TLFeBOOK THERMAL ANALY S I S OF UATERlALS ROBERT F. SPEYER School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia Marcel Dekker, Inc. New York*Basel*Hong Kong TLFeBOOK Library of Congress Cataloging-in-PublicationD ata Speyer, Robert F. Thermal analysis of materials / Robert F. Speyer. -- p. cm. (Materials engineering ; 5) Includes bibliographical references and index. ISBN 0-8247-8963-6 (alk. paper) 1. Materials--Thermal properties--Testing. 2. Thermal analysis- -Equipment and supplies. I. Title. 11. Series: Materials engineering (Marcel Dekker, Inc.) ; 5. TA4 18 .24.S66 1993 620.1* 1 '0287-&20 93-25572 CIP The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special SaledProfessional Marketing at the address below. This book is printed on acid-free paper. Copyright @ 1994 by MARCEL DEKKER, INC. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, micro- filming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York 10016 Current printing (last digit): 10 9 8 7 6 5 4 3 2 PRINTED IN THE UNITED STATES OF AMERICA TLFeBOOK Dedicated to my mother, June TLFeBOOK This page intentionally left blank TLFeBOOK PREFACE Technology changes so fast now, it must be frustrating for de- sign engineers to see their products become out of date shortly after they hit the market. With the advent of inexpensive personal computers and microprocessors over the past decade, there has been a virtual explosion of new thermal analysis com- panies and products. The level of instrument sophistication has practically left the scientist/technician out of the loop; af- ter popping the specimen in the machine, an elegant multi- colored printout completely describes a series of characteristics and properties of the material under investigation. There is an inherent danger in trusting black boxes of this sort, and it is the intent of this monograph to elucidate their inner workings and provide some intuition into their operation. I have avoided being encyclopedic in enumerating pertinent journal and product literature. Rather, the narrative attempts to develop important underlying principles. The design and optimal use of thermal analysis instrumentation for materials’ property measurements is emphasized, as necessary, based on atomistic models depicting the thermal behavior of materials. This monograph, I believe, is unique in that it covers the broader topic of pyrometry; the latter chapters on infrared and optical temperature measurement, thermal conductivity, and glass viscosity are generally not treated in books on thermal analysis but are commercially and academically important. I have resisted the urge to elaborate on some topics by using ex- TLFeBOOK vi PRE FA CE tensive footnoting, in an attempt to maintain the larger picture in the flow of the main body of the text. This should be a useful text for a junior or senior collegiate materials engineering student, endeavoring to learn about this topic for the first time, or corporate R & D personnel, attempt- ing to decipher what all the bells and whistles of their new, quite expensive, instrument will do for them. By basing this treatment on the elementary physical chemistry, heat transfer, materials properties, and device engineering used in thermal analysis, it is my hope that what follows will be a useful text- book and handbook, and that the information presented will remain “current” well into the future. I would like to acknowledge those who have assisted in the preparation of this work: Rita M. Slilaty and Kathleen C. Bade for copyediting of earlier versions of the manuscript, as well as Wendy Schechter and Andrew Berin for later versions. Dr. Jen Yan Hsu for figure preparation, and my colleagues at Georgia Tech: Drs. Joe K. Cochran, D. Norman Hill, and James F. Benzel for technical editing and helpful discussions. I am grateful to Professor Tracy A. Willmore for introducing me to the subject of pyrometry during my undergraduate years at the University of Illinois at Urbana-Champaign. Robert F. Speyer TLFeBOOK CONTENTS PREFACE V 1 INTRODUCTION 1 1.1 Heat. Energy. and Temperature . . . . . . . . . 2 1.2 Instrumentation and Properties of Materials . . 5 2 FURNACES AND TEMPERATURE MEASUREMENT 9 2.1 Resistance Temperature Transducers . . . . . . 9 2.2 Thermocouples . . . . . . . . . . . . . . . . . . 12 2.3 Commercial Components . . . . . . . . . . . . 18 2.3.1 Thermocouples . . . . . . . . . . . . . . 18 2.3.2 Furnaces . . . . . . . . . . . . . . . . . . 19 2.4 Furnace Control . . . . . . . . . . . . . . . . . 23 2.4.1 Semiconductor-Controlled Rectifiers . . 24 2.4.2 Power Transformers . . . . . . . . . . . 26 2.4.3 Automatic Control Systems . . . . . . . 28 3 DIFFERENTIAL THERMAL ANALYSIS 35 3.1 Instrument Design . . . . . . . . . . . . . . . . 35 3.2 An Introduction to DTA/DSC Applications . . 40 3.3 Thermodynamic Data from DTA . . . . . . . . 46 3.4 Calibration . . . . . . . . . . . . . . . . . . . . 49 3.5 Transformation Categories . . . . . . . . . . . . 49 3.5.1 Reversible Transformations . . . . . . . 49 3.5.2 Irreversible Transformations . . . . . . . 60 3.5.3 First and Higher Order Transitions . . . 63 3.6 An Example of Kinetic Modeling . . . . . . . . 66 3.7 Heat Capacity Effects . . . . . . . . . . . . . . 70 vii TLFeBOOK ... Vlll CONTENTS 3.7.1 Minimization of Baseline Float . . . . . 71 3.7.2 Heat Capacity Changes During Transformations . . . . . . . . . . . . . 75 3.7.3 Experimental Determination of Specific Heat . . . . . . . . . . . . . . . . . . . . 79 3.8 Experimental Concerns . . . . . . . . . . . . . 80 3.8.1 Reactions With Gases . . . . . . . . . . 80 3.8.2 Particle Packing, Mass, and Size Distri- bution . . . . . . . . . . . . . . . . . . . 81 3.8.3 Effect of Heating Rate . . . . . . . . . . 85 4 MANIPULATION OF DATA 91 4.1 Methods of Numerical Integration . . . . . . . 91 4.2 Taking Derivatives of Experimental Data . . . 95 4.3 Temperature Calibration . . . . . . . . . . . . . 99 4.4 Data Subtraction . . . . . . . . . . . . . . . . . 102 4.5 Data Acquisition . . . . . . . . . . . . . . . . . 105 5 THERMOGRAVIMETRIC ANALYSIS 111 5.1 TG Design and Experimental Concerns . . . . 111 5.2 Simultaneous Thermal Analysis . . . . . . . . . 120 5.3 A Case Study: Glass Batch Fusion . . . . . . . 125 5.3.1 Background . . . . . . . . . . . . . . . . 126 5.3.2 Experimental Procedure . . . . . . . . . 126 5.3.3 Results . . . . . . . . . . . . . . . . . . 128 5.3.4 Discussion . . . . . . . . . . . . . . . . . 133 6 ADVANCED APPLICATIONS OF DTA AND TG 143 6.1 Deconvolution of Superimposed Endotherms . . 143 6.1.1 Background . . . . . . . . . . . . . . . . 143 6.1.2 Computer Algorithm . . . . . . . . . . . 144 6.1.3 Models and Results . . . . . . . . . . . 146 6.1.4 Remarks . . . . . . . . . . . . . . . . . . 151 6.1.5 Sample Program . . . . . . . . . . . . . 152 6.2 Decomposition Kinetics Using TG . . . . . . . 159 TLFeBOOK CONTENTS ix 7 DILATOMETRY AND INTERFEROMETRY 165 7.1 Linear vs . Volume Expansion Coefficient . . . . 166 7.2 Theoretical Origins of Thermal Expansion . . . 168 7.3 Dilatometry: Instrument Design . . . . . . . . 169 7.4 Dilatometry: Calibration . . . . . . . . . . . . . 173 7.5 Dilatometry: Experimental Concerns . . . . . . 175 7.6 Model Solid State Transformations . . . . . . . 179 7.7 Interferometry . . . . . . . . . . . . . . . . . . 186 7.7.1 Principles . . . . . . . . . . . . . . . . . 187 7.7.2 Instrument Design . . . . . . . . . . . . 191 8 HEAT TRANSFER AND PYROMETRY I99 8.1 Introduction to Heat Transfer . . . . . . . . . . 199 8.1.1 Background . . . . . . . . . . . . . . . . 199 8.1.2 Conduction . . . . . . . . . . . . . . . . 199 8.1.3 Convection . . . . . . . . . . . . . . . . 203 8.1.4 Radiation . . . . . . . . . . . . . . . . . 205 8.2 Pyrometry . . . . . . . . . . . . . . . . . . . . . 210 8.2.1 Disappearing Filament Pyrometry . . . 211 8.2.2 Two Color Pyrometry . . . . . . . . . . 216 8.2.3 Total Radiation Pyrometry . . . . . . . 218 8.2.4 Infrared Pyrometry . . . . . . . . . . . . 220 9 THERMAL CONDUCTIVITY 227 9.1 Radial Heat Flow Method . . . . . . . . . . . . 227 9.2 Calorimeter Method . . . . . . . . . . . . . . . 231 9.3 Hot-Wire Method . . . . . . . . . . . . . . . . . 234 9.4 Guarded Hot-Plate Method . . . . . . . . . . . 240 9.5 Flash Method . . . . . . . . . . . . . . . . . . . 242 10 VISCOSITY OF LIQUIDS AND GLASSES 251 10.1 Background . . . . . . . . . . . . . . . . . . . . 251 10.2 Margules Viscometer . . . . . . . . . . . . . . . 255 10.3 Equation for the Rotational Viscometer . . . . 257 10.4 High Viscosity Measurement . . . . . . . . . . . 262 10.4.1 Parallel Plate Viscometer . . . . . . . . 262 TLFeBOOK