ebook img

Theory of Unconventional Superconductors : Cooper-Pairing Mediated by Spin Excitations PDF

233 Pages·2004·4.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of Unconventional Superconductors : Cooper-Pairing Mediated by Spin Excitations

Springer Tracts in Modern Physics Volume 202 ManagingEditor:G.Ho¨hler,Karlsruhe Editors: J.Ku¨hn,Karlsruhe Th.Mu¨ller,Karlsruhe A.Ruckenstein,NewJersey F.Steiner,Ulm J.Tru¨mper,Garching P.Wo¨lfle,Karlsruhe StartingwithVolume165,SpringerTractsinModernPhysicsispartofthe[SpringerLink]service. ForallcustomerswithstandingordersforSpringerTractsinModernPhysicsweofferthefull textinelectronicformvia[SpringerLink]freeofcharge.Pleasecontactyourlibrarianwhocan receiveapasswordforfreeaccesstothefullarticlesbyregistrationat: springerlink.com Ifyoudonothaveastandingorderyoucanneverthelessbrowseonlinethroughthetableof contentsofthevolumesandtheabstractsofeacharticleandperformafulltextsearch. Thereyouwillalsofindmoreinformationabouttheseries. 3 Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo Springer Tracts in Modern Physics SpringerTractsinModernPhysicsprovidescomprehensiveandcriticalreviewsoftopicsofcurrent interest in physics. The following fields are emphasized: elementary particle physics, solid-state physics,complexsystems,andfundamentalastrophysics. Suitablereviewsofotherfieldscanalsobeaccepted.Theeditorsencourageprospectiveauthorsto correspondwiththeminadvanceofsubmittinganarticle.Forreviewsoftopicsbelongingtothe abovementionedfields,theyshouldaddresstheresponsibleeditor,otherwisethemanagingeditor. Seealsospringeronline.com ManagingEditor Solid-StatePhysics,Editors GerhardHo¨hler AndreiRuckenstein EditorforTheAmericas Institutfu¨rTheoretischeTeilchenphysik Universita¨tKarlsruhe DepartmentofPhysicsandAstronomy Postfach6980 Rutgers,TheStateUniversityofNewJersey 76128Karlsruhe,Germany 136FrelinghuysenRoad Phone:+49(721)6083375 Piscataway,NJ08854-8019,USA Fax:+49(721)370726 Phone:+1(732)4454329 Email:[email protected] Fax:+1(732)445-4343 www-ttp.physik.uni-karlsruhe.de/ Email:[email protected] www.physics.rutgers.edu/people/pips/ ElementaryParticlePhysics,Editors Ruckenstein.html JohannH.Ku¨hn PeterWo¨lfle Institutfu¨rTheoretischeTeilchenphysik Institutfu¨rTheoriederKondensiertenMaterie Universita¨tKarlsruhe Universita¨tKarlsruhe Postfach6980 Postfach6980 76128Karlsruhe,Germany 76128Karlsruhe,Germany Phone:+49(721)6083590 Phone:+49(721)6083372 Fax:+49(721)698150 Fax:+49(721)370726 Email:woelfl[email protected] Email:[email protected] www-ttp.physik.uni-karlsruhe.de/∼jk www-tkm.physik.uni-karlsruhe.de ThomasMu¨ller ComplexSystems,Editor Institutfu¨rExperimentelleKernphysik FrankSteiner Fakulta¨tfu¨rPhysik Universita¨tKarlsruhe AbteilungTheoretischePhysik Postfach6980 Universita¨tUlm 76128Karlsruhe,Germany Albert-Einstein-Allee11 Phone:+49(721)6083524 89069Ulm,Germany Fax:+49(721)6072621 Phone:+49(731)5022910 Email:[email protected] Fax:+49(731)5022924 www-ekp.physik.uni-karlsruhe.de Email:[email protected] www.physik.uni-ulm.de/theo/qc/group.html FundamentalAstrophysics,Editor JoachimTru¨mper Max-Planck-Institutfu¨rExtraterrestrischePhysik Postfach1603 85740Garching,Germany Phone:+49(89)32993559 Fax:+49(89)32993569 Email:[email protected] www.mpe-garching.mpg.de/index.html Dirk Manske Theory of Unconventional Superconductors Cooper-Pairing Mediated by Spin Excitations With84Figures 1 3 DirkManske Max-Planck-InstitutfürFestko¨rperforschung Heisenbergstr.1 70569Stuttgart,Germany E-mail:[email protected] LibraryofCongressControlNumber:2004104588 PhysicsandAstronomyClassificationScheme(PACS): 74.20.Mn,74.25.-q,74.70.Pq ISSNprintedition:0081-3869 ISSNelectronicedition:1615-0430 ISBN3-540-21229-9Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned, specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductionon microfilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationorpartsthereofis permittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,and permissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsareliableforprosecutionunderthe GermanCopyrightLaw. Springer-VerlagisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2004 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply,evenin theabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulations andthereforefreeforgeneraluse. Typesetting:bytheauthorusingaSpringerLATEXmacropackage Coverconcept:eStudioCalamarSteinen Coverproduction:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:10947487 56/3141/jl 543210 To Claudia, Philipp, and Isabell Preface Superconductivity remains one of the most interesting research areas in physics and complementary theoretical and experimental studies have ad- vancedourunderstandingofit.Inunconventionalsuperconductors,thesym- metry of the superconducting order parameter is different from the usual s- wave form found in BCS-like superconductors. For the investigationof these new material systems, well-known experimental tools have been improved and new experimental techniques have been developed. This book is written for advanced students and researchers in the field of unconventional superconductivity. It contains results I obtained over the last years with various coworkers. The state of the art of research on high- Tc cuprates and on Sr2RuO4 obtained from a generalized Eliashberg theory is presented. Using the Hubbard Hamiltonian and a self-consistent treat- ment of spin excitations and quasiparticles, we study the interplay between magnetism and superconductivity in various unconventional superconduc- tors. The obtained results are then contrasted to those of other approaches. In particular, a theory of Cooper pairing due to exchange of spin fluctua- tions is formulatedfor the caseof singlet pairingin hole- and electron-doped cuprate superconductors, and for the case of triplet pairing in Sr RuO . We 2 4 calculatebothmanynormalandsuperconductingpropertiesofthese materi- als,their elementaryexcitations,andtheir phase diagrams,whichreflect the interplay between magnetism and superconductivity. In the case of high-Tc superconductors, we emphasize the similarities of the phase diagrams of hole- and electron-doped cuprates and give general arguments for a dx2−y2-wave superconducting order parameter. A compar- ison with the results of angle-resolved photoemission and inelastic neutron scattering experiments, and also Raman scattering data, is given. We find that key experimental results can be explained. For triplet Cooper pairingin Sr RuO , we focus on the importantrole of 2 4 spin–orbit coupling in the normal state and compare the theoretical results withnuclearmagneticresonancedata.Forthesuperconductingstate,results and general arguments related to the symmetry of the order parameter are provided.Itturnsoutthatthemagneticanisotropyofthenormalstateplays an important role in superconductivity. Stuttgart, May 2004 Dirk Manske D.Manske:TheoryofUnconventionalSuperconductors,STMP202,VII–XI(2004) (cid:1)c Springer-VerlagBerlinHeidelberg2004 Contents 1 Introduction.............................................. 1 1.1 Layered Materials and Their Electronic Structure........... 3 1.1.1 La2−xSrxCuO4................................... 4 1.1.2 YBa2Cu3O6+x ................................... 5 1.1.3 Nd2−xCexCuO4 .................................. 6 1.2 General Phase Diagram of Cuprates and Main Questions .... 7 1.2.1 Normal–State Properties .......................... 8 1.2.2 Superconducting State: Symmetry of the Order Parameter ........................... 12 1.3 Triplet Pairing in Strontium Ruthenate (Sr RuO ): 2 4 Main Facts and Main Questions .......................... 15 1.4 From the Crystal Structure to Electronic Properties ........ 19 1.4.1 Comparison of Cuprates and Sr RuO : Three–Band 2 4 Approach ....................................... 19 1.4.2 Effective Theory for Cuprates: One–Band Approach .. 22 1.4.3 Spin Fluctuation Mechanism for Superconductivity ... 23 References ................................................. 28 2 Theory of Cooper Pairing Due to Exchange of Spin Fluctuations ...................................... 33 2.1 Generalized Eliashberg Equations for Cuprates and Strontium Ruthenate ............................... 33 2.2 Theory for Underdoped Cuprates......................... 46 2.2.1 Extensions for the Inclusion of a d-Wave Pseudogap .. 48 2.2.2 Fluctuation Effects ............................... 52 2.3 Derivation of Important Formulae and Quantities........... 60 2.3.1 Elementary Excitations ........................... 60 2.3.2 Superfluid Density and Transition Temperature for Underdoped Cuprates.......................... 62 2.3.3 Raman Scattering Intensity Including Vertex Corrections....................... 65 2.3.4 Optical Conductivity ............................. 71 2.4 Comparison with Similar Approaches for Cuprates.......... 73 2.4.1 The Spin Bag Mechanism ......................... 74 X Contents 2.4.2 The Theory of a Nearly Antiferromagnetic Fermi Liquid (NAFL) .................................. 76 2.4.3 The Spin–Fermion Model.......................... 77 2.4.4 BCS–Like Model Calculations...................... 80 2.5 Other Scenarios for Cuprates: Doping a Mott Insulator...... 84 2.5.1 Local vs. Nonlocal Correlations .................... 84 2.5.2 The Large-U Limit ............................... 86 2.5.3 Projected Trial Wave Functions and the RVB Picture . 88 2.5.4 Current Research and Discussion ................... 90 References ................................................. 92 3 Results for High–Tc Cuprates Obtained from a Generalized Eliashberg Theory: Doping Dependence...... 99 3.1 The Phase Diagram for High–Tc Superconductors .......... 99 3.1.1 Hole–Doped Cuprates............................. 99 3.1.2 Electron–Doped Cuprates ......................... 109 3.2 Elementary Excitations in the Normal and Superconducting State: Magnetic Coherence, Resonance Peak, and the Kink Feature.................... 115 3.2.1 Interplay Between Spins and Charges: a Consistent Picture of Inelastic Neutron Scattering Together with Tunneling and Optical–Conductivity Data............................................ 115 3.2.2 The Spectral Density Observed by ARPES: Explanation of the Kink Feature ................... 125 3.3 Electronic Raman Scattering in Hole–Doped Cuprates ...... 137 3.3.1 Raman Response and its Relation to the Anisotropy and Temperature Dependence of the Scattering Rate.. 138 3.4 Collective Modes in Hole–Doped Cuprates ................. 144 3.4.1 A Reinvestigation of Inelastic Neutron Scattering..... 145 3.4.2 Explanation of the “Dip–Hump” Feature in ARPES .. 148 3.4.3 Collective Modes in Electronic Raman Scattering?.... 149 3.5 Consequences of a dx2−y2–Wave Pseudogap in Hole–Doped Cuprates ................................ 151 3.5.1 Elementary Excitations and the Phase Diagram ...... 152 3.5.2 Optical Conductivity and Electronic Raman Response 158 3.5.3 Brief Summary of the Consequences of the Pseudogap 167 References ................................................. 169 4 Results for Sr2RuO4 ...................................... 177 4.1 Elementary Spin Excitations in the Normal State of Sr RuO 179 2 4 4.1.1 Importance of Spin–Orbit Coupling................. 179 4.1.2 The Role of Hybridization......................... 182 4.1.3 Comparison with Experiment ...................... 185 4.2 Symmetry Analysis of the Superconducting Order Parameter 187 Contents XI 4.2.1 Triplet Pairing Arising from Spin Excitations ........ 188 4.3 Summary, Comparison with Cuprates, and Outlook......... 192 References ................................................. 197 5 Summary, Conclusions, and Critical remarks ............. 201 References ................................................. 208 A Solution Method for the Generalized Eliashberg Equations for Cuprates ................................... 211 References ................................................. 214 B Derivation of the Self-Energy (Weak-Coupling Case) ..... 215 C dx2−y2-Wave Superconductivity Due to Phonons?......... 225 Index......................................................... 227 1 Introduction One of the most exciting and fascinating fields in condensed matter physics is high-temperature and unconventional superconductivity, for example in hole- and electron-doped cuprates, in Sr RuO , in organic superconductors, 2 4 in MgB , andin C compounds.In cuprates,the highesttransitiontemper- 2 60 ature (without application of pressure) T (cid:1) 134 K has been measured in c HgBa Ca Cu O , followed by – to name just a few – Bi Sr CaCu O 2 2 3 8+δ 2 2 2 8+δ (δ = 0.15 ↔ T (cid:1) 95 K), YBa Cu O (x = 0.93 ↔ T (cid:1) 93 K), c 2 3 6+x c Nd2−xCexCuO4 (x = 0.15 ↔ Tc (cid:1) 24 K), and La2−xSrxCuO4, where, for an optimum doping concentration x = 0.15, a maximum value of T (cid:1) 39 c K occurs. Since 77 K is the boiling temperature of nitrogen, it is now pos- sible that new technologies,basedfor example on SQUIDs (superconducting quantum interference devices) or Josephson integrated circuits [1], might be developed.However,atpresent,thecriticalcurrentdensitiesarestillnothigh enoughformosttechnologyapplications.Arecentoverviewanaccountofthe possible prospects can be found in [2] and references therein. Throughout this book, we shall focus mainly on Cooper pairing in cupratesandinSr RuO .Allmembersofthecupratefamilydiscoveredsofar 2 4 contain one or more CuO planes and various metallic elements. As we shall 2 discuss in the next section, their structure resembles that of the perovskites [3]. It is now fairly well established that the important physics related to superconductivity occurs in the CuO planes and that the other layers sim- 2 ply act as charge reservoirs. Thus, the coupling in the c direction provides a three–dimensionalsuperconducting state, but the main pairing interaction acts between carrierswithin a CuO plane. The undoped parent compounds 2 are antiferromagnetic insulators, but if one dopes the copper–oxygen plane withcarriers(electronsorholes),thelong-rangeorderisdestroyed.Notethat evenwithoutstrictlong-rangeorder,the spin correlationlengthcanbe large enoughtoproducealocalarrangementofmagneticmomentsthatdiffersonly little from that observedbelow the N´eeltemperature in the insulating state. In the dopedstate the cuprates become metallic or,below T ,superconduct- c ing. As mentioned above, in hole–doped cuprates T is of the order of 100 K c and in electron–doped cuprates one finds T (cid:1) 25K (as will be explained c later), and thus much larger values of T are obtained than in conventional c D.Manske:TheoryofUnconventionalSuperconductors,STMP202,1–32(2004) (cid:1)c Springer-VerlagBerlinHeidelberg2004

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.