ebook img

Thermal Degradation of Antibiotic Residues: Amphenicols as a Case Study By Lei Tian ... PDF

143 Pages·2016·5 MB·English
by  Lei TianMiss
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermal Degradation of Antibiotic Residues: Amphenicols as a Case Study By Lei Tian ...

Thermal Degradation of Antibiotic Residues: Amphenicols as a Case Study By Lei Tian Department of Food Science and Agricultural Chemistry Macdonald Campus, McGill University Montreal, Canada April, 2016 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science ©Lei Tian, 2016 ABSTRACT Veterinary drug residues, though carefully regulated, remain commonly detected in food of animal origin (meat, seafood, dairy products etc.). Worryingly, new pharmaceutically active contaminants are continuously being detected in food. Recently, human pharmaceuticals and other antimicrobial residues occurring as environmental contaminants in aquatic systems were observed to accumulate in various seafood. At the same time, most foods of animal origin are cooked before consumption. In terms of food safety, it is therefore necessary to understand the fate of drug residues in the food supply chain, notably during thermal processing. Amphenicols (e.g. florfenicol, chloramphenicol) are one class of antibiotics commonly reported in fish/seafood and aquatic system worldwide. In this study, the thermal degradation kinetics of amphenicols were explored using high performance liquid chromatography triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS). Results indicated that the chloramphenicol and florfenicol followed the first-order degradation kinetic, and the degradation rate constant k increased with temperature increase. Then, the identity of thermal degradation products was investigated through two strategies. First, pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was applied to investigate the volatile degradation products of three antibiotics and three additional pharmaceuticals. Chloramphenicol, lincomycin, gemfibrozil and diphenhydramine were shown to degrade into a range of previously unidentified volatile compounds. No volatile degradation products were identified for florfenicol. Overall, Py-GC-MS was a fast and effective method to explore the thermal degradation of pharmaceuticals. Finally, II HPLC coupled with high resolution tandem mass spectrometry (in our case HPLC-QTOF-MS/MS) coupled with bioinformatics was applied to identify the thermal degradation products of chloramphenicol in water and to confirm the degradation products in cooked mussels. This approach allowed to find previously unidentified degradation by-products. This work further highlights the need to take into account the impact food processing for the food safety risk assessment of amphenicol antibiotics. III RÉSUMÉ Des résidus de médicaments vétérinaires, bien qu’ils soient strictement régulés, sont régulièrement détectés dans les aliments d’origine animale (viande, poisson et fruits de mer, produits laitiers…). De manière inquiétante, de nouveaux résidus de médicaments sont continuellement détectés dans les aliments. Récemment, on a observé que divers médicaments et produits antimicrobiens, contaminant les milieux aquatiques, pouvaient s’accumuler dans les poissons et fruits de mer. En termes de sécurité sanitaire des aliments, il est nécessaire de comprendre le devenir des résidus de médicaments dans la chaine de production agroalimentaire, notamment au cours des traitements thermiques. Les phénicols (chloramphénicol, florfénicol) constituent une famille d'antibiotiques détectés internationalement dans le poisson, fruits de mer et systèmes aquatiques. Dans la présente étude, la cinétique de dégradation thermique des phénicols a été étudiée en utilisant la chromatographie liquide haute performance couplée à la spectrométrie de masse triple quadrupôle (HPLC-QqQ-MS/MS). Les résultats ont montré que les cinétiques de dégradation du chloramphénicol et du florfénicol suivent un modèle de premier ordre, et la constante de dégradation thermique, k, croît avec la température. Par la suite, deux stratégies ont été mises en œuvre pour l’identification des produits de dégradation thermique. Tout d’abord, la pyrolyse-chromatographie en phase gazeuse-spectrométrie de masse (Py-GC-MS) a été utilisée pour l’étude des produits de dégradation volatils de trois antibiotiques et trois autres composés pharmaceutiques. Ainsi, cette approche a montré que le chloramphénicol, la lincomycine, le IV gemfibrozil et la diphénhydramine se dégradent en une série de composes volatils. Aucun compose volatil n’a été détecté au cours de la dégradation du florfénicol. Py-GC-MS s’est montre être une technique efficace et rapide pour l’étude de la dégradation thermique des résidus de médicaments. Enfin, la HPLC couplée à la spectrométrie de masse haute résolution (HPLC-QTOF-MS/MS dans notre cas), combinée à la bioinformatique a été utilisée pour identifier les produits de dégradation thermique du chloramphénicol dans l’eau, et confirmer leur présence au cours de la cuisson d’une autre matrice, de la moule. Cette approche a permis à nouveau de détecter des nouveaux produits de dégradation. Ce travail de recherche met en exergue la nécessité de prendre en compte l’impact de la transformation alimentaire pour l’évaluation des risques liés à la présence de résidus de phénicols dans les aliments. V CONTRIBUTIONS OF AUTHORS The authors involved in the thesis and their contributions to the various articles are as follows: Lei TIAN is the M.Sc. candidate who designed and conducted all the experiments in consultation with the supervisors. She performed data collection and analysis. Additionally, she prepared drafts of all the manuscripts for scientific publications. Dr. Stéphane BAYEN is the thesis supervisor, under whose guidance the research was conducted. He assisted the candidate in designing and conducting the experiments as well as correcting, proofreading, reviewing and processing manuscripts for the publications. The literature review in Chapter 2 is reviewed and organized by Lei TIAN under the supervision of Dr. Stéphane BAYEN. Salma KHALIL contributed to Chapter 2 and wrote two paragraphs on tetracyclines in section 3.4. These two paragraphs are part of the manuscript submitted for publication and are kept in the present thesis to give an overview of the topic for all antibiotics. VI LIST OF PUBLICATIONS AND PRESENTATIONS Part of this thesis has been prepared as manuscripts for publications in refereed scientific journals: Lei Tian, Salma Khalil, Stéphane Bayen. Effect of thermal treatments on the degradation of antibiotic residues in food. Critical Reviews in Food Science and Nutrition. (Status: Accepted) Lei Tian, Varoujan Yaylayan, Stéphane Bayen. Investigation of the thermal degradation of veterinary and human pharmaceuticals using pyrolysis-GC-MS. (Status: in preparation) Lei Tian, Stéphane Bayen. Thermal degradation kinetics of chloramphenicol and its degradation products investigated by HPLC-QqQ-MS/MS and HPLC-QTOF-MS/MS. (Status: in preparation) Part of this thesis has been presented in scientific conferences: Stéphane Bayen, Lei Tian, Salma Khalil, Varoujan Yaylayan. Unveiling the fate of antibiotic residues during seafood processing using pyrolysis-gas chromatography-mass spectrometry. IFT conference, 2015, Chicago, IL, USA. Stéphane Bayen, Lei Tian. Antibiotic and pharmaceutical residues from field to fork: detection, thermal degradation and food safety implications. 99th Canadian Chemistry Conference, 2016, Halifax, NS, CA. (in preparation) VII ACKNOWLEDGEMENTS I would like to thank my supervisor Dr. Stéphane BAYEN for his invaluable guidance and support. Thanks for his encouragements which help me to solve all the difficulties in research and help me to be a scientific researcher. In addition, I would like to thank Dr. YAYLAYAN, Dr. KARBOUNE, Dr. WYKES and Dr. KERMASHA for sharing the lab materials and equipment. Also, I would like to thank Dr. Burgos for his comments and suggestions for this thesis. Finally, my friends and family have supported and encouraged me throughout my masters’ study to accomplish my goals and I would like to thank them all. VIII CONTENTS ABSTRACT ................................................................................................................................................ II RÉSUMÉ ................................................................................................................................................... IV CONTRIBUTIONS OF AUTHORS ........................................................................................................ VI LIST OF PUBLICATIONS AND PRESENTATIONS......................................................................... VII ACKNOWLEDGEMENTS ................................................................................................................. VIII LIST OF ABBREVIATIONS ................................................................................................................. XII CHAPTER 1. INTRODUCTION .............................................................................................................. 1 CHAPTER 2. LITERATURE REVIEW .................................................................................................. 7 2.1. Introduction ....................................................................................................................................... 7 2.2. Material and methods ........................................................................................................................ 8 2.2.1 Selected literature ........................................................................................................................ 8 2.2.2 Degradation percentage (DP) and degradation rate constant (k) .............................................. 9 2.2.3 Statistical analysis ..................................................................................................................... 11 2.3. Results and Discussion .................................................................................................................... 11 2.3.1 Experimental assessment of antibiotic degradation .................................................................. 11 2.3.1.1. Experimental design of degradation studies ..................................................................................... 11 2.3.1.2. Quantification of antibiotic degradation ........................................................................................... 12 2.3.2 Thermal kinetics of antibiotics .................................................................................................. 14 2.3.2.1 β-Lactams antibiotics ..................................................................................................................................... 15 2.3.2.2 Tetracyclines ...................................................................................................................................... 22 2.3.2.3 Macrolides ......................................................................................................................................... 23 2.3.2.4 Aminoglycosides ............................................................................................................................... 24 2.3.2.5 Amphenicols ...................................................................................................................................... 24 2.3.2.6 Quinolones ........................................................................................................................................ 25 2.3.2.7 Sulfonamides ..................................................................................................................................... 26 2.3.2.8 Other antibiotics (teicoplanin, polymixin B, vancomycin, oxfendazole and lasalocid) .................... 27 2.3.2.9 Discussion on the influence of the family of antibiotics ................................................................... 27 IX 2.3.3 Degradation kinetics ................................................................................................................. 28 2.3.3.1 Influence of time on the degradation ........................................................................................................... 28 2.3.3.2 Influence of temperature on the degradation ..................................................................................... 29 2.3.3.3 Influence of matrix on the degradation .............................................................................................. 31 2.3.3.4 Influence of cooking methods on the degradation ............................................................................. 33 2.3.4 Identification of degradation products ...................................................................................... 35 2.4. Conclusions ..................................................................................................................................... 36 CHAPTER 3 APPLICATION OF PYROLYSIS-GC-MS IN STUDYING THERMAL DEGRADATION OF AMPHENICOLS AND OTHER DRUG RESIDUES ....................................... 38 3.1 Introduction ...................................................................................................................................... 38 3.2 Materials & Method .......................................................................................................................... 39 3.2.1 Materials ................................................................................................................................... 39 3.2.2 Pyrolysis GC-MS analysis ......................................................................................................... 39 3.3 Results and discussions .................................................................................................................... 41 3.3.1 Py-GC-MS of Chloramphenicol ................................................................................................ 42 3.3.2 Py-GC-MS of Florfenicol .......................................................................................................... 44 3.3.3 Py-GC-MS of Carbamazepine ................................................................................................... 45 3.3.4 Py-GC-MS of Lincomycin hydrochloride .................................................................................. 46 3.3.5 Py-GC-MS of Diphenhydramine hydrochloride ........................................................................ 48 3.3.6 Py-GC-MS of Gemfibrozil ......................................................................................................... 49 3.4 Conclusions ...................................................................................................................................... 51 CHAPTER 4. THERMAL DEGRADATION KINETICS OF AMPHENICOLS ............................... 53 4.1 Introduction ...................................................................................................................................... 53 4.2 Materials and methods ...................................................................................................................... 54 4.2.1 Materials ................................................................................................................................... 54 4.2.2 Method validation ..................................................................................................................... 54 4.2.3 Experimental procedure ............................................................................................................ 54 4.2.3.1 Kinetic studies at 100° C in water by HPLC-QqQ-MS/MS ..................................................................... 54 4.2.3.2 Kinetic studies at 60 °C and 80 °C in water by HPLC-QqQ-MS/MS ............................................... 56 4.2.3.3 Kinetic studies at 60 °C and 80 °C and 100 °C in water by HPLC-PAD .......................................... 56 X

Description:
fate of drug residues in the food supply chain, notably during thermal processing. Amphenicols For the analysis based on chromatography, degradation percentages are calculated according to. Equation . antibiotics were proved by calculating the Ea (minimum energy required to start the chemical.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.