ebook img

Theory of Satellite Geodesy and Gravity Field Determination PDF

491 Pages·1989·9.005 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of Satellite Geodesy and Gravity Field Determination

Lecture Notes ni Earth Sciences Edited yb Somdev Bhattacharji, Gerald .M ,namdeirF Horst .J Neugebauer dna Adolf Seilacher 52 E )~snaS .R Rummel ).sdE( yroehT of etilletaS Geodesy dna ytivarG dleiF noitanimreteD galreV-regnirpS Berlin Heidelberg NewYork London oykoTsiraP Hong Kong Editors Prof. Dr. Fernando Sansb Polytecnico di Milano Istituto di Topografia, Fotogrammetria e Geofisica Piazza Leonardo da Vinci 32, I-Milano 20133, Italy Prof. Dr. Reiner Rummel Delft University of Technology, Faculty of Geodesy Thijsseweg ,11 NL-2629 JA Delft, The Netherlands ISBN 3-540-51528-3 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-38?-51528-3 Springer-Verlag New York Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1989 Printed ni Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2132/3140-543210- Printed on acid-free paper DROWEROF This book is the collection of the Lecture Notes of na International remmuS loohcS of Theoretical ysedoeG held in Assisi (Italy) from yaM 32 to June 3 -1988. ehT loohcS saw sponsored yb the International Association of ysedoeG dna organized yb .R lemmuR dna yb the writer. I still rebmemer nehw I first conceived the idea of organizing such a School dna I realized that the goal saw really very ambitious. Talking for the first time to emos of the persons ohw afterwards emaceb lecturers of the School, I got very different reactions: emos very positive, from Reiner lemmuR for instance, ohw saw enthusiastic dna agreed to supply his substantial support to organize the school, emos very cautious or even sceptical. I ma proud to yas that at the dne of the courses all the lecturers claimed they erew very happy about the work they did. Therefore, I must first of all give ym sincere thanks to all the teachers for the fine job they did which, I believe, will remain for long in the form of these Lecture Notes, sa basic material for scientists studying satellite .ysedoeg sknahT era also eud to the students ohw really participated, concentrating their interest dna intelligence no the subject, cooperating with the teachers in a very pleasant .erehpsomta Special thanks are eud to Jozsef madA ohw prepared the Introduction to the school that immediately follows this .draweroF eW must also recognize the foundamental role of the secretary of the school, Miss. ardnaS Marescalchi, ohw helped os hcum in finding the right organization dna equilibrium neewteb scientific labour dna social events, solving all the practical problems, emos of them very hard like na unexpected transport strike, right no the last yad of the school. In this work of organization, ew have been greatly supported yb all the staff of our host organization, aL" Cittadella", dna primarily yb .rM Marco Marchini. Their active presence dna their cordiality have facilitated establishing the right doom gnoma people during.the School. eW musta lso recognize that ynam organizations have substantially contributed to the realization of the loohcS yb supporting it in various forms, from fellowships to grants. oT ,GGUI IAG, ,ASE NSP (Italian ecapS Plan), TESIC Co., Salmoiraghi Co., Wild Co., Zeiss Co., og our gratitude dna our thanks. iV Moreover, sincere thanks are eud to the Municipality of Assisi, to the "Azdiie nda enoizomorP Turistica" of Assisi, Todi, dna Orvieto, ohw provided no different occasions, support in the organization of excursions dna specially the beautiful concert of Medioeval music dna .sgnos Last but not least I want to dda personal thanks to ym friend Reiner ,lemmuR ohw did os hcum for the scientific margorp of the School; it saw a pleasure for em to work with mih dna I hope it will last for long. odnanreF bsnaS STNETNOC Introduction J. Adam ....................................................................... 1 SERUTCEL Introduction to Classical scinahceM .H Moritz Introduction .................................................................. 9 Lecture i. NOTWEN ............................................................. 11 1.1 Motion of a Mass Point .................................................. 11 1.2 Central Forces .......................................................... 41 1.3 Planetary Motion ........................................................ 51 1.4 Free Motion ............................................................. 51 1.5 ehT Many-Body Problem ................................................... 61 1.6 Motion of a Rigid Body .................................................. 71 1.? Inertial Navigation and Surveying ....................................... 91 1.8 Error Propagation ....................................................... 20 1.9 Unstable Convergence in Integration ..................................... 20 Lecture 2.LAGRANGE ...................... .. .................................... 23 2.1 Statics; Principle of Virtual Displacements ............................. 23 2.2 Mass Point in Equilibrium on a Surface .................................. 25 2.3 D'Alembert's Principle .................................................. 27 2.4 Lagrange's Equations of First Kind ...................................... 28 2.5 Lagrange's Equations of Second Kind ..................................... 29 2.6 Geometrical Interpretations ............................................. 13 2.7 The Principle of Least Action ........................................... 34 Lecture 3. NOTLIMAH ........................................................... 63 3.i The Legendre Transformation ............................................. 63 3.2 Hamilton's Canonical Equations .......................................... 38 3.3 Canonical Transformations ............................................... 14 3.4 Symplectic Geometry ..................................................... 42 3.5 Cyclical Variables ...................................................... 46 3.6 Perturbation Theory ..................................................... 48 3.7 Keplerian Motion ........................................................ 49 Lecture 4. ERACNIOP .... ...................................................... 55 4.1Liouville's Theorem, Measure-Preserving Transformations and Stochastic Processes .................................................... 55 4.2 The Kolmogorov-Arnold-Moser Theorem ..................................... 95 4.3 The Example of H~non and Heiles ......................................... 60 4.4 Chaos and Order ......................................................... 16 Suggested Additional Reading .................................................. 66 Lectures in Celestial scinahceM J. Kovalevsky 1 General Introduction ........................................................ 69 2 The owT Body Problem ........................................................ 70 2.1 Elliptical Solution of the owT Body Problem ............................. 07 2.2 Kepler's Equation ....................................................... 27 2.3 Expansions in Mean Anomaly .............................................. 74 2.4 Orbital Elements ........................................................ 67 IIIV 3 Equations of Perturbed Motion .............................................. 87 3.1 ehT Disturbing Function ................................................ 87 3.2 Osculating Elements .................................................... 97 3.3 Lagrange Planetary Equations ........................................... 08 3.4 Gauss Equations ........................................................ 08 3.5 Canonical Osculating Elements .......................................... 18 4 General Perturbation Techniques ............................................ 28 4.1 Development of the Disturbing Function ................................. 28 4.2 Artificial Satellite Disturbed by the nuS .............................. 38 4.3 Method of Solution ..................................................... 58 4.4 Solution in Canonical Variables ........................................ 78 4.5 Form of the Solution ................................................... 98 5 Motion of na Artificial Satellite .......................................... 98 5.1 Earth's Gravitational Potential ........................................ 98 5.2 Development of the Disturbing Function .................................. 29 5.3 First Order Solution ................................................... 39 5.4 Second Order Solution .................................................. 69 5.5 Effects of Other Zonal Harmonics ....................................... 69 5.6 Treatment of Tesseral Harmonics ........................................ 79 5.7 Other Perturbations .................................................... 89 6 Resonances ................................................................. 99 6.1 General Presentation ................................................... 99 6.2 A Simplified Problem Resonance ......................................... 101 6.3 Applications to Artificial Satellites .................................. 301 6.4 ehT Critical Inclination ............................................... 401 7 Numerical Methods .......................................................... 401 7.1 Semi-Numerical General Analytical Theories ............................. 501 7.2 Secular Semi-Numerical Theories ........................................ 801 7.3 Numerical Integration .............................................. :... 801 7.4 Single Step Methods .................................................... 901 7,5 Multistep Methods ...................................................... 011 7.6 Discussion of Numerical Integration Methods ............................ 311 General Bibliography ......................................................... 411 ruoF Lectures no Special dna lareneG Relativity .W.E Grafarend Lecture I. Flat spacetime, pseudo-Euclidean space, the Lorentz transformation yrammuS ......................................... .......................... 511 i Flat spacetime, pseudo-Euclidean space, the Lorentz transformation ...... 511 2 Examples ................................................................ 221 3 Exercises ............................................................... 721 3.1Lorentz transformation in spinor notation ........................... 721 3.2 ehT Sagnac effect ................................................... 821 Lecture II-IV. Curved spacetime, space, pseudo-Riemann the affine transformation ................................................ 921 yrammuS ................................................................... 921 1 Curved Spacetime, space, pseudo-Riemann the affine transformation ....... 921 2 Examples ................................................................ 731 3 Exercises ............................................................... 841 3.1 ehT Kerr metric ..................................................... 841 3.2 Schwarzschild metric in isotropic coordinates ....................... 941 Literature ................................................................... 051 ecnerefeR etanidrooC :smetsyS nA etadpU I.I. Mueller 1 Introduction ............................................................... 351 2 Conventional Inertial Systems (CIS) of Reference ........................... 651 XI 2.1 Basic Considerations ................................................... 651 2.2 Inertial Systems in Practice ........................................... 951 2.21 Extragalactic Radio Source System .................................. 951 2.22 Stellar System .................................................... 161 2.23 Dynamical Systems ................................................. 361 2.3 Conclusions ............................................................ 661 3 Conventional Terrestrial (CTS) Systems of Reference ........................ 761 3.1 Brief History of the Past edaceD ....................................... 961 3.2 ehT weN STC ............................................................ 071 3.3 Reference emarF Ties ................................................... 271 3.31 Ties Between the SIC semarF ....................................... 271 3.32 Ties Between the STC semarF ....................................... 471 4 Modeling the Deformable Earth .............................................. 571 4.1 Precession )P( ......................................................... 771 4.2 Nutation )N( ........................................................... 771 4.3 Earth Rotation )S( ..................................................... 081 4.4 Deformations (L') ...................................................... 181 4.41 Tidal Deformations ................................................ 281 4.42 Plate Tectonic ssaM Transfer ...................................... 281 4.43 Other Deformations ................................................ 381 4.44 Current (1988) Practice ........................................... 381 4.5 Recent Developments .................................................... 481 4.51 Expected segnahC in the Adopted Series of Nutation ................ 481 4.52 Expected egnahC in the Constant of Precession ..................... 581 4.53 Intermediate Reference emarF Issues ............................... 581 5 ehT International Earth Rotation Service ................................... 681 5.1 ehT SETOC-TIREM Programs .......... . ..................................... 681 5.2 ehT International Earth Rotation Service ............................... 781 References ................................................................... 981 Appendix 1. Principal snoitadnemmoceR of the dna TIREM SETOC gnikroW Group ..................... L .............................. 491 Appendix 2, Resolution of International Astronomical Union (1985) ............ 691 Appendix 3. Resolution 1 of the International Union of ysedoeG dna Geophysics, XIX General Assembly, Vancouver, 12 August 1987 .................. 691 Gravity Field yrevoceR from Satellite Tracking ataD .C Reigber 1 Introduction ............................................................... 791 2 Principles of Gravity Parameter Determination .............................. 991 2.1 Linear Observation Equations ........................................... 302 3 Gravity Induced Linear Orbit Perturbations ................................. 602 3.1 Secular Perturbations .................................................. 012 3.2 Periodic Perturbations ................................................. 112 4 Adjustment Procedures ....................................................... 712 4.1 Single Arc Solution .................................................... 712 4.2 Solution from denibmoC Normal Equations ................................ 812 4.3 Constraint Equations ................................................... 912 4.4 Light Constraint Solutions ............................................. 022 4.5 Parameters Considered for Adjustment ................................... 122 5 Tracking Data ............................................................... 222 5.1 Existing Data .......................................................... 222 5.2 DatSae lection ..... : ................................................... 322 6 Processing Steps ........................................................... 422 7 Special Topics ............................................................. 822 8 Global Gravity Field Models ................................................ 032 8.1 Recent Gravity Field Models ............................................ 032 8.2 weN Gravity Model Developments ......................................... 232 References ................................................................... 432 slatnemadnuF of Orbit noitanimreteD B.D. Tapley Introduction ................................................................. 235 The Orbit Determination Problem .............................................. 235 Linearization of the Orbit Determination Process ............................. 238 The Least Squares Solution ................................................... 239 The Minimum Norm Solution .................................................... 240 Weighted Least Squares Solution .............................................. 241 The Minimum Variance Estimate ................................................ 242 Propagation of the Estimate .................................................. 244 Minimum Variance Estimate With A Priori Information .......................... 244 The Sequential Estimation Algorithm .......................................... 246 The Extended Sequential Estimation Algorithm ................................. 247 State Noise Compensation Algorithm ........................................... 247 Batch and Sequential Estimation Compared ..................................... 248 Error Sources ................................................................ 249 Solution Methods for the Orbit Determination Problem ...... • ................... 250 Cholesky Decomposition ....................................................... 251 Least Squares Solution via Orthogonal Transformation ......................... 251 Appendix A. The Primary Forces on a Near-Earth Satellite ..................... 255 Gravitational Perturbations .............................................. 255 Gravitational Potential for the Earth .................................... 255 Solid Earth Tides ........................................................ 256 N-Body ................................................................... 256 Ocean Tides .............................................................. 257 General Relativity ....................................................... 258 Nongravitational Perturbations ........................................... 258 Atmospheric Drag ......................................................... 258 Solar Radiation Pressure ................................................. 259 Earth Radiation Pressure ................................................. 259 References ................................................................... 260 noitanibmoC of Satellite, Altimetric dna Terrestrial Gravity ataD R.H. ppaR 1.0 Introduction ............................................................. 162 2.0 Representation of the Gravitational Potential ............................ 262 2.1 Spherical Harmonics ...................................................... 262 2.1.1 Spherical Potential Coefficients dna Gravity Anomalies ............. 362 2.1,2 Spherical Harmonics dna Orthogonality Relationships ................ 662 2.2 Ellipsoidal Harmonics .................................................... 762 2.2.1Ellipsoidal Harmonics dna Gravity Anomalies ........................ 862 3,0 Data Definition .......................................................... 962 3.1 Satellite Data ....................................................... 962 3.2 Terrestrial Gravity Data ............................................. 962 4.0 Data Combination ......................................................... 172 4.1 General Principles ................................................... 172 4.2 Least Squares Principles ............................................. 172 4.3 Optimal Estimation ................................................... 472 5.0 Observation Equation Formation ........................................... 572 5.1 Combination Procedure - Method A ..................................... 572 5.2 Combination Procedure - Method B ..................................... 672 5.3 tnemmoC .............................................................. 872 6.0 ehT Development of High Degree Potential Coefficient Models .............. 972 7.0 ehT Role of Satellite Altimeter Data ..................................... 972 8.0 Comparisons of Satellite dna Terrestrial Gravity Anomaly Fields .......... 182 382 9.0 Conclusion ............................................................... References ................................................................... 382 lX remmuS loohcS Lectures no Satellite Altimetry C.A. rengaW Lecture 1. Purposes dna Motivation, ehT Altimetric Equation, Radial Perturbations ..................................................... 582 Lecture 2. Frequency Classification dna Observability of Radial Variations ........................................................ 203 Lecture 3. Determination of Permanent aeS Topography morF Altimetry 1: lavomeR of Orbit Error ............................................. 213 Lecture 4. Determination of TSP from Altimetry 2: Simulation of a Subtraction Method ................................................ 513 Lecture 5. Determination of TSP from Altimetry 3: Simulation of a Simultaneous Solution for the Geoid ............................... 323 A Footnote no weN Results from the Subtraction Method ........................ 923 References ................................................................... 233 Techniques Advanced for High-Resolution Mapping of the Gravitational Field .O obmoloC I Basic Techniques for Gathering Data no a Global Basis ...................... 533 yhW esu a gradiometer? .................................................. 533 latnemadnuF problems .................................................... 633 Accuracy required ....................................................... 733 Problems limiting the accuracy .......................................... 733 ehT null-point principle ................................................ 833 Every-day examples ...................................................... 833 ehT precision balance used in laboratories .............................. 833 emoS basic relationships ................................................ 143 hcihW yaw is pu in freee fall? .......................................... 143 Prospecting in the Asteroids .................................. .......... 243 Dealing with orbit error dna attitude / Rotation to estimate gravitation ............................................................. 343 a) ehT orbit error ...................................................... 343 )b Dealing with attitude dna rotation errors ............................ 346 2 Global Data Analysis ........................................................ 943 3 Mission Error Analysis for a 01 2 E.U., Full-Tensor Instrument ............. 253 3.1 Time series representation of the second gradients for a circular, polar, repeating orbit ................................................. 353 3.2 ehT general element of the normal matrix H for the full-tensor gradiometer ............................................................ 653 3.3 Rescaling for different altitude accuracies dna mission lengths ........ 753 3.4 Calculating global SMR errors of area naem anomalies ................... 753 4 Implications for the Study of the Earth of the Results of a Global Error Analysis of a Full-Tensor Gradiometer Mission ........................ 953 References ................................................................... 863 SRANIMES ehT Integrated hcaorppA to Satellite ysedoeG .B Betti, .F 6snaS 1 Introduction ............................................................... 373 2 The Typical Form of Satellite Observation Equations ........................ 374 3 The "Spherical Field-Circular Motion" approximation ........................ 380 4 The Solution of Hill's Equation in the Circular Motion Approximation ....... 683 5 The Covariance Function and the Integrated Scheme .......................... 593 6 Sub-Optimal Solutions ...................................................... 104 Xll Appendix ..................................................................... 405 References ................................................................... 416 Determination of a Local Geodetic Network'by Multi-Arc Processing of Satellite Laser segnaR .A Milani, .E Melchioni 1 Introduction and summary ............................................. ...... 714 2 Choice of the arc length ................................................... 419 3 Symmetries and rank deficiency ............................................. 224 4 ehT multi-arc algorithm .................................................... 034 5 Experimentalresults ....................................................... 534 References ................................................................... 444 yradnuoB Value smelborP dna Invariants of the Gravitational Tensor in Satellite Gradiometry .P Holota yrammuS ...................................................................... 744 1 Introduction ............................................................... 447 2 Differential Accelerometry ................................................. 448 3 Invariants of the Gravitational Tensor ..................................... 054 4 Reduction and Linearization ................................................ 254 5 Separation of the Field and Orbit Perturbations ............................ 454 References .................................................................. 754 A Possible Application of the Space VLBI Observations for Establishment of a weN Connection of Reference Frames J. madA yrammuS ...................................................................... 459 1 Introduction ............................................................... 064 2 ehT role of space VLBI in reference frames tie ............................. 264 3 Rank deficiencies within a space VLBI network .............................. 564 4 Conclusions ................................................................ 374 References ................................................................... 474 Optimization of the Reordering Algorithm for Least Squares Problems Relevant to Space Geodesy .M Crespi, .G Forlani, L. Mussio yrammuS ...................................................................... 774 1 ehT Problem ................................................................ 774 2 ehT Method ................................................................. 478 3 ehT Program ................................................................ 084 4 ehT Test ................................................................... 184 5 ehT Example ................................................................ 184 6 Remarks .......................................................... ~ ......... 484 References ....................................................... ............ 194

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.