ebook img

Thermal Energy Storage with Phase Change Materials: A Literature Review of Applications for Buildings Materials PDF

80 Pages·2018·1.932 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermal Energy Storage with Phase Change Materials: A Literature Review of Applications for Buildings Materials

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY João M. P. Q. Delgado Joana C. Martinho · Ana Vaz Sá Ana S. Guimarães · Vitor Abrantes Thermal Energy Storage with Phase Change Materials A Literature Review of Applications for Buildings Materials SpringerBriefs in Applied Sciences and Technology SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50– 125 pages, the series covers a range of content from professional to academic. Typical publications can be: (cid:129) A timely report of state-of-the art methods (cid:129) Anintroductiontooramanualfortheapplicationofmathematicalorcomputer techniques (cid:129) A bridge between new research results, as published in journal articles (cid:129) A snapshot of a hot or emerging topic (cid:129) An in-depth case study (cid:129) Apresentation ofcore conceptsthatstudents mustunderstand inordertomake independent contributions SpringerBriefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules. On the one hand, SpringerBriefs in Applied Sciences and Technology are devoted to the publication of fundamentals and applications within the different classical engineering disciplines as well as in interdisciplinary fields that recently emerged between these areas. On the other hand, as the boundary separating fundamental research and applied technology is more and more dissolving, this series isparticularlyopentotrans-disciplinary topics between fundamentalscience and engineering. Indexed by EI-Compendex, SCOPUS and Springerlink. More information about this series at http://www.springer.com/series/8884 ã Jo o M. P. Q. Delgado Joana C. Martinho (cid:129) á ã Ana Vaz S Ana S. Guimar es (cid:129) Vitor Abrantes Thermal Energy Storage with Phase Change Materials A Literature Review of Applications for Buildings Materials 123 João M.P. Q.Delgado Ana S.Guimarães Faculty of Engineering, Faculty of Engineering, CONSTRUCT-LFC CONSTRUCT-LFC University of Porto University of Porto Porto, Portugal Porto, Portugal JoanaC. Martinho Vitor Abrantes Faculty of Engineering, Faculty of Engineering, CONSTRUCT-GEQUALTEC CONSTRUCT-GEQUALTEC University of Porto University of Porto Porto, Portugal Porto, Portugal Ana VazSá Faculty of Engineering, CONSTRUCT-GEQUALTEC University of Porto Porto, Portugal ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology ISBN978-3-319-97498-9 ISBN978-3-319-97499-6 (eBook) https://doi.org/10.1007/978-3-319-97499-6 LibraryofCongressControlNumber:2018949869 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thermal energy storage with phase change materials (PCMs) offers a high thermal storage density with a moderate temperature variation. Building materials with incorporated phase change materials (PCMs) have been found to reduce signifi- cantlyindoortemperaturefluctuationswhilemaintainingdesirablethermalcomfort sensation. Thisreviewprovidesanupdate onvarious methods that havebeeninvestigated bypreviousresearcherstoincorporatePCMsintothebuildingstructures.Themain objective is to optimize these methods by integrating PCM with surrounding wall (gypsum board and interior plaster products), Trombe walls, ceramic floor tiles, concrete elements (walls and pavements), windows, concrete or brick masonry, underfloorheating,ceilings,thermalinsulationandfurnitureandindoorappliances. Based on phase change state, PCMs fall into three groups: solid–solid PCMs, solid–liquidPCMsandliquid–gasPCMs.Amongthem,thesolid–liquidPCMsare proper for thermal energy storage. The solid–liquid PCMs include organic PCMs, inorganic PCMs and eutectics. TheprocessofselectinganappropriatePCMisverycomplicatedbutcrucialfor thermal energy storage. The potential PCM should have a suitable melting tem- perature,desirableheatoffusionandthermalconductivityspecifiedbythepractical application. Thus, the methods of measuring the thermal properties of PCMs are very important. Suitable PCMs and a right incorporation method with building material and latent heat thermal energy storage (LHTES) can be economically efficient for heatingandcoolingbuildings.However,severalproblemsneedtobetackledbefore LHTES can reliably and practically be applied. Porto, Portugal Joana C. Martinho Ana Vaz Sá Ana S. Guimarães Vitor Abrantes João M. P. Q. Delgado v Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Sensible Heat Storage (SHS). . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Latent Heat Storage (LHS) . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Thermochemical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Classification of PCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Non-commercial/Commercial Materials . . . . . . . . . . . . . 8 1.2.2 Organic/Inorganic/Eutectic Materials . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Impregnation of PCMs in Building Materials. . . . . . . . . . . . . . . . . . 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Measurement of Thermal Properties of PCMs . . . . . . . . . . . . . . 17 2.2.1 Differential Scanning Calorimetry (DSC). . . . . . . . . . . . 18 2.2.2 Differential Thermal Analysis (DTA). . . . . . . . . . . . . . . 20 2.2.3 T-History Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 Methods Appraisal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Thermal Stability of PCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Heat Transfer Enhancement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Impregnation of PCMs into Construction Materials. . . . . . . . . . . 23 2.5.1 Direct Incorporation or Impregnation. . . . . . . . . . . . . . . 23 2.5.2 Encapsulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.3 Shape-Stabilized PCMs . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.4 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Potential PCMs for Building Applications . . . . . . . . . . . . . . . . . 28 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 vii viii Contents 3 PCM Current Applications and Thermal Performance . . . . . . . . . . 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Gypsum Board and Interior Plaster Products . . . . . . . . . . . . . . . 36 3.3 Ceramic Floor Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Concrete Elements (Walls and Pavements). . . . . . . . . . . . . . . . . 44 3.5 Trombe Walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.6 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.7 Concrete or Brick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.8 Underfloor Heating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.9 Ceilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.10 Thermal Insulation Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.11 Furniture and Indoor Appliances . . . . . . . . . . . . . . . . . . . . . . . . 61 3.12 Safety Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1 Further Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Chapter 1 Introduction APCMisasubstancecomposedformolecules.TheprincipleofthePCMissimple. Asthetemperatureincreases,thematerialchangesphasefromsolidtoliquid.The reactionbeingendothermic,thePCMabsorbstheheat.Similarly,whenthetemper- aturedecreases,thematerialchangesphasefromliquidtosolid(seeFig.1.1).The reactionbeingexothermic,thePCMdesorbstheheat[1]. Thiskindofmaterialhasthecapacityofstoringandreleasingamountsofenergy in the form of latent heat; latent heat storage can be achieved through the phase changes. The PCM uses the latent heat of phase change to control temperatures withinaspecificrange. The energy used to alter the phase of the material, given that the phase change temperature is around the desired comfort room temperature, will lead to a more stable and comfortable indoor climate as well as cut-peak cooling and heating loads[2]. Fig.1.1 Watermeltingcycle ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2019 1 J.M.Delgadoetal.,ThermalEnergyStoragewithPhaseChangeMaterials, SpringerBriefsinAppliedSciencesandTechnology, https://doi.org/10.1007/978-3-319-97499-6_1 2 1 Introduction In this chapter, it was presented references of some concepts, definitions and a surveyofthedifferenttypesofPCM. 1.1 Definition Materialpropertiesingeneraldependonboundaryconditionslikepressure,tempera- tureandrelativehumidity.Thecommonmaterialsusedinconstruction,likeconcrete, brick,stone,glass,wood,ceramic,haveasetofpropertiesthatgivethemgreateror lesserheatstoragecapabilityandheatstoragerestitutiontothesurroundings. Thermophysicalpropertiesarethosewhichgiveinformationabouttheamountof energythatsuchmaterialsandcompositescanstore.Butthecharacterizationofthe thermophysicalpropertiesisnotalwayseasyandforcompositesmanytimescannot becarriedoutwithconventionallaboratoryequipment,mostlyduetothesamplesize [3].ThemaincriteriathatoverseetheselectionofPCMsare[4]: • Possessameltingpointinthedesiredoperatingtemperaturerange(temperature rangeofapplication)toassureusefulheatstorageandextraction.Buildingappli- cationtemperaturesrangefrom15°C(coldstorage)to70°C(heatstorage); • Possesshighlatentheatoffusionperunitmass,sothatasmalleramountofmaterial storesagivenamountofenergy; • Highspecificheattoprovideadditionalsignificantsensibleheatstorageeffects; • High thermal conductivity, so that the temperature gradients for charging and dischargingthestoragematerialaresmall; • Smallvolumechangesduringphasetransition,sothatasimplecontainerandheat exchangergeometrycanbeused(lessthan10%); • Exhibitlittleornosub-coolingduringfreezing/meltingcycle; • Possesschemicalstability,nochemicaldecompositionandcorrosionresistanceto constructionmaterials; • Containnon-poisonous,non-flammableandnon-explosiveelements/compounds; • Availableinlargequantitiesatlowcost. It is now time to introduce some important concepts related to calorimetry, the partofsciencethatstudiesenergyexchangesintheformofheatbetweenbodiesand systems.Theconceptsofthermalconductivity,specificheatandspecificvolumetric heat,thermaldiffusivity,latentheatorphasechangeandenthalpywillbeaddressed. Thermal conductivity, λ in WmK, describes the transport of energy, in form of heat,throughabodyofmassastheresultofatemperaturegradient.Accordingto thesecondlawofthermodynamics,heatalwaysflowsinthedirectionofthelower temperature. For example, let us focus on two very different materials needed to buildawall,concreteandthermalinsulation.Thismaterial’scoexistenceprovides strength and stability to the building skeleton and at the same time makes it less vulnerabletothermalamplitudesoccurringduringtheday;theamountofheat,per unittime,passesthroughathicknessunitofmaterial(m),whenatemperatureunit differenceisestablishedbetweentwoflatandparallelfaces(1°Cor1K).Consulting

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.