case C.__________________ 196 Figure 5.11 – Effects of including the buoyancy production term on the heat transfer and friction coefficient impairment/enhancement.___________________________ 197 Figure 5.12 – Effects of the heat flux models on the buoyancy production term [m2/s3] using (a) Generalized Gradient Diffusion Hypothesis (GGDH) and (b) Simple Gradient Diffusion Hypothesis (SGDH).__________________________________________ 198 Figure 5.13 – Effects of including the Yap term on the local Nusselt number and friction coefficient.__________________________________________________________ 199 Figure 5.14 – Mean flow and turbulence profiles obtained using the Cotton-Ismael model in CONVERT. _________________________________________________ 200 Figure 5.15 – Budgets of the turbulent kinetic energy [m2/s3] obtained using the Cotton- Ismael model in CONVERT (a) case A (b) case C. __________________________ 203 Figure 5.16 – Mean flow and turbulence profiles obtained using the Suga model in CONVERT._________________________________________________________ 204 ~ Figure 5.17 – Distribution of C and non-dimensional strain rate S for case (D) using µ the Suga model in CONVERT.__________________________________________ 206 Figure 5.18 – Budgets of the turbulent kinetic energy [m2/s3] obtained using the Suga model in CONVERT (a) case A (b) case C ________________________________ 207 Figure 5.19 – Comparison of the results for case (A) obtained using the Suga model in CONVERT and STAR-CD. ____________________________________________ 208 Figure 5.20 – Comparison of the results for case (B) obtained using the Suga model in CONVERT and STAR-CD. ____________________________________________ 209 Figure 5.21 – Comparison of the results for case (C) obtained using the Suga model in CONVERT and STAR-CD. ____________________________________________ 210 List of Figures 9 Figure 5.22 – Mean flow and turbulence profiles obtained using the LCL k-ε model in STAR-CD.__________________________________________________________ 211 Figure 5.23 – Mean flow and turbulence profiles obtained using the v2-f model in STAR-CD.__________________________________________________________ 212 Figure 5.24 – Mean flow and turbulence profiles obtained using the standard k-ω-SST model in STAR-CD.__________________________________________________ 213 Figure 5.25 – Mean flow and turbulence profiles obtained using the standard k-ω-SST model in Code_Saturne. _______________________________________________ 214 Figure 5.26 – Comparison of mean flow and turbulence profiles for case (A) obtained using the standard k-ω-SST model in STAR-CD vs. Code_Saturne._____________ 215 Figure 5.27 – Comparison of mean flow and turbulence profiles for case (D) obtained using the standard k-ω-SST model in STAR-CD vs. Code_Saturne._____________ 216 Figure 5.28 – Mean flow and turbulence profiles for case (C) at different streamwise locations obtained using the Launder-Sharma model in CONVERT. ____________ 217 Figure 5.29 – Nusselt number development against the experiments of Polyakov and Shindin (1988) (Runs 1-5 in Table 5.11) __________________________________ 219 Figure 5.30 – Normalized Nusselt number impairment and enhancement against the buoyancy parameter for different Reynolds numbers. ________________________ 221 Figure 5.31 – Normalized Friction coefficient impairment and enhancement against the buoyancy parameter for different Reynolds numbers. ________________________ 221 Figure 6.1 – Schematic diagram of a rib-roughened surface.___________________ 267 Figure 6.2 – The computational domains used in the present work for 1s configuration. ___________________________________________________________________ 267 Figure 6.3 – The computational domains used in the present work for 2s configuration. ___________________________________________________________________ 267 Figure 6.4 – Schematic of the 3D mesh (P/k = 9; 2s). ________________________ 268 Figure 6.5 – Plan view contours of the streamwise velocity for the 3D case (P/k = 9; 2s) at the y/k = 0.1 plane using the v2-f model. ________________________________ 268 Figure 6.6 – Spanwise plane contour plot of the streamwise velocity for the 3D case (P/k = 9; 2s) at the mid-section between the two ribs (x/k = 4.5) using the v2-f model. ___________________________________________________________________ 269 Figure 6.7 – Spanwise flow structure. (a) Present v2-f model for the 3D case (P/k = 9; 2s) at x/k = 4.5 (b) LDV measurements of Liou et al. (1993b) for P/k = 9:2s at x/k = 2 plane.______________________________________________________________ 269 Figure 6.8 – Plan view contour of Nu/Nu on the floor of the channel for the 3D case 0 (P/k = 9; 2s) using the v2-f model. _______________________________________ 270 Figure 6.9 – Contour plot of Nu/Nu on the side wall for the 3D case (P/k = 9; 2s) (a) 0 experimental data of Rau et al. (1998) (b) the present v2-f model. ______________ 270 List of Figures 10 Figure 6.10 – Nusselt number distribution on the side wall of the 3D case (P/k = 9; 2s) at a distance k upstream from a rib using the v2-f model.______________________ 271 Figure 6.11 – 2D very coarse mesh (P/k=9; 2s)._____________________________ 272 Figure 6.12 – 2D coarse mesh (P/k = 9; 2s).________________________________ 272 Figure 6.13 – 2D medium mesh (P/k = 9; 2s). ______________________________ 272 Figure 6.14 – 2D fine mesh (P/k = 9; 2s).__________________________________ 272 Figure 6.15 – Mesh sensitivity test and comparison of 2D vs 3D case (P/k = 9; 2s) for the Nusselt distribution using the v2-f model._______________________________ 273 Figure 6.16 – Mesh sensitivity test and comparison of 2D vs 3D case (P/k = 9; 2s) for the streamwise velocity distribution at y/k = 0.1 using the v2-f model. ___________ 273 Figure 6.17 – Mesh sensitivity test and comparison of 2D vs 3D case (P/k = 9; 2s) for the wall-normal velocity distribution at y/k = 1 using the v2-f model.____________ 274 Figure 6.18 – Mesh sensitivity test and comparison of 2D vs 3D case (P/k = 9; 2s) for the friction coefficient distribution using the v2-f model.______________________ 274 Figure 6.19 – The computational domains used for 2s configuration with different rib thermal boundary conditions (a) Heated ribs (b) Insulated ribs_________________ 275 Figure 6.20 – Nusselt distribution for P/k = 9; 2s and two different rib thermal boundary conditions.__________________________________________________________ 275 Figure 6.21 – Contour plots of temperature in the vicinity of the rib with different rib thermal boundary condition (a) Uniform heat flux at the ribs (b) Insulated ribs____ 275 Figure 6.22 – Nusselt distribution for P/k = 9; 1s and various turbulence models. __ 276 Figure 6.23 – Streamlines for P/k = 9; 1s and various turbulence models. ________ 276 Figure 6.24 – Streamwise velocity distributions for P/k = 9; 1s at y/k = 0.1 for various turbulence models. ___________________________________________________ 277 Figure 6.25 – Wall-normal velocity distributions for P/k = 9; 1s at y/k = 1 for various turbulence models. ___________________________________________________ 277 Figure 6.26 – Friction coefficient distributions for various turbulence models._____ 277 Figure 6.27 – Streamwise velocity profiles for P/k = 9; 1s on the rib-top (x/k = 0) for various turbulence models. _____________________________________________ 278 Figure 6.28 – Streamwise velocity profiles for P/k = 9; 1s at x/k = 4 for various turbulence models. ___________________________________________________ 278 Figure 6.29 – Pressure coefficient distributions for P/k = 9; 1s for various turbulence models. ____________________________________________________________ 278 Figure 6.30 – Contour plots of the streamwise velocity for P/k = 9; 1s for various turbulence models. ___________________________________________________ 279
Description: