Cover Page Page: i Half-Title Page Page: i Series Page Page: ii Title Page Page: iii Copyright Page Page: iv Contents Page: v Preface Page: xi 1 Distribution Theory Page: 1 1.1 Introduction Page: 1 1.2 Probability Measures Page: 1 1.3 Some Important Theorems of Probability Page: 7 1.4 Commonly Used Distributions Page: 10 1.5 Stochastic Order Relations Page: 16 1.6 Quantiles Page: 17 1.7 Inversion of the CDF Page: 19 1.8 Transformations of Random Variables Page: 21 1.9 Moment Generating Functions Page: 23 1.10 Moments and Cumulants Page: 27 1.11 Problems Page: 30 2 Multivariate Distributions Page: 37 2.1 Introduction Page: 37 2.2 Parametric Classes of Multivariate Distributions Page: 37 2.3 Multivariate Transformations Page: 40 2.4 Order Statistics Page: 42 2.5 Quadratic Forms, Idempotent Matrices and Cochran's Theorem Page: 44 2.6 MGF and CGF of Independent Sums Page: 49 2.7 Multivariate Extensions of the MGF Page: 51 2.8 Problems Page: 51 3 Statistical Models Page: 57 3.1 Introduction Page: 57 3.2 Parametric Families for Statistical Inference Page: 58 3.3 Location-Scale Parameter Models Page: 61 3.4 Regular Families Page: 69 3.5 Fisher Information Page: 69 3.6 Exponential Families Page: 72 3.7 Sufficiency Page: 78 3.8 Complete and Ancillary Statistics Page: 82 3.9 Conditional Models and Contingency Tables Page: 88 3.10 Bayesian Models Page: 89 3.11 Indifference, Invariance and Bayesian Prior Distributions Page: 91 3.12 Nuisance Parameters Page: 95 3.13 Principles of Inference Page: 95 3.14 Problems Page: 98 4 Methods of Estimation Page: 105 4.1 Introduction Page: 105 4.2 Unbiased Estimators Page: 106 4.3 Method of Moments Estimators Page: 107 4.4 Sample Quantiles and Percentiles Page: 108 4.5 Maximum Likelihood Estimation Page: 109 4.6 Confidence Sets Page: 116 4.7 Equivariant Versus Shrinkage Estimation Page: 122 4.8 Bayesian Estimation Page: 123 4.9 Problems Page: 127 5 Hypothesis Testing Page: 133 5.1 Introduction Page: 133 5.2 Basic Definitions Page: 134 5.3 Principles of Hypothesis Tests Page: 135 5.4 The Observed Level of Significance (P-Values) Page: 137 5.5 One- and Two-Sided Tests Page: 138 5.6 Unbiasedness and Stochastic Ordering Page: 139 5.7 Hypothesis Tests and Pivots Page: 140 5.8 Likelihood Ratio Tests Page: 141 5.9 Similar Tests Page: 146 5.10 Problems Page: 147 6 Linear Models Page: 155 6.1 Introduction Page: 155 6.2 Linear Models – Definition Page: 155 6.3 Best Linear Unbiased Estimators (BLUE) Page: 158 6.4 Least Squares Estimators, BLUEs and Projection Matrices Page: 161 6.5 Ordinary and Generalized Least Squares Estimators Page: 163 6.6 ANOVA Decomposition and the F Test for Linear Models Page: 168 6.7 One- and Two-Way ANOVA Page: 174 6.8 Multiple Linear Regression Page: 181 6.9 Constrained Least Squares Estimation Page: 187 6.10 Simultaneous Confidence Intervals Page: 190 6.11 Problems Page: 196 7 Decision Theory Page: 207 7.1 Introduction Page: 207 7.2 Ranking Estimators by MSE Page: 208 7.3 Prediction Page: 211 7.4 The Structure of Decision Theoretic Inference Page: 215 7.5 Loss and Risk Page: 218 7.6 Uniformly Minimum Risk Estimators (The Location-Scale Model) Page: 221 7.7 Some Principles of Admissibility Page: 224 7.8 Admissibility for Exponential Families (Karlin's Theorem) Page: 226 7.9 Bayes Decision Rules Page: 228 7.10 Admissibility and Optimality Page: 232 7.11 Problems Page: 235 8 Uniformly Minimum Variance Unbiased (UMVU) Estimation Page: 241 8.1 Introduction Page: 241 8.2 Definition of UMVUE's Page: 241 8.3 UMVUE's and Sufficiency Page: 243 8.4 Methods of Deriving UMVUEs Page: 245 8.5 Nonparametric Estimation and U-statistics Page: 247 8.6 Rank Based Measures of Correlation Page: 252 8.7 Problems Page: 254 9 Group Structure and Invariant Inference Page: 257 9.1 Introduction Page: 257 9.2 MRE Estimators for Location Parameters Page: 258 9.3 MRE Estimators for Scale Parameters Page: 264 9.4 Invariant Density Families Page: 270 9.5 Some Applications of Invariance Page: 274 9.6 Invariant Hypothesis Tests Page: 278 9.7 Problems Page: 283 10 The Neyman-Pearson Lemma Page: 289 10.1 Introduction Page: 289 10.2 Hypothesis Tests as Decision Rules Page: 289 10.3 Neyman-Pearson (NP) Tests Page: 290 10.4 Monotone Likelihood Ratios (MLR) Page: 294 10.5 The Generalized Neyman-Pearson Lemma Page: 295 10.6 Invariant Hypothesis Tests Page: 301 10.7 Permutation Invariant Tests Page: 303 10.8 Problems Page: 310 11 Limit Theorems Page: 315 11.1 Introduction Page: 315 11.2 Limits of Sequences of Random Variables Page: 315 11.3 Limits of Expected Values Page: 318 11.4 Uniform Integrability Page: 319 11.5 The Law of Large Numbers Page: 321 11.6 Weak Convergence Page: 324 11.7 Multivariate Extensions of Limit Theorems Page: 326 11.8 The Continuous Mapping Theorem Page: 329 11.9 MGFs, CGFs and Weak Convergence Page: 330 11.10 The Central Limit Theorem for Triangular Arrays Page: 332 11.11 Weak Convergence of Random Vectors Page: 334 11.12 Problems Page: 335 12 Large Sample Estimation –- Basic Principles Page: 341 12.1 Introduction Page: 341 12.2 The δ-Method Page: 341 12.3 Variance Stabilizing Transformations Page: 344 12.4 The δ-Method and Higher-Order Approximations Page: 347 12.5 The Multivariate δ-Method Page: 353 12.6 Approximating the Distributions of Sample Quantiles: The Bahadur Representation Theorem Page: 354 12.7 A Central Limit Theorem for U-statistics Page: 357 12.8 The Information Inequality Page: 358 12.9 Asymptotic Efficiency Page: 362 12.10 Problems Page: 364 13 Asymptotic Theory for Estimating Equations Page: 371 13.1 Introduction Page: 371 13.2 Consistency and Asymptotic Normality of M-Estimators Page: 372 13.3 Asymptotic Theory of MLEs Page: 375 13.4 A General Form for Regression Models Page: 376 13.5 Nonlinear Regression Page: 378 13.6 Generalized Linear Models (GLM) Page: 379 13.7 Generalized Estimating Equations (GEE) Page: 385 13.8 Existence and Consistency of M-Estimators Page: 387 13.9 Asymptotic Distribution of θ^n Page: 389 13.10 Regularity Conditions for Estimating Equations Page: 390 13.11 Problems Page: 391 14 Large Sample Hypothesis Testing Page: 395 14.1 Introduction Page: 395 14.2 Model Assumptions Page: 395 14.3 Large Sample Tests for Simple Null Hypotheses Page: 397 14.4 Nuisance Parameters and Composite Null Hypotheses Page: 402 14.5 Pearson's χ2 Test for Independence in Contingency Tables Page: 407 14.6 A Comparison of the LR, Wald and Score Tests Page: 409 14.7 Confidence Sets Page: 410 14.8 Estimating Power for Approximate χ2 Tests Page: 411 14.9 Problems Page: 411 A Parametric Classes of Densities Page: 415 B Topics in Linear Algebra Page: 417 B.1 Numbers Page: 417 B.2 Equivalence Relations Page: 418 B.3 Vector Spaces Page: 418 B.4 Matrices Page: 419 B.5 Dimension of a Subset of ℝd Page: 425 C Topics in Real Analysis and Measure Theory Page: 427 C.1 Metric Spaces Page: 427 C.2 Measure Theory Page: 428 C.3 Integration Page: 429 C.4 Exchange of Integration and Differentiation Page: 430 C.5 The Gamma and Beta Functions Page: 431 C.6 Stirling's Approximation of the Factorial Page: 432 C.7 The Gradient Vector and the Hessian Matrix Page: 432 C.8 Normed Vector Spaces Page: 433 C.9 Taylor's Remainder Theorem Page: 435 D Group Theory Page: 437 D.1 Definition of a Group Page: 437 D.2 Subgroups Page: 438 D.3 Group Homomorphisms Page: 439 D.4 Transformation Groups Page: 440 D.5 Orbits and Maximal Invariants Page: 442 Bibliography Page: 445 Index Page: 453
Description: