ebook img

There are no particles, there are only fields PDF

14 Pages·2013·1.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview There are no particles, there are only fields

(cid:55)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:68)(cid:85)(cid:72)(cid:3)(cid:81)(cid:82)(cid:3)(cid:83)(cid:68)(cid:85)(cid:87)(cid:76)(cid:70)(cid:79)(cid:72)(cid:86)(cid:15)(cid:3)(cid:87)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:68)(cid:85)(cid:72)(cid:3)(cid:82)(cid:81)(cid:79)(cid:92)(cid:3)(cid:73)(cid:76)(cid:72)(cid:79)(cid:71)(cid:86) (cid:36)(cid:85)(cid:87)(cid:3)(cid:43)(cid:82)(cid:69)(cid:86)(cid:82)(cid:81) (cid:38)(cid:76)(cid:87)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)(cid:3)(cid:36)(cid:80)(cid:17)(cid:3)(cid:45)(cid:17)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:17)(cid:3)(cid:27)(cid:20)(cid:15)(cid:3)(cid:21)(cid:20)(cid:20)(cid:3)(cid:11)(cid:21)(cid:19)(cid:20)(cid:22)(cid:12)(cid:30)(cid:3)(cid:71)(cid:82)(cid:76)(cid:29)(cid:3)(cid:20)(cid:19)(cid:17)(cid:20)(cid:20)(cid:20)(cid:28)(cid:18)(cid:20)(cid:17)(cid:23)(cid:26)(cid:27)(cid:28)(cid:27)(cid:27)(cid:24) (cid:57)(cid:76)(cid:72)(cid:90)(cid:3)(cid:82)(cid:81)(cid:79)(cid:76)(cid:81)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:29)(cid:18)(cid:18)(cid:71)(cid:91)(cid:17)(cid:71)(cid:82)(cid:76)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:20)(cid:19)(cid:17)(cid:20)(cid:20)(cid:20)(cid:28)(cid:18)(cid:20)(cid:17)(cid:23)(cid:26)(cid:27)(cid:28)(cid:27)(cid:27)(cid:24) (cid:57)(cid:76)(cid:72)(cid:90)(cid:3)(cid:55)(cid:68)(cid:69)(cid:79)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:38)(cid:82)(cid:81)(cid:87)(cid:72)(cid:81)(cid:87)(cid:86)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:29)(cid:18)(cid:18)(cid:68)(cid:77)(cid:83)(cid:17)(cid:68)(cid:68)(cid:83)(cid:87)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:85)(cid:72)(cid:86)(cid:82)(cid:88)(cid:85)(cid:70)(cid:72)(cid:18)(cid:20)(cid:18)(cid:36)(cid:45)(cid:51)(cid:44)(cid:36)(cid:54)(cid:18)(cid:89)(cid:27)(cid:20)(cid:18)(cid:76)(cid:22) (cid:51)(cid:88)(cid:69)(cid:79)(cid:76)(cid:86)(cid:75)(cid:72)(cid:71)(cid:3)(cid:69)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:36)(cid:80)(cid:72)(cid:85)(cid:76)(cid:70)(cid:68)(cid:81)(cid:3)(cid:36)(cid:86)(cid:86)(cid:82)(cid:70)(cid:76)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:73)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:76)(cid:70)(cid:86)(cid:3)(cid:55)(cid:72)(cid:68)(cid:70)(cid:75)(cid:72)(cid:85)(cid:86) (cid:53)(cid:72)(cid:79)(cid:68)(cid:87)(cid:72)(cid:71)(cid:3)(cid:36)(cid:85)(cid:87)(cid:76)(cid:70)(cid:79)(cid:72)(cid:86) (cid:51)(cid:72)(cid:85)(cid:76)(cid:80)(cid:72)(cid:87)(cid:72)(cid:85)(cid:3)(cid:44)(cid:81)(cid:86)(cid:87)(cid:76)(cid:87)(cid:88)(cid:87)(cid:72)(cid:3)(cid:73)(cid:82)(cid:85)(cid:3)(cid:55)(cid:75)(cid:72)(cid:82)(cid:85)(cid:72)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:76)(cid:70)(cid:86)(cid:3)(cid:71)(cid:76)(cid:85)(cid:72)(cid:70)(cid:87)(cid:82)(cid:85)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:87)(cid:75)(cid:72)(cid:82)(cid:85)(cid:72)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:83)(cid:75)(cid:92)(cid:86)(cid:76)(cid:70)(cid:76)(cid:86)(cid:87)(cid:3)(cid:49)(cid:72)(cid:76)(cid:79)(cid:3)(cid:55)(cid:88)(cid:85)(cid:82)(cid:78)(cid:10)(cid:86)(cid:3)(cid:21)(cid:19)(cid:20)(cid:21)(cid:3)(cid:38)(cid:37)(cid:38)(cid:3)(cid:48)(cid:68)(cid:86)(cid:86)(cid:72)(cid:92) (cid:47)(cid:72)(cid:70)(cid:87)(cid:88)(cid:85)(cid:72)(cid:3)(cid:89)(cid:76)(cid:71)(cid:72)(cid:82)(cid:86)(cid:15)(cid:3)(cid:179)(cid:55)(cid:75)(cid:72)(cid:3)(cid:56)(cid:81)(cid:76)(cid:89)(cid:72)(cid:85)(cid:86)(cid:72)(cid:3)(cid:58)(cid:76)(cid:87)(cid:75)(cid:76)(cid:81)(cid:29)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:3)(cid:52)(cid:88)(cid:68)(cid:81)(cid:87)(cid:88)(cid:80)(cid:3)(cid:87)(cid:82)(cid:3)(cid:38)(cid:82)(cid:86)(cid:80)(cid:82)(cid:86)(cid:180)(cid:15)(cid:3)(cid:76)(cid:87)(cid:88)(cid:81)(cid:72)(cid:86)(cid:17)(cid:68)(cid:83)(cid:83)(cid:79)(cid:72)(cid:17)(cid:70)(cid:82)(cid:80)(cid:18)(cid:70)(cid:68)(cid:18)(cid:68)(cid:79)(cid:69)(cid:88)(cid:80)(cid:18)(cid:70)(cid:69)(cid:70)(cid:16)(cid:80)(cid:68)(cid:86)(cid:86)(cid:72)(cid:92)(cid:16) (cid:79)(cid:72)(cid:70)(cid:87)(cid:88)(cid:85)(cid:72)(cid:86)(cid:16)(cid:21)(cid:19)(cid:20)(cid:21)(cid:16)(cid:69)(cid:92)(cid:18)(cid:76)(cid:71)(cid:24)(cid:26)(cid:26)(cid:21)(cid:23)(cid:24)(cid:23)(cid:27)(cid:23) (cid:51)(cid:75)(cid:92)(cid:86)(cid:17)(cid:3)(cid:55)(cid:72)(cid:68)(cid:70)(cid:75)(cid:17)(cid:3)(cid:24)(cid:20)(cid:15)(cid:3)(cid:20)(cid:28)(cid:19)(cid:3)(cid:11)(cid:21)(cid:19)(cid:20)(cid:22)(cid:12) (cid:55)(cid:85)(cid:68)(cid:81)(cid:86)(cid:80)(cid:76)(cid:86)(cid:86)(cid:76)(cid:82)(cid:81)(cid:3)(cid:85)(cid:72)(cid:86)(cid:82)(cid:81)(cid:68)(cid:81)(cid:70)(cid:72)(cid:86)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:37)(cid:79)(cid:82)(cid:70)(cid:75)(cid:3)(cid:86)(cid:87)(cid:68)(cid:87)(cid:72)(cid:86)(cid:3)(cid:73)(cid:82)(cid:85)(cid:3)(cid:68)(cid:3)(cid:83)(cid:72)(cid:85)(cid:76)(cid:82)(cid:71)(cid:76)(cid:70)(cid:3)(cid:68)(cid:85)(cid:85)(cid:68)(cid:92)(cid:3)(cid:82)(cid:73)(cid:3)(cid:71)(cid:72)(cid:79)(cid:87)(cid:68)(cid:3)(cid:73)(cid:88)(cid:81)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:83)(cid:82)(cid:87)(cid:72)(cid:81)(cid:87)(cid:76)(cid:68)(cid:79)(cid:86) (cid:36)(cid:80)(cid:17)(cid:3)(cid:45)(cid:17)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:17)(cid:3)(cid:27)(cid:20)(cid:15)(cid:3)(cid:20)(cid:28)(cid:19)(cid:3)(cid:11)(cid:21)(cid:19)(cid:20)(cid:22)(cid:12) (cid:58)(cid:68)(cid:89)(cid:72)(cid:3)(cid:87)(cid:85)(cid:68)(cid:81)(cid:86)(cid:80)(cid:76)(cid:86)(cid:86)(cid:76)(cid:82)(cid:81)(cid:3)(cid:87)(cid:75)(cid:85)(cid:82)(cid:88)(cid:74)(cid:75)(cid:3)(cid:83)(cid:72)(cid:85)(cid:76)(cid:82)(cid:71)(cid:76)(cid:70)(cid:15)(cid:3)(cid:84)(cid:88)(cid:68)(cid:86)(cid:76)(cid:83)(cid:72)(cid:85)(cid:76)(cid:82)(cid:71)(cid:76)(cid:70)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:85)(cid:68)(cid:81)(cid:71)(cid:82)(cid:80)(cid:3)(cid:82)(cid:81)(cid:72)(cid:16)(cid:71)(cid:76)(cid:80)(cid:72)(cid:81)(cid:86)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:3)(cid:73)(cid:76)(cid:81)(cid:76)(cid:87)(cid:72)(cid:3)(cid:79)(cid:68)(cid:87)(cid:87)(cid:76)(cid:70)(cid:72)(cid:86) (cid:36)(cid:80)(cid:17)(cid:3)(cid:45)(cid:17)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:17)(cid:3)(cid:27)(cid:20)(cid:15)(cid:3)(cid:20)(cid:19)(cid:23)(cid:3)(cid:11)(cid:21)(cid:19)(cid:20)(cid:22)(cid:12) (cid:53)(cid:72)(cid:16)(cid:72)(cid:91)(cid:68)(cid:80)(cid:76)(cid:81)(cid:76)(cid:81)(cid:74)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:89)(cid:68)(cid:79)(cid:88)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:82)(cid:79)(cid:71)(cid:3)(cid:84)(cid:88)(cid:68)(cid:81)(cid:87)(cid:76)(cid:93)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:37)(cid:82)(cid:75)(cid:85)(cid:3)(cid:68)(cid:87)(cid:82)(cid:80)(cid:3)(cid:68)(cid:83)(cid:83)(cid:85)(cid:82)(cid:68)(cid:70)(cid:75) (cid:36)(cid:80)(cid:17)(cid:3)(cid:45)(cid:17)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:17)(cid:3)(cid:27)(cid:20)(cid:15)(cid:3)(cid:28)(cid:21)(cid:3)(cid:11)(cid:21)(cid:19)(cid:20)(cid:22)(cid:12) (cid:38)(cid:82)(cid:81)(cid:71)(cid:88)(cid:70)(cid:87)(cid:68)(cid:81)(cid:70)(cid:72)(cid:3)(cid:84)(cid:88)(cid:68)(cid:81)(cid:87)(cid:76)(cid:93)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)(cid:3)(cid:36)(cid:3)(cid:79)(cid:68)(cid:69)(cid:82)(cid:85)(cid:68)(cid:87)(cid:82)(cid:85)(cid:92)(cid:3)(cid:72)(cid:91)(cid:83)(cid:72)(cid:85)(cid:76)(cid:80)(cid:72)(cid:81)(cid:87)(cid:3)(cid:76)(cid:81)(cid:3)(cid:68)(cid:3)(cid:86)(cid:72)(cid:81)(cid:76)(cid:82)(cid:85)(cid:16)(cid:79)(cid:72)(cid:89)(cid:72)(cid:79)(cid:3)(cid:81)(cid:68)(cid:81)(cid:82)(cid:86)(cid:70)(cid:68)(cid:79)(cid:72)(cid:3)(cid:86)(cid:70)(cid:76)(cid:72)(cid:81)(cid:70)(cid:72)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:87)(cid:72)(cid:70)(cid:75)(cid:81)(cid:82)(cid:79)(cid:82)(cid:74)(cid:92)(cid:3)(cid:70)(cid:82)(cid:88)(cid:85)(cid:86)(cid:72) (cid:36)(cid:80)(cid:17)(cid:3)(cid:45)(cid:17)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:17)(cid:3)(cid:27)(cid:20)(cid:15)(cid:3)(cid:20)(cid:23)(cid:3)(cid:11)(cid:21)(cid:19)(cid:20)(cid:22)(cid:12) (cid:36)(cid:71)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:3)(cid:76)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:81)(cid:3)(cid:36)(cid:80)(cid:17)(cid:3)(cid:45)(cid:17)(cid:3)(cid:51)(cid:75)(cid:92)(cid:86)(cid:17) (cid:45)(cid:82)(cid:88)(cid:85)(cid:81)(cid:68)(cid:79)(cid:3)(cid:43)(cid:82)(cid:80)(cid:72)(cid:83)(cid:68)(cid:74)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:29)(cid:18)(cid:18)(cid:68)(cid:77)(cid:83)(cid:17)(cid:68)(cid:68)(cid:83)(cid:87)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18) (cid:45)(cid:82)(cid:88)(cid:85)(cid:81)(cid:68)(cid:79)(cid:3)(cid:44)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:29)(cid:18)(cid:18)(cid:68)(cid:77)(cid:83)(cid:17)(cid:68)(cid:68)(cid:83)(cid:87)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:68)(cid:69)(cid:82)(cid:88)(cid:87)(cid:18)(cid:68)(cid:69)(cid:82)(cid:88)(cid:87)(cid:66)(cid:87)(cid:75)(cid:72)(cid:66)(cid:77)(cid:82)(cid:88)(cid:85)(cid:81)(cid:68)(cid:79) (cid:55)(cid:82)(cid:83)(cid:3)(cid:71)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:86)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:29)(cid:18)(cid:18)(cid:68)(cid:77)(cid:83)(cid:17)(cid:68)(cid:68)(cid:83)(cid:87)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:80)(cid:82)(cid:86)(cid:87)(cid:66)(cid:71)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71) (cid:44)(cid:81)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:73)(cid:82)(cid:85)(cid:3)(cid:36)(cid:88)(cid:87)(cid:75)(cid:82)(cid:85)(cid:86)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:29)(cid:18)(cid:18)(cid:68)(cid:77)(cid:83)(cid:17)(cid:71)(cid:76)(cid:70)(cid:78)(cid:76)(cid:81)(cid:86)(cid:82)(cid:81)(cid:17)(cid:72)(cid:71)(cid:88)(cid:18)(cid:38)(cid:82)(cid:81)(cid:87)(cid:85)(cid:76)(cid:69)(cid:88)(cid:87)(cid:82)(cid:85)(cid:86)(cid:18)(cid:70)(cid:82)(cid:81)(cid:87)(cid:42)(cid:72)(cid:81)(cid:44)(cid:81)(cid:73)(cid:82)(cid:17)(cid:75)(cid:87)(cid:80)(cid:79) Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission There are no particles, there are only fields ArtHobsona) DepartmentofPhysics,UniversityofArkansas,Fayetteville,Arkansas72701 (Received18April2012;accepted15January2013) Quantum foundations are still unsettled, with mixed effects on science and society. By now it should be possible to obtain consensus on at least one issue: Are the fundamental constituents fields or particles? As this paper shows, experiment and theory imply that unbounded fields, not bounded particles, are fundamental. This is especially clear for relativistic systems, implying that it’s also true of nonrelativistic systems. Particles are epiphenomena arising from fields. Thus, the Schr€odingerfieldisaspace-fillingphysicalfieldwhosevalueatanyspatialpointistheprobability amplitude for an interaction to occur at that point. The field for an electron is the electron; each electron extendsoverbothslitsinthetwo-slitexperimentandspreadsovertheentirepattern;and quantum physics is about interactions of microscopic systems with the macroscopic world rather than just about measurements. It’s important to clarify this issue because textbooks still teach a particles- and measurement-oriented interpretation that contributes to bewilderment among students and pseudoscience among the public. This article reviews classical and quantum fields, the two-slit experiment, rigorous theorems showing particles are inconsistent with relativistic quantum theory, and several phenomena showing particles are incompatible with quantum field theories.VC 2013AmericanAssociationofPhysicsTeachers. [http://dx.doi.org/10.1119/1.4789885] I. INTRODUCTION Here, I’ll discuss just one fundamental quantum issue: field-particle (or wave-particle) duality. More precisely, this Physicistsarestillunabletoreachconsensusontheprinci- paper answers the following question: Based on standard plesormeaningofscience’smostfundamentalandaccurate nonrelativistic and relativistic quantum physics, do experi- theory, quantum physics. An embarrassment of enigmas mentandtheoryleadustoconcludethattheuniverseisulti- abounds concerning wave-particle duality, measurement, matelymadeoffields,orparticles,orboth,orneither?There nonlocality, superpositions, uncertainty, and the meaning of are other embarrassing quantum enigmas, especially the quantum states.1 After more than a century of quantum his- measurementproblem,aswellastheultimateontology(i.e., tory,thisisscandalous.2,3 reality)impliedbyquantumphysics.Thispaperstudiesonly It’s not only an academic matter. This confusion has field-particle duality. In particular, it is neutral on the inter- hugereal-lifeimplications.Inaworldthatcriesoutforgen- pretations (e.g., many worlds) and modifications (e.g., hid- eral scientific literacy,4 quantum-inspired pseudoscience has den variables, objective collapse theories) designed to become dangerous to science and society. What the Bleep resolvethemeasurementproblem. DoWeKnow,apopular 2004film,wonseveral filmawards Many textbooks and physicists apparently don’t realize and grossed $10 million; its central tenet is that we create that a strong case, supported by leading quantum field theo- our own reality through consciousness and quantum rists, for a pure fields view has developed during the past mechanics. It features physicists saying things like “The three decades.10–17 Three popular books are arguments for materialworldaroundusisnothingbutpossiblemovements an all-fields perspective.18–20 I have argued the advantages of consciousness,” it purports to show how thoughts change of teaching nonrelativistic quantum physics (NRQP, or thestructureoficecrystals,anditinterviewsa35,000year- “quantum mechanics”) from an all-fields perspective;21 my old spirit “channeled” by a psychic.5 “Quantum mysticism” conceptualphysicstextbookfornon-sciencecollegestudents ostensibly provides a basis for mind-over-matter claims assumesthisviewpoint.22 from ESP to alternative medicine, and provides intellectual Thereisplentyofevidencetodayforphysiciststocometo support for the postmodern assertion that science has no a consensus supporting an all-fields view. Such a consensus claim on objective reality.6 According to the popular televi- would make it easier to resolve other quantum issues. But sion physician Deepak Chopra, “quantum healing” can cure fields-versus-particles is still alive and kicking, as you can all our ills by the application of mental power.7 Chopra’s see by noting that “quantum field theory” (QFT) and book Ageless Body, Timeless Mind, a New York Times “particle physics” are interchangeable names for the same Bestseller that sold over two million copies worldwide, is discipline! And there’s a huge gap between the views of subtitled The Quantum Alternative to Growing Old.8 Quan- leading quantum physicists on the one hand; (Refs. 10–18) tum Enigma, a highly advertised book from Oxford Univer- and virtually every quantum physics textbook on the other sity Press that’s used as a textbook in liberal arts physics hand. courses at the University of California and elsewhere, bears Physicists are schizophrenic about fields and particles. At the sub-title Physics Encounters Consciousness.9 It is the high-energy end, most quantum field theorists agree for indeed scandalous when librarians and book store managers good reasons (Secs. III, V, and VI) that relativistic quantum wonder whether to shelve a book under “quantum physics,” physicsisaboutfieldsandthatelectrons,photons,andsoforth “religion,” or “new age.” For further documentation of this aremerelyexcitations(waves)inthefundamentalfields.Butat point, see the Wikipedia article “Quantum mysticism” and thelow-energyend,mostNRQPeducationandpopulartalkis referencestherein. about particles. Working physicists, teachers, and NRQP 211 Am.J.Phys.81(3),March2013 http://aapt.org/ajp VC 2013AmericanAssociationofPhysicsTeachers 211 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission textbookstreatelectrons,photons,protons,atoms,etc.aspar- Hegerfeldt showing that, even if we assume a very broad ticlesthatexhibitparadoxicalbehavior.YetNRQPisthenon- definitionof“particle”(namely,thataparticleshouldextend relativisticlimitofthebroaderrelativistictheory,namelyQFT, over only a finite, not infinite, region), particles contradict which for all the world appears to be about fields. If QFT is relativistic quantum physics. Section VI argues that quan- aboutfields,howcanitsrestrictiontononrelativisticphenom- tizedfieldsimplyaquantumvacuumthatcontradictsanall- enabeaboutparticles?Doinfinitelyextendedfieldsturninto particlesviewwhileconfirmingthefieldview.Furthermore, boundedparticlesastheenergydrops? two vacuum effects—the Unruh effect and single-quantum Asan exampleofthefield/particle confusion, thetwo-slit nonlocality—implyafieldview.Thus,manylinesofreason- experimentis often considered paradoxical, and itis a para- ing contradict the particles view and confirm the field view. doxifoneassumesthattheuniverseismadeofparticles.For SectionVIIsummarizestheconclusions. Richard Feynman, this paradox was unavoidable. Feynman was a particles guy. As Frank Wilczek put it, “uniquely (so II. AHISTORYOFCLASSICALFIELDS far as I know) among physicists of high stature, Feynman hoped to remove field-particle dualism by getting rid of the Fieldsareoneofphysics’mostplausiblenotions,arguably fields.”16 As a preface to his lecture about this experiment, more intuitively credible than point-like particles drifting in Feynmanadvisedhisstudents, empty space. It’s perhaps surprising that, despite the com- plete absence of fields from Isaac Newton’s Principia (1687), Newton’s intuition told him the universe is filled Do not take the lecture too seriously, feeling that withfields.InanexchangeofletterswithReverendRichard you really have to understand in terms of some BentleyexplainingthePrincipiainnon-scientists’language, model what I am going to describe, but just relax Newtonwrote: and enjoy it. I am going to tell you what nature behaves like. If you will simply admit that maybe It is inconceivable that inanimate brute matter she does behave like this, you will find her a should, without the mediation of something else delightful, entrancing thing. Do not keep saying to whichisnotmaterial,operateuponandaffectother yourself,ifyoucanpossiblyavoidit,“Buthowcan matterwithoutmutualcontact…Thatgravityshould it be like that?” because you will get “down the be innate, inherent, and essential to matter, so that drain,”intoablindalleyfromwhichnobodyhasyet onebodymayactuponanotheratadistancethrough escaped.Nobodyknowshowitcanbelikethat.23 avacuum,withoutthemediationofanythingelse,by and through which their action and force may be There are many interpretational difficulties with the two- conveyedfrom onetoanother, is tomesogreatan slitexperiment,andI’mnotgoingtosolveallofthemhere. absurdity that I believe no man who has in But the puzzle of wave-particle duality in this experiment philosophicalmattersacompetentfacultyofthinking can be resolved by switching to an all-fields perspective caneverfallintoit.24 (Sec.IV). Physics education is affected directly, and scientific liter- ButNewton couldn’tfindempiricalevidence tosupporta acy indirectly, by what textbooks say about wave-particle causalexplanationofgravity,andanyexplanationremained duality and related topics. To find out what textbooks say, I purely hypothetical. When writing or speaking of a possible perused the 36 textbooks in my university’s library having underlyingmechanismforgravity,hechosetoremainsilent, the words “quantum mechanics” in their title and published firmly maintaining “I do not feign hypotheses” (Ref. 18, after1989.Ofthese,30impliedauniversemadeofparticles p. 138). Thus, it was generally accepted by the beginning of that sometimes act like fields, 6 implied the fundamental the 19th century that a fundamental physical theory would constituentsbehavedsometimeslikeparticlesandsometimes containequationsfordirectforces-at-a-distancebetweentiny like fields, and none viewed the universe as made of fields indestructible atoms moving through empty space. Before thatsometimesappear tobe particles.Yettheleadingquan- long, however, electromagnetism and relativity would shift tum field theorists argue explicitly for the latter view (Refs. theemphasisfromaction-at-a-distancetofields. 10–18).Something’samisshere. TheshiftwaslargelyduetoMichaelFaraday(1791–1867). Thepurposeofthispaperistoassemblethestrandsofthe Working about 160 years after Newton, he introduced the fields-versus-particlesdiscussioninordertohastenaconsen- modernconceptoffieldsaspropertiesofspacehavingphysi- sus that will resolve the wave-particle paradoxes while caleffects.25Faradayarguedagainstaction-at-a-distance,pro- bringing the conceptual structure of quantum physics into posing instead that interactions occur via space-filling “lines agreementwiththerequirementsofspecialrelativityandthe offorce”andthatatomsaremereconvergencesoftheselines views of leading quantum field theorists. Section II argues of force. He recognized that a demonstration of non- that Faraday, Maxwell, and Einstein viewed classical elec- instantaneous electromagnetic (EM) interactions would be tromagnetismasafieldphenomenon.SectionIIIarguesthat fatal to action-at-a-distance because interactions would then quantumfieldtheorydevelopedfromclassicalelectrodynam- proceedgraduallyfromonebodytothenext,suggestingthat ics and then extended the quantized field notion to matter. some physical process occurred in the intervening space. He Quantization introduced certain particle-like characteristics, sawlinesofforceasspace-fillingphysicalentitiesthatcould namely, individual quanta that could be counted, but the move,expand,andcontract.Heconcludedthatmagneticlines theory describes these quanta as extended disturbances in offorce,inparticular,arephysicalconditionsof“merespace” space-filling fields. Section IV analyzes the two-slit experi- (i.e., space containing no material substance). Today this ment to illustrate the necessity for an all-fields view of descriptionoffieldsas“conditionsofspace”isstandard.26 NRQP. The phenomena and the theory lead to paradoxes if James Clerk Maxwell (1831–1879) was less visionary, interpreted in terms of particles but are comprehensible in more Newtonian, and more mathematical than Faraday. By termsoffields.SectionVpresentsarigoroustheoremdueto invoking a mechanical ether that obeyed Newton’s laws, he 212 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 212 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission brought Faraday’s conception of continuous transmission of ofspace-timeandtotheright-handsideas“ahovelofwood” forces rather thaninstantaneousaction-at-a-distance intothe becauseitrepresentsaconditionofmatter. philosophical framework of Newtonian mechanics. Thus Thusby1915classicalphysicsdescribedallknownforces Faraday’s lines of force became the state of a material me- in terms of fields—conditions of space—and Einstein dium,“theether,”muchasavelocityfieldisastateofama- expresseddissatisfactionthatmattercouldn’tbedescribedin terial fluid. He found the correct dynamical field equations thesameway. for EM phenomena, consistent with all known experimental results. His analysis led to the predictions of (1) a finite III. AHISTORYANDDESCRIPTIONOFQUANTUM transmission time for EM actions, and (2) light as an EM FIELDS field phenomenon. Both were later spectacularly confirmed. Despite the success of his equations, and despite the non- FromtheearlyGreekandRomanatomiststoNewtontosci- appearanceofetherintheactualequations,Maxwellinsisted entistssuchasDalton,RobertBrown,andRutherford,themi- throughout his life that Newtonian mechanical forces in the croscopicviewofmatterwasalwaysdominatedbyparticles. ether produce all electric and magnetic phenomena, a view Thus,thenonrelativisticquantumphysicsofmatterthatdevel- that differed crucially from Faraday’s view of the EM field opedinthemid-1920swascouchedinparticlelanguage,and asastateof“merespace.” quantumphysicswascalled“quantummechanics”inanalogy Experimental confirmations of the field nature of light, with the Newtonian mechanics of indestructible particles in and of a time delay for EM actions, were strong confirma- emptyspace.30Butironically,thecentralequationofthequan- tions of the field view. After all, light certainly seems real. tum physics of matter, the Schr€odinger equation, is a field And a time delay demands the presence of energy in the equation.Ratherthananobviousrecipeforparticlemotion,it intervening space in order to conserve energy. That is, if appearstodescribeatime-dependentfieldW(x,t)throughouta energyisemittedhereandnow,andreceivedthereandlater, spatial region. Nevertheless, this field picked up a particle thenwhereisitinthemeantime?Clearly,it’sinthefield.27 interpretation when Max Born proposed that W(x ,t) is the 0 FaradayandMaxwellcreatedoneofhistory’smosttelling probability amplitude that, upon measurement at time t, the changesinourphysicalworldview:thechangefromparticles presumedparticle“willbefound”atthepointx .Anothersug- 0 tofields.AsAlbertEinsteinputit,“BeforeMaxwell,Physical gestion,stillinaccordwiththeCopenhageninterpretationbut Reality…wasthoughtofasconsistinginmaterialparticles…. lessconfining,wouldbethatW(x ,t)istheprobabilityampli- 0 Since Maxwell’s time, Physical Reality has been thought of tudeforaninteractiontooccuratx .ThispreservestheBorn 0 asrepresentedbycontinuousfields,…andnotcapableofany rulewhileallowingeitherafieldorparticleinterpretation. mechanical interpretation. This change in the conception of Inthelate1920s,physicistssoughtarelativistictheorythat Realityisthemostprofoundandthemostfruitfulthatphysics incorporated quantum principles. EM fields were not hasexperiencedsincethetimeofNewton.”28 described by the nonrelativistic Schr€odinger equation; they As the preceding quotation shows, Einstein supported a spread at the speed of light, so any quantum theory of them “fields are all there is” view of classical (but not necessarily mustberelativistic.Suchatheorymustalsodescribeemission quantum)physics.He putthefinal logical touch onclassical (creation) and absorption (destruction) of radiation. Further- fieldsinhis1905paperproposingthespecialtheoryofrelativ- more, NRQP says energy spontaneously fluctuates, and SR ity, where he wrote “The introduction of a “luminiferous” (E mc2)saysmattercanbecreatedfromnon-materialforms etherwillprovetobesuperfluous.”29ForEinstein,therewas ofe¼nergy,soarelativisticquantumtheorymustdescribecrea- no material ether to support light waves. Instead, the tionanddestructionofmatter.Schr€odinger’sequationneeded “medium”forlightwasspaceitself.Thatis,forEinstein,fields tobegeneralizedtoincludesuchphenomena.QFTs,described arestatesorconditionsofspace.Thisisthemodernview.The intheremainderofthissection,arosefromtheseefforts. implication of special relativity (SR) that energy has inertia furtherreinforcesbothEinstein’srejectionoftheetherandthe A. Quantizedradiationfields significanceoffields.Sincefieldshaveenergy,theyhaveiner- tia and should be considered “substance like” themselves “Howcananyphysicistlookatradioormicrowaveanten- ratherthansimplystatesofsomesubstancesuchasether. nasandbelievetheyweremeanttocaptureparticles?”31It’s The general theory of relativity (1916) resolves Newton’s implausible that EM signals transmit from antenna to dilemma concerning the “absurdity” of gravitational action- antenna by emitting and absorbing particles; how do anten- at-a-distance. According to general relativity, the universe is nas “launch” or “catch” particles? In fact, how do signals full of gravitational fields, and physical processes associated propagate? Instantaneous transmission is ruled out by the withthisfieldoccureveninspacethatisfreefrommatterand evidence. Delayed transmission by direct action-at-a-dis- EMfields.Einstein’sfieldequationsofgeneralrelativityare tancewithoutaninterveningmediumhasbeentriedintheory and found wanting.32 The 19th-century answer was that R x 1=2 g x R x T x ; (1) transmission occurs via the EM field. Quantum physics pre- lvð Þ#ð Þ lvð Þ ð Þ ¼ lvð Þ serves this notion, while “quantizing” the field. The field where x represents space-time points, l and ! run over the itselfremainscontinuous,fillingallspace. fourdimensions,g (x)isthemetrictensorfield,R (x)and The first task in developing a relativistic quantum theory l! l! R(x)aredefinedintermsofg (x),andT (x)istheenergy- wastodescribeEMradiation—aninherentlyrelativisticphe- l! l! momentum tensor of matter. These field (because they hold nomenon—in a quantum fashion. So it’s not surprising that ateveryx)equationsrelatethegeometryofspace-time(left- QFT began with a quantum theory of radiation.33–35 This hand side) to the energy and momentum of matter (right- problemwasgreatlysimplifiedbytheLorentzcovarianceof hand side). The gravitational field is described solely by the Maxwell’s equations: they satisfy SR by taking the same metrictensorg (x).Einsteinreferredtotheleft-handsideof form in every inertial reference frame. Maxwell was lucky, l! Eq.(1)as“apalaceofgold”becauseitrepresentsacondition orbrilliant,inthisregard. 213 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 213 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission A straightforward approach to the quantization of the W . But the Hilbert space for such states cannot have the j i “free” (no source charges or currents) EM field begins with same structure as for the single-body Schr€odinger equation, theclassical vectorpotential fieldA(x,t)fromwhichwecan or even its N-body analog, because N must be allowed to calculate E(x,t) and B(x,t).36 Expanding this field in the set vary in order to describe creation and destruction of quanta. of spatial fields exp(6ik x) (orthonormalized in the delta- So the radiation field’s quantum states exist in a Hilbert ! function sense for large spatial volumes) for each vector k space of variable N, called “Fock space.” Fock space is the havingpositivecomponents,wewrite (direct) sum of N-body Hilbert spaces for N 0, 1, 2, 3,… ¼ Each component N-body Hilbert space is the properly sym- A x;t a k;t exp ik x a’ k;t exp ik x : metrized (for bosons or fermions) product of N single-body ð Þ¼ ½ ð Þ ð ! Þ þ ð Þ ð( ! Þ) k Hilbert spaces. Each normalized component has its own X (2) complex amplitude, and the full state W is (in general) a j i superpositionofstateshavingdifferentnumbersofquanta. ThefieldequationforA(x,t)thenimpliesthateachcoefficient AnimportantfeatureofQFTistheexistenceofavacuum a(k,t) satisfies a classical harmonic oscillator equation. One state 0 ,aunitvectorinFockspace(whichmustnotbecon- regards these equations as the equations of motion fora me- fusedjwiith the zero vector, whose length is zero), having no chanicalsystemhavinganinfinitenumberofdegreesoffree- quanta (N 0 for all k). Each mode’s vacuum state has dom, and quantizes this classical mechanical system by energyhf /k2¼.Thevacuumstatemanifestsitselfexperimentally k assumingthea(k,t)areoperatorsa (k,t)satisfyingappropriate inmanyways,whichwouldbecuriousifparticleswerereally op commutation relations and the a*(k,t) are their adjoints. The fundamental because there are no particles (quanta) in this resultisthatEq.(2)becomesavectoroperator-valuedfield, state.We’llexpandonthisparticularargumentinSect.VI. TheoperatorfieldofEq.(3),likeotherobservablessuchas Aopðx;tÞ¼ ½aopðk;tÞexpðik!xÞþa’opðk;tÞexpðik!xÞ); energy,operatesonjWi,creatinganddestroyingphotons.For k example,theexpectedvalueofthevectorpotentialisavector- X (3) valued relativistic field A(x,t) A (x,t) WA (x,t) W , ¼h op i¼h j op j i anexpressioninwhichA (x,t)operateson W .Weseeagain op j i in which the amplitudes a* (k,t) and a (k,t) of the kth thatA (x,t)isactuallyaphysicallymeaningfulfieldbecause op op op “field mode” satisfy the Heisenberg equations of motion (in ithasaphysicallymeasurableexpectationvalueateverypoint whichthetimedependenceresidesintheoperatorswhilethe xthroughoutaregionofspace.Soaclassicalfieldthatisquan- system’squantumstate W remainsfixed)forasetofquan- tizeddoesnotceasetobeafield. j i tum harmonic oscillators. For bosons, one can show that Some authors conclude, incorrectly, that the countability a* and a are the familiar raising and lowering operators of quanta implies a particle interpretation of the quantized op op from the harmonic oscillator problem in NRQP, satisfying system.38Discretenessisanecessarybutnotsufficientcondi- the same commutation relation. Hence, A (x,t) is now an tionforparticles.Quantaarecountable,buttheyarespatially op operator-valued field whose dynamics obey quantum extended and certainly not particles. Equation (3) implies physics. Since the classical field obeyed SR, the quantized thatasinglemode’sspatialdependenceissinusoidalandfills fieldsatisfiesquantumphysicsandSR. allspace,sothataddingamonochromaticquantumtoafield Thus,asintheharmonicoscillatorproblem,thekthmode uniformly increases the entire field’s energy (uniformly dis- has an infinite discrete energy spectrum hf (N 1/2) with tributed throughout all space!) by hf. This is nothing like N 0,1,2,…,wheref ck/2pisthemokde’skfþrequency.37 addingaparticle.Quantathataresuperpositionsofdifferent k¼ k¼ j j As Max Planck had hypothesized, the energy of a single frequencies can be more spatially bunched and in this sense mode has an infinite spectrum of discrete possible values morelocalized,buttheyarealwaysofinfiniteextent.Soit’s separated by DE hf . The integer N is the number of hardtoseehowphotonscouldbeparticles. ¼ k k Planck’s energy bundles or quanta in the kth mode. Each Phenomena such as “particle” tracks in bubble chambers, quantum is called an “excitation” of the field, because its andthesmallspotappearingonaviewingscreenwhenasin- energy hf represents additional field energy. EM field glequantuminteractswiththescreen,areoftencitedasevi- k quanta are called “photons,” from the Greek word for light. dence that quanta are particles, but these are insufficient Adistinctlyquantumaspectisthat,eveninthevacuumstate evidence of particles39,40(see Sec. IV).In the case of radia- where N 0, each mode has energy hf /2. This is because tion, it’s especially difficult to argue that the small interac- k¼ k the individual modes act like quantum harmonic oscillators, tion points are evidence that a particle impacted at that andthesemusthaveenergyeveninthegroundstatebecause position because photons never have positions–position is of the uncertainty principle. Another quantum aspect is that not an observable and photons cannot be said to be “at” or EMradiationis“digitized”intodiscretequantaofenergyhf. “found at” any particular point.41–45 Instead, the spatially Youcan’thaveafractionofaquantum. extendedradiationfieldinteractswiththescreeninthevicin- Becauseitdefinesanoperatorforeverypointxthroughout ity of the spot, transferring one quantum of energy to the space, the operator-valued field Eq. (3) is properly called a screen. “field.”Notethat,unliketheNRQPcase,xisnotanoperator but rather a parameter, putting x on an equal footing with t B. Quantizedmatterfields as befits a relativistic theory. For example, we can speak of theexpectationvalueofthefieldA atxandt,butwecan- QFT puts matter on the same all-fields footing as radia- op not speak of the expectation value of x because x is not an tion.Thisisabigsteptowardunification.Infact,it’sagen- observable. Thisisbecause fieldsareinherently extendedin eralprincipleofallQFTsthatfieldsareallthereis.10–21For spaceanddon’thavespecificpositions. example the Standard Model, perhaps the most successful But what does the operator field Eq. (3) operate on? Just scientific theory of all time, is a QFT. But if fields are all asinNRQP,operatorsoperateonthesystem’squantumstate there is, where do electrons and atoms come from? QFT’s 214 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 214 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission answer is that they are field quanta, but quanta of matter physics,it’snowonderthatittookmostofthe20thcentury fieldsratherthanquantaofforcefields.46 tocometogripswiththefieldnatureofquantumphysics. “Fields are all there is” suggests beginning the quantum Were it not for Newtonian preconceptions, quantum theoryofmatterfromSchr€odinger’sequation,whichmathe- physics might have been recognized as a field theory by maticallyisafieldequationsimilartoMaxwell’sfieldequa- 1926(Schr€odinger’sequation)or1927(QFT).Thesuperpo- tions, and quantizing it. But you can’t create a relativistic sitionprincipleshouldhavebeenadeadgiveaway:Asumof theory (the main purpose of QFT) this way because quantum states is a quantum state. Such superposition is Schr€odinger’s equation is not Lorentz covariant. Dirac characteristicofalllinearwavetheoriesandatoddswiththe invented, for just this purpose, a covariant generalization of generallynonlinearnatureofNewtonianparticlephysics. Schr€odinger’sequationforthefieldW(x,t)associatedwitha A benefit of QFTs is that quanta of a given field must be singleelectron.47Itincorporatestheelectron’sspin,accounts identical because they are all excitations of the same field, for the electron’s magnetic moment, and is more accurate somewhatastworipplesonthesamepondareinmanyways than Schr€odinger’s equation in predicting the hydrogen identical. Because a single field explains the existence and atom’s spectrum. It, however, has undesirable features such nature of gazillions of quanta, QFTs represent an enormous as the existence of non-physical negative-energy states. unification. The universal electron-positron field, for exam- These can be overcome by treating Dirac’s equation as a ple,explainstheexistenceandnatureofallelectronsandall classical field equation for matter analogous to Maxwell’s positrons. equations for radiation, and quantizing it in the manner out- When a field changes its energy by a single quantum, it lined in Sec. IIIA. The resulting quantized matter field must do so instantaneously, because a non-instantaneous W (x,t) is called the “electron-positron field.” It’s an change would imply that, partway through the change, the op operator-valued field operating in the anti-symmetric Fock field had gained or lost only a fraction of a quantum. Such space. Thus the non-quantized Dirac equation describes a fractions are not allowed because energy is quantized. Field matterfieldoccupyingananalogousroleintheQFTofmat- quanta have an all-or-nothing quality. The QFT language of ter to the role of Maxwell’s equations in the QFT of radia- creation and annihilation of quanta expresses this nicely. A tion.12,45 The quantized theory of electrons comes out quantum is a unified entity even though its energy might be looking similar to the preceding QFT of the EM field, but spread out over light years—a feature that raises issues of withmaterialquantaandwithfieldoperatorsthatnowcreate nonlocalityintrinsictothequantumpuzzle. ordestroythesequantainquantum-antiquantumpairs.36 “Fieldsareallthereis”shouldbeunderstoodliterally.For It’s not difficult to show that standard NRQP is a special example,it’sacommonmisconceptiontoimagineatinypar- case, for nonrelativistic material quanta, of relativistic ticleimbeddedsomewhereintheSchr€odingerfield.Thereis QFT.36Thus,theSchr€odingerfieldisthenonrelativisticver- noparticle.Anelectronisitsfield. sion of the Dirac equation’s relativistic field. It follows that As is well known, Einstein never fully accepted quantum the Schr€odinger matter field, the analog of the classical EM physics, and spent the last few decades of his life trying to field, is a physical, space-filling field. Just like the Dirac explain all phenomena, including quantum phenomena, in field,thisfieldistheelectron. terms of a classical field theory. Nevertheless, and although Einstein would not have agreed, it seems to me that QFT achieves Einstein’s dream to regard nature as fields. QFT promotestheright-handsideofEq.(1)tofieldstatus.Butit C. Furtherpropertiesofquantumfields is not yet a “palace of gold” because Einstein’s goal of Thus the quantum theory of electromagnetic radiation is a explainingallfieldsentirelyintermsofzero-rest-massfields re-formulation of classical electromagnetic theory to account such as the gravitational field has not yet been achieved, for quantization—the “bundling” of radiation into discrete although the QFT of the strong force comes close to this quanta.Itremains,liketheclassicaltheory,afieldtheory.The goalof“masswithoutmass.”13,16,17 quantumtheoryofmatterintroducestheelectron-positronfield and a new field equation, the Dirac equation, the analog for matter of the classical Maxwell field equations for radiation. IV. THETWO-SLITEXPERIMENT Quantization of the Dirac equation is analogous to quantiza- A. Phenomena tion of Maxwell’s equations, and the result is the quantized electron-positronfield.TheSchr€odingerequation,thenonrela- Field-particle duality appears most clearly in the context tivisticversionofthe Diracequation,isthusa fieldequation. of the time-honored two-slit experiment, which Feynman There are no particles in any of this; there are only field claimed “contains the only mystery.”48,49 Figures 1 and 2 quanta—excitationsofspatiallyextendedcontinuousfields. show the outcome of the two-slit experiment using a dim Foroverthreedecades,theStandardModel—aQFT—has light beam (Fig. 1) and a “dim” electron beam (Fig. 2) as been our best theory of the microscopic world. It’s clear sources,withtime-lapsephotography.Theset-upisasource from the structure of QFTs (Secs. IIIA and IIIB) that they emitting monochromatic light (Fig. 1)50 or mono-energetic actually are field theories, not particle theories in disguise. electrons(Fig.2),51anopaquescreenwithtwoparallelslits, Nevertheless,I’llofferfurtherevidencefortheirfieldnature andadetectionscreenwithwhichthebeamcollides.Inboth hereandinSecs.VandVI. figures,particle-likeimpactsbuilduponthedetectionscreen Quantumfieldshaveoneparticle-likepropertythatclassi- to form interference patterns. The figures show both field cal fields don’t have: They are made of countable quanta. aspects (the extended patterns) and particle aspects (the Thusquantacannotpartlyvanishbutmust(likeparticles)be localizedimpacts).Thesimilaritybetweenthetwofiguresis entirely and instantly created or destroyed. Quanta carry strikingandindicatesafundamentalsimilaritybetweenpho- energy and momenta and can thus “hit like a particle.” Fol- tons and electrons. It’s intuitively hard to believe that one lowing three centuries of particle-oriented Newtonian figurewasmadebywavesandtheotherbyparticles. 215 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 215 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission Fig.1.Thetwo-slitexperimentoutcomeusingdimlightwithtime-lapsephotography.Insuccessiveimages,aninterferencepatternbuildsupfromparticle- likeimpacts.(ImagescourtesyofWolfgangRueckner,HarvardUniversityScienceCenter.SeeRef.50.) Consider,first,theextendedpattern.It’seasytoexplainif teristic of the detector, which is made of localized atoms, each quantum (photon or electron) is an extended field that rather than of the detected quanta. The detection, however, comes through both slits. But could the pattern arise from localizes(“collapses”—Secs.IVBandIVC)thequantum. particles? The experiments can be performed using an en- Similarargumentsapplytotheobservationofthinparticle semble of separately emitted individual quanta, implying tracksinbubblechambersandotherapparentparticledetec- thattheresultscannotarisefrominteractionsbetweendiffer- tions. Localization is characteristic of the detection process, entquanta.52Preparationisidenticalforallthequantainthe notofthequantumthatisbeingdetected. ensemble. Thus, given this particular experimental context ThustheinterferencepatternsinFigs.1and2confirmfield (namely,thetwo-slitexperimentwithbothslitsopen,node- behaviorandruleoutparticlebehavior,whilethesmallinter- tector at the slits, and a “downstream” screen that detects action points neither confirm particle behavior nor rule out each ensemble member), each quantum mustcarryinforma- field behavior. The experiment thus confirms field behavior. tion about the entire pattern that appears on the screen (in As Dirac famously put it in connection with experiments of order, e.g., to avoid all the nodes). In this sense, each quan- thetwo-slittype,“Thenewtheory[namelyquantummechan- tumcanbesaidtobespreadoutoverthepattern. ics], which connects the wave function with probabilities for Ifwecloseoneslit,thepatternshiftstothesingle-slitpat- onephoton,getsoverthedifficulty[ofexplainingtheinterfer- ternbehindtheopenslit,showingnointerference.Thuseach ence] by making each photon go partly into each of the two quantumcarriesdifferentinformationdependingonwhether components. Each photon then interferes only with itself.”54 twoslitsareopenorjustone. (Thephrasesinsquarebracketsaremine,notDirac’s.) How does one quantum get information as to how many Given the extended field nature of each electron, Fig. 2 slits are open? If a quantum is a field that is extended over also confirms von Neumann’s famous collapse postulate:55 both slits, there’s no problem. But could a particle coming Eachelectroncarriesinformationabouttheentirepatternand through just one slit obtain this information by detecting collapses to a much smaller region upon interaction. Most physical forces from the other, relatively distant, slit? The textbookssetupaparadoxbyexplicitlyorimplicitlyassum- effect is thesame for photonsandelectrons, andthe experi- ingeach quantum to come through oneor theother slit,and menthasbeendonewithneutrons,atoms,andmanymolecu- then struggle to resolve the paradox. But if each quantum lartypes,makingitdifficulttoimaginegravitational,EM,or comesthroughbothslits,there’snoparadox. nuclear forces causing such a long-distance force effect. What more direct evidence could therebe that aquantum is B. Theory,attheslits anextendedfield?Thuswecannotexplaintheextendedpat- terns by assuming each quantum is a particle, but we can Now assume detectors are at each slit so that a quantum explainthepatternsbyassumingeachquantumisafield.53 passingthroughslit1(withslit2closed)triggersdetector1, Now consider the particle-like small impact points. We andsimilarly forslit2.Let w and w ,whichweassume 1 2 j i j i can obviously explain these if quanta are particles, but can form an orthonormal basis for the quantum’s Hilbert space, weexplainthemwithfields?Theflashesseeninbothfigures denotethestatesofaquantumpassingthroughslit1withslit are multi-atom events initiated by interactions of a single 2 closed, and through slit 2 with slit 1 closed, respectively. quantum with the screen. In Fig. 2, for example, each elec- Weassume,withvonNeumann,thatthedetectoralsoobeys tron interacts with a portion of a fluorescent film, creating quantum physics, with ready denoting the “ready” state of j i some 500 photons; these photons excite a photo cathode, thedetectors,and 1 and 2 denotingthe“clicked”statesof j i j i producing photo-electrons that are then focused into a point each detector. Then the evolution of the composite quan- imagethatisdisplayedonaTVmonitor.51Thisshowsthata tum detectorsystem,whenthequantumpassesthroughslit þ quantumcaninteractlocallywithatoms,butitdoesn’tshow ialone(withtheotherslitclosed),isoftheform w ready i j ij i thatquantaarepointparticles.Alargeobject(abigballoon, w i (i 1,2)(assuming,withvonNeumann,thatthese i !j iji ¼ say)caninteractquitelocallywithanotherobject(atinynee- are “ideal” processes that don’t disturb the state of the dle, say). The localization seen in the two figures is charac- quantum).56,57 216 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 216 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission With both slits open, the single quantum approaching the slits is described by a superposition that’s extended over bothslits: w w =!2 w : (4) ðj 1iþj 2iÞ $j i Linearity of the time evolution implies that the composite system’sevolutionduringdetectionattheslitsis jw1ijreadyi!ðjw1ij1iþjw2ij2iÞ=!2$jWslitsi: (5) The“measurementstate” W involvesbothspatiallydis- j slitsi tinguishabledetectorstates j .Itisa“Bellstate”ofnonlocal ji entanglement between the quantum and the detector (Ref. 57, pp. 29, 32). If the detectors are reliable, there must be zeroprobabilityoffindingdetectoriinthestate i whende- ji tectorj iisinitsclickedstate j ,so 1 and 2 areorthog- 6¼ ji j i j i onalandweassumetheyarenormalized. It’smathematicallyconvenienttoformthepurestateden- sityoperator qslits $jWslitsihWslitsj; (6) and to form the reduced density operator for the quantum alonebytracingoverthedetector: qqslits ¼TrdetectorðqslitsÞ¼ðjw1ihw1jþjw2ihw2jÞ=2: (7) Equation (7) has a simple interpretation: Even though the quantum is in the entangled superposition of Eq. (5), the result of any experiment involving the quantum alone will comeoutpreciselyasthoughthequantumwereinoneofthe pure states w or w with probabilities of 1/2 for each 1 2 state.57 In pajrticiular,jEqi. (7) predicts that the quantum does not interfere with itself, i.e., there are no interferences between w and w . This of course agrees with observa- 1 2 j i j i tion: When detectors provide “which path” information, the interference pattern (i.e., the evidence that the quantum came through both slits) vanishes. The quantum is said to “decohere”57or“collapse”toasingleslit. To clearly see the field nature of the measurement, sup- posethereisa“whichslit”detectoronlyatslit1withnode- tector at slit 2. Then w ready w i holds only for j ii j i ! j ii ji i 1, while for i 2 we have w ready w ready . ¼ ¼ j 2i j i ! j 2i j i Thepreviousanalysisstillholds,providedthe“clicked”state 1 is orthogonal to the unclicked state ready (i.e., if the j i j i twostatesaredistinguishablewithprobability1).Thesuper- position Eq. (4) evolves just as before, and Eq. (7) still describes the quantum alone just after measurement. So the experiment is unchanged by removal of one slit detector. Eventhoughthereisnodetectoratslit2,whenthequantum comesthroughslit2itstillencodesthepresenceofadetec- Fig.2.Thetwo-slitexperimentoutcomeusinga“dim”electronbeamwith toratslit1.Thisbehaviorisnonlocal,andittellsusthatthe time-lapse photography. As in Fig. 1, an interference pattern builds up fromparticle-likeimpacts(ReprintedwithpermissionfromA.Tonomura, quantum extends over both slits, i.e., the quantum is a field, J. Endo, T. Matsuda, T. Kawasaki, and H. Exawa, Am. J. Phys. 57(2), notaparticle. 117–120 (1989).Copyright # 1989 American Association of Physics Thustheexperiment(Sec.IVA)andthetheorybothimply Teachers) that each quantum comes through both slits when both slits areopenwithnodetectors,butthroughoneslitwhenthereis a detector at either slit, just as we expect a field (but not a particle)todo. 217 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 217 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission C. Theory,atthedetectingscreen V. RELATIVISTICQUANTUMPHYSICS We’llseethattheaboveanalysisattheslitscarriesoverat NRQP (Sec. IV) is not the best basis for analyzing field- thedetectingscreen,withthescreenactingasdetector. particle duality. The spontaneous energy fluctuations of Thescreenisanarrayofsmallbutmacroscopicdetectors quantumphysics,plusSR’sprincipleofmass-energyequiva- such as single photographic grains. Suppose one quantum lence, imply that quanta, be they fields or particles, can be describedbyEq.(4)passesthroughtheslitsandapproaches createdordestroyed.Sincerelativisticquantumphysicswas the screen. Expanding in position eigenstates, just before invented largely to deal with such creation and destruction, interactingwiththescreenthequantum’sstateis one might expect relativistic quantum physics to offer the deepestinsightsintofieldsandparticles. Quantum physics doesn’t fit easily into a special- w x dx xw x w x dx; (8) j i¼ j i h j i¼ j i ð Þ relativisticframework.Asoneexample,wesawinSec.IIIA ð ð that photons (relativistic phenomena for sure) cannot be where the integral is over the two-dimensional screen, and quantum point particles because they don’t have position w(x) is the Schr€odinger field. Equation (8) is a (continuous) eigenstates. superposition over position eigenstates, just as Eq. (4) is a A more striking example is nonlocality, a phenomenon (discrete)superpositionoversliteigenstates.Bothsuperposi- shownbyEinstein,Podolsky,andRosen,59andmorequanti- tionsareextendedfields. tativelybyJohnBell,60toinhereinthequantumfoundations. Rewriting Eq. (8) in a form that displays the quantum’s Using Bell’s inequality, Aspect, Clauser, and others showed superpositionoverthenon-overlappingdetectionregions, experimentallythatnatureisnonlocalandthatthiswouldbe trueevenifquantumphysicswerenottrue.61Theimplication isthat,byalteringthewayshemeasuresoneofthequantain w x w x dx A w ; (9) j i¼ j i ð Þ $ i ij ii anexperimentinvolvingtwoentangledquanta,AliceinNew i ði X X York City can instantly (i.e.,in a time too shortto allowfor where w (1/A) x w(x)dx and A [ w(x)2dx]1/2. signalpropagation)changetheoutcomesobservedwhenBob j ii$ i i j i i $ i j j The detection regions are labeled by i and the w form an measurestheotherquantuminParis.Thissoundslikeitvio- orthonormalset.EqÐuation(9)isanalogoustoÐEqj.(4ii). latesthespecial-relativistic prohibitiononsuper-luminalsig- The detection process at the screen is represented by the naling,butquantumphysicsmanagestoavoidacontradiction analogofEq.(5): by camouflaging the signal so that Alice’s measurement choiceis“averagedout”inthestatisticsofBob’sobservations jwijreadyi! Aijwiijii$jWscreeni; (10) ihnissuexchpearimwaeynt.t6h2atTBhuosbBdeotbecrtesceniovecshannogesiginnatlh,eesvteantistthicosugohf i X nonlocality changes his observed results. Quantum physics’ where i represents the “clicked” state of the ith detecting particular mixture of uncertainty and nonlocality preserves region,jiwhose output can be either “detection” or “no consistencywithSR.It’sonlywhenAliceandBoblatercom- detection”ofthequantum.Localizationoccursatthetimeof pare their data that they can spot correlations showing that thisclick.Eachregionirespondsbyinteractingornotinter- Alice’schangeofmeasurementprocedurealteredBob’sout- acting, with just one region registering an interaction comes. Quantum physics must thread a fine needle, being because a quantum must give up all, or none, of its energy. “weaklylocal”inordertopreventsuperluminalsignalingbut, As we’ll see in Sec. VIC, these other sections of the screen inordertoallowquantumnonlocality,not“stronglylocal.”62 actuallyregisterthevacuum—aphysicalstatethatcanentan- Quantumfieldspreadingcantransmitinformationandislim- gle nonlocally with the registered quantum. The nonlocality itedbythespeedoflight,whilenonlocaleffectsarerelatedto inherent in the entangled superposition state W has superluminal field collapse and cannot transmit information been verified by Bell-type measurements (Secj. sVcrIeeCni). As lesttheyviolateSR. wasthecasefordetectionattheslits(Eq.(5)),Eq.(10)rep- When generalizing NRQP to include such relativistic resents the mechanism by which the macro world registers quantum phenomena as creation and destruction, conflicts thequantum’simpactonthescreen. with SR can arise unless one proceeds carefully. Heger- The argument from Eq. (10) goes through precisely like feldt63andMalament64haveeachpresentedrigorous“no-go the argument from Eq. (5) to Eq. (7). The result is that, theorems”demonstratingthat,ifoneassumesauniversecon- assuming the states i are reliable detectors, the reduced taining particles, then the requirements of SR and quantum ji densityoperatorforthequantumaloneis physicsleadtocontradictions.Thissupportsthe“widespread (withinthephysicscommunity)beliefthattheonlyrelativis- q w A2 w : (11) tic quantum theory is a theory of fields.”65 Neither theorem qscreen ¼ j ii ih ij assumesQFT.TheyassumeonlySRandthegeneralprinci- i X ples of quantum physics, plus broadly inclusive definitions Equation(11)tellsusthatthequantumisregisteredeitherin ofwhatonemeansbya“particle.”Eachthenderivesacon- region 1or region 2or…It’s this“allor nothing” natureof tradiction, showing that there can be no particles in any quantum interactions, rather than any presumed particle na- theoryobeyingbothSRandquantumphysics.Iwilldescribe ture of quanta, that produces the particle-like interaction onlyHegerfeldt’stheoremhere,becauseitisthemoreintui- regionsinFigures1and2. tive of the two, and because Malement’s theorem is more In summary, “only spatial fields must be postulated to subjecttodifficultiesofinterpretation. formthefundamentalobjectstobequantized,.whileapparent Hegerfeldt shows that any free (i.e., not constrained by “particles”are amere consequence of decoherence” (i.e.,of boundary conditions or forces to remain for all time within localizationbythedetectionprocess).58 some finite region) relativistic quantum “particle” must, if 218 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 218 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission it’slocalizedtoafiniteregiontobeginwith,instantlyhavea verified phenomena such as the Lamb shift, the Casimir positive probability of being found an arbitrarily large dis- effect, and the electron’s anomalous magnetic moment, this tance away. Butthisresult turnsout toviolate Einsteincau- “statethathasnoparticles”ishardtoignore.Thissectiondis- sality (no superluminal signaling). The conclusion is then cussesQFTvacuumphenomenathataredifficulttoreconcile that an individual free quantum can never—not even for a with particles. Section VIA discusses the quantum vacuum singleinstant—belocalizedtoanyfiniteregion. itself. The remaining parts are implications of the quantum More specifically, a presumed particle is said to be vacuum. The Unruh effect (Sec. VIB), related to Hawking “localized” at t if it is prepared in such a way as to ensure radiation, has not yet been observed, while single-quantum o that it will upon measurement be found, with probability 1, nonlocality(Sec.VIC)isexperimentallyconfirmed. to be within some arbitrarily large but finite region V at t . On the other hand, we do not yet really understand the o o Hegerfeldtthenassumestwoconditions:First,thepresumed quantum vacuum. The most telling demonstration of this is particle has quantum states that can be represented in a thatthemostplausibletheoreticalQFTestimateoftheenergy Hilbert space with unitary time-development operator U density of the vacuum implies a value of the cosmological t exp( iHt), where H is the energy operator. Second, the constantthatissome120ordersofmagnitudelargerthanthe ¼ " particle’senergyspectrumhasalowerbound.Thefirstcon- upperboundplacedonthisparameterbyastronomicalobser- ditionsaysthattheparticleobeysstandardquantumdynam- vations. Possible solutions, such as the anthropic principle, ics. The second says that the Hamiltonian that drives the havebeensuggested,buttheseremainspeculative.71 dynamicscannotprovideinfiniteenergybyitselfdroppingto lowerandlowerenergies.Hegerfeldtthenprovesthatapar- A. Thenecessityforthequantumvacuum ticle that is localized at t is not localized at any t>t . See 0 0 Ref.63fortheproof.It’sremarkablethatevenlocalizability Both theory and experiment demonstrate that the quan- in an arbitrarily large finite region can be so difficult for tized EM field can never be sharply (with probability 1) a relativistic quantum particle: its probability amplitude zero, but rather that there must exist, at every spatial point, spreadsinstantlytoinfinity. at least a randomly fluctuating “vacuum field” having no Now here is the contradiction: Consider a particle that is quanta.72Concerningthetheory,recall(Sec.III)thataquan- localizedwithinV att .Atanyt>t ,thereisthenanonzero tizedfieldisequivalenttoasetofoscillators.Anactualme- 0 0 0 probability that it will be found at any arbitrarily large dis- chanical oscillator cannot be at rest in its ground state tanceawayfromV .Thisisnotaproblemforanonrelativistic because this would violate the uncertainty principle; its 0 theory,andinfactsuchinstantaneousspreadingofwavefunc- ground state energy is instead hf/2. Likewise, each field os- tionsiseasytoshowinNRQP.66Butinarelativistictheory, cillatormusthaveagroundstatewhereithasenergy butno such instantaneous spreading contradicts relativity’s prohibi- excitations.Inthe“vacuumstate,”wherethenumberofexci- tiononsuperluminaltransportandcommunication,becauseit tationsNkiszeroforeverymodek,theexpectationvaluesof impliesthataparticlelocalizedonEarthatt could,withnon- EandBarezeroyettheexpectationvaluesofE2andB2are 0 zero probability, be found on the moon an arbitrarily short not zero. Thus the vacuum energy arises from random timelater.Weconcludethat“particles”cannoteverbelocal- “vacuumfluctuations”ofEandBaroundzero. ized.Tocallathinga“particle”whenitcannoteverbelocal- Asasecondandmoredirectargumentforthenecessityof izedinanyfiniteregionissurelyagrossmisuseofthatword. EMvacuumenergy,considerachargeeofmassmboundby Because QFTs reject the notion of position observables in anelasticrestoringforcetoalargemassofoppositecharge. favorofparameterizedfieldobservables(Sec.III),QFTshave The equation of motion for the Heisenberg-picture position no problem with Hegerfeldt’s theorem. In QFT the interac- operator x(t) has the same form as the corresponding classi- tions, including creation and destruction, occur at specific calequation,namely locationsx,butthefundamentalobjectsofthetheory,namely, the fields, do not have positions because they are infinitely d2x=dt2þx2ox¼ðe=mÞ½ErrðtÞþEoðtÞ’: (12) extended. Summarizing:evenunderabroadlyinclusivedefinitionof Here, xo is the oscillator’s natural frequency, Err(t) is the “particle,”quantumparticlesconflictwithEinsteincausality. “radiation reaction” fieldproduced bythe charged oscillator itself, E (t) is the external field, and it’s assumed that the o spatial dependence of E (t) can be neglected. It can be VI. THEQUANTUMVACUUM o shown that the radiation reaction has the same form as the The Standard Model, a QFT (more precisely two QFTs), classical radiation reaction field for an accelerating charged is today the favored way of looking at relativistic quantum particle,Err(t)¼(2e/3c3)d3x/dt3,soEq.(12)becomes phenomena.Infact,QFTis“theonlyknownversionofrela- tivistic quantum theory.”67 Since NRQP can also be d2x=dt2þx2ox"ð2e2=3mc3Þd3x=dt3¼ðe=mÞEoðtÞ: expressed as a QFT,68 all of quantum physics can be (13) expressed consistently as QFTs. We’ve seen (Sec. V) that quantum particles conflict with SR. This suggests (but IfthetermE (t)wereabsent,Eq.(13)wouldbecomeadissi- o doesn’t prove) that QFTs are the only logically consistent pativeequationwithx(t)exponentiallydamped,andcommu- version of relativistic quantum physics.69 Thus, it appears tators like [z(t), p(t)] would approach zero for large t, in z thatQFTsarethenaturallanguageofquantumphysics. contradictionwiththeuncertaintyprincipleandincontradic- Because it has energy and nonvanishing expectation val- tion with the unitary time development of quantum physics ues, theQFT vacuum isembarrassing forparticle interpreta- according to which commutators like [z(t), p(t)] are time- z tions. If one believes particles to be the basic reality, then independent. Thus E (t) cannot be absent for quantum o whatisitthathasthisenergyandthesevaluesinthestatethat systems.Furthermore,ifE (t)isthevacuumfieldthencom- o has no particles?70 Because it is the source of empirically mutatorslike[z(t),p(t)]turnouttobetime-independent. z 219 Am.J.Phys.,Vol.81,No.3,March2013 ArtHobson 219 Downloaded 07 Mar 2013 to 130.184.202.223. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

Description:
Citation: Am. J. Phys. 81, 211 book Ageless Body, Timeless Mind, a New York Times .. gle quantum interacts with the screen, are often cited as evi-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.