Lecture Notes in Economics and Mathematical Systems 632 FoundingEditors: M.Beckmann H.P.Künzi ManagingEditors: Prof.Dr.G.Fandel FachbereichWirtschaftswissenschaften FernuniversitätHagen Feithstr.140/AVZII,58084Hagen,Germany Prof.Dr.W.Trockel InstitutfürMathematischeWirtschaftsforschung(IMW) UniversitätBielefeld Universitätsstr.25,33615Bielefeld,Germany EditorialBoard: H. Dawid, D. Dimitrov, A. Gerber, C.-J. Haake, C. Hofmann, T. Pfeiffer, R. Slowinksi, H. Zijm _ For further volumes: http://www.springer.com/series/300 · Alexander Saichev Yannick Malevergne Didier Sornette Theory of Zipf’s Law and Beyond (cid:65)(cid:66)(cid:67) Professor Alexander Saichev Professor Yannick Malevergne Mathematical Department ISEAG Nizhni Novgorod State University University of Saint-Etienne Gagarin Prospekt 23 2 rue Tréfilerie 603950 Nizhni Novgorod 42023 Saint-Etienne cedex 2 Russia France [email protected] and Professor Didier Sornette EMLYON Business School – Cefra Department of Management Technology and Economics 23 avenue Guy de Collongue 69134 Ecully Cedex ETH Zürich France Kreuzplatz 5 [email protected] 8032 Zurich Switzerland [email protected] ISSN0075-8442 ISBN978-3-642-02945-5 e-ISBN978-3-642-02946-2 DOI10.1007/978-3-642-02946-2 SpringerHeidelberg Dordrecht London New York LibraryofCongressControlNumber:2009932422 (cid:2)c Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:SPiPublisherServices Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Zipf’s law is one of the few quantitative reproducible regularities found in eco- nomics. It states that, for most countries, the size distributions of cities and of firms (with additional examples found in many other scientific fields) are power laws with a specific exponent: the number of cities and firms with a size greater thanS is inverselyproportionaltoS. Mostexplanationsstartwith Gibrat’slaw of proportionalgrowthbut need to incorporateadditionalconstraintsand ingredients introducingdeviationsfromit.Here,wepresentageneraltheoreticalderivationof Zipf’s law, providing a synthesis and extension of previous approaches. First, we showthatcombiningGibrat’slawatallfirmlevelswithrandomprocessesoffirm’s births and deaths yield Zipf’s law under a “balance” condition between a firm’s growthanddeathrate.We find thatGibrat’slaw ofproportionategrowthdoesnot needtobestrictlysatisfied.Aslongasthevolatilityoffirms’sizesincreaseasymp- totically proportionally to the size of the firm and that the instantaneous growth rate increases not faster than the volatility, the distribution of firm sizes follows Zipf’s law. This suggests that the occurrence of very large firms in the distribu- tionoffirmsizesdescribedbyZipf’slawismoreaconsequenceofrandomgrowth thansystematicreturns:inparticular,forlargefirms,volatilitymustdominateover the instantaneous growth rate. We develop the theoretical framework to take into account (1) time-varying firm creation, (2) firm’s exit resulting from both a lack of sufficient capital and sudden external shocks, (3) the coupling between firm’s birth rate andthe growthof the value of the populationof firms. We predictdevi- ations from Zipf’s law under a variety of circumstances, for instance, when the balance between the birth rate, the instantaneous growth rate and the death rate is notfulfilled,providinga frameworkforidentifyingthe possible origin(s)ofthe manyreportsofdeviationsfromthepureZipf’slaw.Reciprocally,deviationsfrom Zipf’s law in a given economy provides a diagnostic, suggesting possible policy corrections.Theresultsobtainedherearegeneralandprovideanunderpinningfor understanding and quantifying Zipf’s law and the power law distribution of sizes foundinmanyfields. NizhniNovgorod,Russia A.Saichev Lyon&Saint-Etienne,France Y.Malevergne Zu¨rich,Switzerland D.Sornette v Contents 1 Introduction.................................................................... 1 2 ContinuousGibrat’sLawandGabaix’sDerivation ofZipf’sLaw................................................................... 9 2.1 DefinitionofContinuousGibrat’sLaw ................................ 9 2.2 GeometricBrownianMotion ........................................... 11 2.3 Self-SimilarPropertiesoftheGeometricBrownianMotion.......... 12 2.4 TimeReversibleGeometricBrownianMotion ........................ 12 2.5 BalanceCondition....................................................... 13 2.6 Log-NormalDistribution ............................................... 14 2.7 Gabaix’sSteady-StateDistribution..................................... 16 3 FlowofFirmCreation ........................................................ 19 3.1 EmpiricalEvidenceandPreviousWorks ontheArrivalofNewFirms............................................ 19 3.2 MathematicalFormulationoftheFlowofFirm’s BirthsatRandomInstants .............................................. 21 3.3 ExistenceofaSteady-StateDistributionofFirm’sSizes ............. 24 3.4 Steady-StateDensityofFirm’sAssetValuesObeying Gibrat’sLaw............................................................. 26 3.5 MeanDensityofFirmsYoungerthanAget........................... 28 3.6 Heuristic derivationoftheoriginofthe powerlaw distributionoffirmsizesgivenbyGibrat’srule ....................... 29 4 Useful Properties of Realizations of the Geometric BrownianMotion.............................................................. 41 4.1 RelationshipBetweentheDistributionsofFirm’sMean AgesandSizes .......................................................... 41 4.2 MeanGrowthvs.StochasticDecay .................................... 43 4.3 GeometricallyTransparentDefinitionsofStochastically DecayingandGrowingProcesses...................................... 45 4.4 MajorantCurvesofStochasticallyDecayingGeometric BrownianMotion........................................................ 47 vii viii Contents 4.5 MaximalValueofStochasticallyDecayingGeometric BrownianMotion........................................................ 48 4.6 ExtremalPropertiesofRealizationsofStochastically GrowingGeometricBrownianMotion................................. 50 4.7 QuantileCurves ......................................................... 52 4.8 GeometricExplanationoftheSteady-StateDensity ofaFirm’sAssetValue ................................................. 55 5 Exitor“Death”ofFirms ..................................................... 59 5.1 EmpiricalEvidenceandPreviousWorks ontheExitofFirms..................................................... 59 5.2 Life-SpanAboveaGivenLevel........................................ 61 5.3 DistributionofFirm’sLifeDurationsAboveaSurvivalLevel ....... 62 5.4 Killing of Firms upon First Reaching aGivenAssetLevelfromAbove....................................... 63 5.5 Life-SpanofFinitelyLivingFirms..................................... 66 5.6 InfluenceofFirm’sDeathontheBalanceCondition.................. 67 5.7 Firm’sDeathDoesNotDestroyZipf’sLaw........................... 68 5.8 RobustnessVis-a-vistheRandomnessofInitialFirm’sSizes ........ 70 6 DeviationsfromGibrat’sLaw andImplicationsforGeneralizedZipf’sLaws............................. 73 6.1 GeneralizedBrownianMotions ........................................ 74 6.1.1 StatisticalPropertiesofGeneralizedGBM................... 74 6.1.2 Deterministic Skeleton of the Mean Densityg(s)GivenbyaGeneralized-GBM ................. 77 6.1.3 SizeDependentDriftandVolatility .......................... 78 6.2 DiffusionProcesswithConstantVolatility............................. 79 6.3 Steady-State Density of Firm’s Asset Values inthePresenceofDeviationsfromGibrat’sLaw...................... 82 6.4 IntegratedFlow.......................................................... 84 6.5 TheSemi-GeometricBrownianMotion................................ 86 6.6 Zipf’sLawsWhenGibrat’sLawDoesNotHold...................... 90 7 Firm’sSuddenDeaths......................................................... 97 7.1 DefinitionoftheSurvivalFunction..................................... 97 7.2 ExponentialDistributionofSuddenDeaths............................ 98 7.3 ImplicationsoftheExistenceofSuddenFirm......................... 99 7.4 Zipf’sLawinthePresenceofSuddenDeaths.........................101 7.5 ExplanationoftheGeneralizedBalanceCondition ...................103 7.6 SomeConsequencesoftheGeneralizedBalanceCondition..........106 7.7 Zipf’sLawasaUniversalLawwithaLargeBasinofAttraction.....107 7.8 RateofSuddenDeathDependingonFirm’sAssetValue.............108 7.9 RateofSuddenDeathDependingonFirm’sAge .....................111 Contents ix 8 Non-stationaryMeanBirthRate ............................................123 8.1 ExponentialGrowthofFirm’sBirthRate..............................123 8.2 DeterministicSkeletonofZipf’sLaw..................................124 8.3 SimpleModelofBirthRateCoupledwiththeOverall Firm’sValue.............................................................125 8.4 GeneralizationWhenBoth the InitialFirm’sSizes andtheMinimumFirm’sSizeGrowatConstantRates...............129 8.4.1 FormulationoftheModel.....................................129 8.4.2 Pdff(s;t,θ)ofFirm’sSize...................................132 8.4.3 MeanDensityg(s,t)ofFirmSizes...........................133 8.4.4 LocalPrinciple.................................................135 8.4.5 PowerLawExponentandBalanceCondition................136 8.4.6 FiniteLifetimeoftheEconomyandTransition tothePowerLawRegime.....................................137 8.5 Time-DependenceoftheAverageSizeoftheGlobal EconomyofFirms.......................................................141 9 PropertiesoftheRealizationDependentDistributionofFirmSizes ....147 9.1 DerivationofthePoissonianDistributionoftheNumberofFirms...147 9.2 Finite-SizeandStatisticalFluctuationEffects ontheEmpiricalMeasurementofZipf’sLaw.........................151 9.3 EstimationoftheDistributionofFirmSizes...........................152 9.4 Statistical Fluctuations of the Size of the Global EconomyUsingCharacteristicFunctions..............................154 10 FutureDirectionsandConclusions..........................................159 10.1 MergersandAcquisitionsandSpin-offs...............................159 10.1.1 GeneralFormalism ............................................159 10.1.2 Mergersand Acquisitionsand Spin-offs withBrownianInternalGrowth...............................161 10.1.3 Mergersand Acquisitionsand Spin-offs withGBMfortheInternalGrowthProcess..................163 10.2 SummaryofMainResults..............................................164 10.2.1 ImportanceofBalanceConditionsforZipf’sLaw...........164 10.2.2 EssentialDifferenceswithGabaix(1999)’s DerivationofZipf’sLaw......................................165 10.2.3 RobustnessofZipf’sLawasanAttractorfor LargeVarianceoftheGMBofFirm’sGrowth...............166 References...........................................................................167 Index.................................................................................171 Symbols a(s) Driftoftheassetvalueprocess;InthecaseofageometricBrow- nianmotion,a(s) =a·s,sothatadenotestheinstantaneousrate ofreturn b(s) Volatility of the asset value process; In the case of a Geometric BrownianMotion,b(s)=b·s c Drift of the log-asset value process for the Geometric Brownian b2 Motion.Thethreeparametersa,bandcarerelatedbya=c+ 2 (see2.14) d Exponentofexponentiallygrowingintensityofbirths f(s;t) Probabilitydensityfunctionofasinglefirm’ssize(see3.13) fd(t) Probabilitydensityfunctionofthelifedurationaboveagivensize level(see5.8) fk(t) Probability density function of the life duration when firms exit uponfirstreachingagivensizelevelfromabove(see5.19) F(s;t) Cumulativedistributionfunctionofasinglefirm’ssize(see3.6) F¯(s;t) Complementarycumulativedistributionfunctionofasinglefirm’s size F¯d(t) Complementarycumulativedistributionofthelifedurationabove agivensizelevel(see5.16) F¯k(t) Complementarycumulativedistributionfunctionofthe life dura- tion when firms exit upon first reaching a given size level from above(see5.5) g(s) Steady-statemeandensityoffirm’ssize(seeDefinition3.3.1) g(s,t) Meandensityofthesizeofallincumbentfirmsattimet(see3.12) G(s;t) Meannumberofallincumbentfirmsofsizelargerthans m Tailindexofthedistributionoffirm’ssize M(s−s(cid:2),s(cid:2)) Rateofmergerandacquisition(M&A)betweenfirmsofsizes−s(cid:2) ands(cid:2)tocreateanewfirmofsizes SO(s−s(cid:2),s(cid:2)) Rate ofcreationofspin-offfirmsofsize s(cid:2) froma firmof size s whichretainsavalues−s(cid:2)afterthespin-offcreation Q(t) Probabilitythatthelife-spanofafirmislargerthant S Firm’ssize/assetvalue s Initialfirm’ssize 0 xi xii Symbols s Leveloffirm’skilling(death) 1 tb Characteristictimeassociatedwiththevolatilitytb =2/b2 W(t) StandardWienerprocess X(t,c,b) GeometricBrownianmotion(2.11) Y(t,c,b) Wienerprocesswithdrift(2.6) Ω(t) Overallmeanassetvalueoftheeconomyattimet λ Growthtoriskratio,λ= 2c (2.19) b2 δ Returntoriskratio,δ = 2a =1+λ(6.111) b2 δ(s) Generalizationofδtoδ(s):= 2a(s) (6.94) b2(s) δ(cid:2) Inverseofδ:δ(cid:2) := 1 = b2 (7.45) 1+λ 2a φ Density of the Gaussian distribution for the Wiener process with driftY(t,c,b)(see2.8) μ Hazardrateoffirm’ssuddendeath ν Intensityoffirm’sbirth(seeAssumption3) ψ Densityofthelog-normaldistribution(2.32) τ Reducedtime,τ = b2t 2 ζ Hazardratetoriskratioζ := 2μ (7.13) b2 1(x) Indicatorfunctionoftheeventx(cid:2)0 Chapter 1 Introduction Oneofthebroadlyaccepteduniversallawsofcomplexsystems,particularlyrelevant insocialsciencesandeconomics,isthatproposedbyZipf(1949).Zipf’slawusually referstothefactthattheprobabilityP(s) = Pr{S > s}thatthevalueS ofsome stochastic variable, usually a size or frequency, is greater than s, decays with the growthofsasP(s)∼s−1.Thisinturnmeansthattheprobabilitydensityfunctions p(s)exhibitsthepowerlawdependence p(s)∼1/s1+m with m=1. (1.1) Perhapsthe distributionmost studiedfrom the perspectiveof Zipf’slaw is that of firm sizes, where size is proxied by sales, income, number of employees, or total assets.ManystudieshaveconfirmedthevalidityofZipf’slawforfirmsizesexist- ingatcurrenttimetandestimatedwiththesedifferentmeasures(SimonandBonini, 1958; Ijri and Simon, 1977; Sutton, 1997; Axtell, 2001; Okuyama et al., 1999; Gaffeoetal.,2003;Aoyamaetal.,2004;Fujiwaraetal.,2004a,b;Takayasuetal., 2008). Initially formulated as a rank-frequency relationship quantifying the relative commonnessof words in natural languages(Zipf, 1949), Zipf himself recognized in his book the general relevance to this law to the distribution of city sizes, among others. Many works have since shown that Zipf’s law indeed accounts well for the distribution of city sizes (see for a review Gabaix, 1999 and refer- ences therein), as well as firm sizes all over the world, as just mentioned. Zipf’s law has also been found in Web access statistics and Internet traffic characteris- tics (Glassman, 1994;Nielsen, 1997;Adamic and Huberman,2000;Barabasi and Albert, 2002; and with deviations Breslau et al., 1999), in inbound degree dis- tributions over Web pages (Kong et al., 2008), in weekend gross per theater for a movie scaled by the average weekend gross over its theatrical lifespan (Sinha and Pan, 2006), in bibliometrics, informetrics, scientometrics, and library science (Adamic and Huberman, 2002, and references therein) and in the distribution of incominglinkstopackagesfoundindifferentLinuxopensourcesoftwarereleases (Maillart et al., 2008). Sinha and Pan (2006) provides a rather exhaustive review of the many power laws found in the distribution of human activities. There are alsosuggestionsforapplicationstootherphysicalandbiological,sociologicaland A.Saichevetal.,TheoryofZipf’sLawandBeyond, 1 LectureNotesinEconomicsandMathematicalSystems632, DOI10.1007/978-3-642-02946-2 1,(cid:2)c Springer-VerlagBerlinHeidelberg2010